© | Dror Bar-Natan: Academic Pensieve: Blackboard Shots: Fiedler:
140823-093020: A 1-cocycle of degree 3.
Random
newer
older
up

cycle text mode
Fiedler-{ hide text
  221213-100013: Is $V(K\setminus c)$ finite type? (4)
  221213-094244: Is $V(K\setminus c)$ finite type? (3)
  221213-093927: Is $V(K\setminus c)$ finite type? (2)
  221213-093920: Is $V(K\setminus c)$ finite type?
  221129-132630: Polynomial invariants which can distinguish the orientations of knots (7).
  221129-132625: Polynomial invariants which can distinguish the orientations of knots (6).
  221129-132620: Polynomial invariants which can distinguish the orientations of knots (5).
  221129-132615: Polynomial invariants which can distinguish the orientations of knots (4).
  221129-132609: Polynomial invariants which can distinguish the orientations of knots (3).
  221129-132605: Polynomial invariants which can distinguish the orientations of knots (2).
  221129-132600: Polynomial invariants which can distinguish the orientations of knots.
  170512-145638: The latest 1-cocycle invariant (25).
  170512-145637: The latest 1-cocycle invariant (24).
  170512-145636: The latest 1-cocycle invariant (23).
  170512-145635: The latest 1-cocycle invariant (22).
  170512-145634: The latest 1-cocycle invariant (21).
  170512-145633: The latest 1-cocycle invariant (20).
  170512-145632: The latest 1-cocycle invariant (19).
  170512-145631: The latest 1-cocycle invariant (18).
  170512-145630: The latest 1-cocycle invariant (17).
  170512-145629: The latest 1-cocycle invariant (16).
  170512-145628: The latest 1-cocycle invariant (15).
  170512-145627: The latest 1-cocycle invariant (14).
  170512-145626: The latest 1-cocycle invariant (13).
  170512-145625: The latest 1-cocycle invariant (12).
  170512-145624: The latest 1-cocycle invariant (11).
  170512-145623: The latest 1-cocycle invariant (10).
  170512-145622: The latest 1-cocycle invariant (9).
  170512-145621: The latest 1-cocycle invariant (8).
  170512-145620: The latest 1-cocycle invariant (7).
  170512-145619: The latest 1-cocycle invariant (6).
  170512-145618: The latest 1-cocycle invariant (5).
  170512-145617: The latest 1-cocycle invariant (4).
  170512-145616: The latest 1-cocycle invariant (3).
  170512-145615: The latest 1-cocycle invariant (2).
  170512-145614: The latest 1-cocycle invariant.
  141002-094841: Skype meeting along with Ester.
  140825-170444: Last shot of Aug 2014.
  140825-105150: A boundary?
  140825-100933: Operations on finite type invariants.
  140825-094748: Orienting R3 moves.
  140823-115508: Invariants of connected sums.
  140823-103108: A degree 1 cancellation.
  140823-101501: A 1-cocycle of degree 3 (3).
  140823-094854: A 1-cocycle of degree 3 (2).
  140823-093020: A 1-cocycle of degree 3.
  140822-160404: Bracelets.
  140822-101619: The Fiedler-Whitney trick.
  140821-151908: Dividing by weight systems???
  140821-145927: Dividing by weight systems, multi-local variations.
  140820-165548: Braids (13).
  140820-164702: Braids (12).
  140820-163626: Braids (11).
  140820-162341: Braids (10).
  140820-161703: Braids (9).
  140820-160934: Braids (8).
  140820-140714: Braids (7).
  140820-135638: Braids (6).
  140820-135409: Braids (5).
  140820-134906: Braids (4).
  140820-134334: Braids (3).
  140820-133411: Braids (2).
  140820-132545: Braids.
  140820-130956: $W_1$ and $W_2$.
  140820-113049: The Tetrahedron Equation (2).
  140820-111723: The Tetrahedron Equation.
  140820-105138: Iteration and $v_2$ and $v_3$.
  140820-101653: Kauffman-Vogel invariants.
  140820-100353: A calculus for co-cycles (3).
  140820-095343: A calculus for co-cycles (2).
  140820-094704: A calculus for co-cycles.
  140819-154357: Knot at Lunch: Singularization of Knots and Closed Braids (17).
  140819-154356: Knot at Lunch: Singularization of Knots and Closed Braids (16).
  140819-154355: Knot at Lunch: Singularization of Knots and Closed Braids (15).
  140819-154354: Knot at Lunch: Singularization of Knots and Closed Braids (14).
  140819-154353: Knot at Lunch: Singularization of Knots and Closed Braids (13).
  140819-154352: Knot at Lunch: Singularization of Knots and Closed Braids (12).
  140819-154351: Knot at Lunch: Singularization of Knots and Closed Braids (11).
  140819-154350: Knot at Lunch: Singularization of Knots and Closed Braids (10).
  140819-154349: Knot at Lunch: Singularization of Knots and Closed Braids (9).
  140819-154348: Knot at Lunch: Singularization of Knots and Closed Braids (8).
  140819-154347: Knot at Lunch: Singularization of Knots and Closed Braids (7).
  140819-154346: Knot at Lunch: Singularization of Knots and Closed Braids (6).
  140819-154345: Knot at Lunch: Singularization of Knots and Closed Braids (5).
  140819-154344: Knot at Lunch: Singularization of Knots and Closed Braids (4).
  140819-154343: Knot at Lunch: Singularization of Knots and Closed Braids (3).
  140819-154342: Knot at Lunch: Singularization of Knots and Closed Braids (2).
  140819-154341: Knot at Lunch: Singularization of Knots and Closed Braids.
  140819-104938: Plans (10).
  140819-102407: Plans (9).
  140819-101739: Plans (8).
  140819-101112: Plans (7).
  140819-100540: Plans (6).
  140819-095813: Plans (5).
  140819-094528: Plans (4).
  140819-093218: Plans (3).
  140819-092248: Plans (2).
  140819-091110: Plans.
  080621-154412: A new Z/2 grading.
  080620-115025: An even more general possibility.
  080620-115017: The Z/2 grading (4).
  080620-114956: The Z/2 grading (3).
  080619-163955: The Z/2 grading (2).
  080619-163944: The Z/2 grading.
  080619-090218: Indexing permutations.
  080618-120425: Further program details (2).
  080618-120418: Further program details.
  080618-084419: Further 1-parameter philosophy (5).
  080618-083549: Further 1-parameter philosophy (4).
  080618-083544: Further 1-parameter philosophy (3).
  080618-082520: Further 1-parameter philosophy (2).
  080618-082510: Further 1-parameter philosophy.
  080617-114051: Program details.
  080617-084332: One parameter philosophy (2).
  080617-084325: One parameter philosophy.
  080616-162241: Definition of the Y invariant (6).
  080616-154121: Definition of the Y invariant (5).
  080616-154057: Definition of the Y invariant (4).
  080616-154034: Definition of the Y invariant (3).
  080616-134140: Definition of the Y invariant (2).
  080616-134133: Definition of the Y invariant.
  080616-133033: An attempted Heegaard-Floer (5).
  080616-113840: An attempted Heegaard-Floer (4).
  080616-113407: An attempted Heegaard-Floer (3).
  080616-113400: An attempted Heegaard-Floer (2).
  080616-111942: An attempted Heegaard-Floer.
  080616-111937: A state sum for Alexander-Jones (8).
  080616-110713: A state sum for Alexander-Jones (7).
  080616-110704: A state sum for Alexander-Jones (6).
  080616-104613: A state sum for Alexander-Jones (5).
  080616-104606: A state sum for Alexander-Jones (4).
  080616-103328: A state sum for Alexander-Jones (3).
  080616-103319: A state sum for Alexander-Jones (2).
  080616-102224: A state sum for Alexander-Jones.
  080616-102039: Alexander Kauffman for Tangles (3).
  080616-100835: Alexander Kauffman for Tangles (2).
  080616-100827: Alexander Kauffman for Tangles.
  080616-093820: The Kauffman state model (3).
  080616-093447: The Kauffman state model (2).
  080616-093440: The Kauffman state model.
  080616-092144: Kawauchi's theorem.
  080616-092137: Ordinary crossings in 1-parameter knot theory.
  080616-090642: Cabling.
  080616-090634: White's theorem.
  080616-085744: Regular isotopy.
  080616-085735: Waldhausen's theorem.
  080616-084339: 1-parameter knot theory.
  080616-084329: 0-parameter knot theory (2).
  080616-084319: 0-parameter knot theory.
}
Notes for BBS/Fiedler-140823-093020.jpg:    [edit]