© | Dror Bar-Natan: Academic Pensieve: Blackboard Shots: AKT14:
140312-104503: $Z_0$ is a UFTI (if invariant).
Random
newer
older
up

cycle text mode
AKT14-{ hide text
  140407-105125: The Friday-Wednesday relation.
  140407-104608: The full Chern-Simons path integrals with ghosts, and its perturbative expansion.
  140407-102836: Random formulas.
  140407-101549: Faddeev-Popov.
  140404-110419: Horizontal compositions, generating tangles.
  140404-105953: The case of tangles.
  140404-104947: General algebraic structures.
  140404-103527: $A$-expansions.
  140404-102655: General facts about $gr$.
  140404-102635: Notices and reminders about expansions.
  140326-110047: Pulling back commutes with pushing forward.
  140326-105711: The proof of $dZ_0=A\cdot dZ_0$.
  140326-103805: Understanding and cancelling the anomaly.
  140326-102116: Review of the anomaly 2-form.
  140324-113339: Exercises.
  140324-110108: ${\mathcal A}$ is a bi-algebra (2).
  140324-105310: ${\mathcal A}$ is a bi-algebra.
  140324-104340: Examples of bi-algebras.
  140324-103310: Co-algebras, bi-algebras.
  140324-102709: Reminders, algebras.
  140321-110354: $\det(Q+\epsilon P)$ (2).
  140321-105354: $\det(Q+\epsilon P)$.
  140321-104306: Faddeev-Popov in the case of rotations on ${\mathbb R}^2$.
  140321-103733: The Faddeev-Popov determinant formula.
  140319-110415: The anomaly (3).
  140319-105818: The anomaly (2).
  140319-104246: The anomaly.
  140319-103040: Vanishing of the non-anomalous hidden faces.
  140317-105925: Universal PBW.
  140317-104923: PBW.
  140317-103729: $W_{\mathfrak g}$.
  140317-102557: ${\mathcal U}({\mathfrak g})$.
  140314-110347: Naive expectations for perturbation theory.
  140314-110240: Finally, the Chern-Simon path integral.
  140314-103456: Insolubility of the quintic.
  140312-110420: Cancellation of most hidden faces (2).
  140312-105957: Cancellation of most hidden faces.
  140312-104503: $Z_0$ is a UFTI (if invariant).
  140312-103108: Reminders, a better formula for $Z_0$.
  140310-100021: A preview of bi-algebras.
  140310-095320: $4T$ for $gl(N)$.
  140310-094743: The $so(N)$ case.
  140310-094353: Further $gl(N)$ computations.
  140310-093925: A $gl(N)$ computation.
  140310-092839: The $gl(N)$ structure constants.
  140310-091619: Reminders.
  140307-110330: An iterated integral formula for the holonomy.
  140307-105409: The Chern-Simons form, holonomies.
  140307-104129: Motivation from physics, economics, and mathematics.
  140307-101950: Some formulas for gauge transformations.
  140305-111609: Chern-Simons and curvatures.
  140305-110203: ${\mathcal A}$ arises!
  140305-110128: The adjoint of the graph differential (3).
  140305-105737: The adjoint of the graph differential (2).
  140305-105506: The adjoint of the graph differential.
  140305-105317: $Z_0$.
  140305-103551: Handout support.
  140303-110402: Not all invariant tensors arise this way.
  140303-110019: $W_{{\mathfrak g},R}$ satisfies IHX, AS, STU.
  140303-104444: Well-definededness of $W_{{\mathfrak g},R}$ (2).
  140303-103342: Well-definededness of $W_{{\mathfrak g},R}$.
  140303-102902: Informal `universallity' of the construction.
  140303-102801: The construction of $W_{{\mathfrak g},R}$.
  140303-101621: Reminders: the structure constants.
  140228-105841: Very naive gauge theory (2).
  140228-105256: Very naive gauge theory.
  140228-104034: Some diagrams.
  140226-110208: Graph cohomology and $\Omega_{dR}^\ast(\Gamma)$ (3).
  140226-104550: Graph cohomology and $\Omega_{dR}^\ast(\Gamma)$ (2).
  140226-103415: Graph cohomology and $\Omega_{dR}^\ast(\Gamma)$.
  140224-110146: The structure constants.
  140224-105632: Metrized Lie algebras.
  140224-104701: Constructing weight systems from Lie algebras.
  140224-103753: Lie algebras and representations.
  140224-102332: Reminders.
  140214-110030: Perturbed Gaussian integration and Feynman diagrams (2).
  140214-105240: Perturbed Gaussian integration and Feynman diagrams.
  140214-103957: Inverting the Laplacian.
  140214-103102: $L^-$ and $\Delta$.
  140214-102429: The $\delta$-function as an integral.
  140214-101840: Notes and plans, our section.
  140212-110205: The case of a knot in ${\mathbb R}^3$.
  140212-105540: Dealing with infra-red.
  140212-103645: Review of Fulton-MacPherson and the basic properties.
  140210-110136: ${\mathcal A}(\bigcirc)\simeq{\mathcal A}(\uparrow)$.
  140210-105758: Proof of the invariance principle.
  140210-105231: The invariance principle.
  140210-104841: Proof of bracket-rise (2).
  140210-104537: Proof of bracket-rise.
  140210-102624: A table of dimensions, statement of bracket-rise.
  140207-181713: Homework Assignment 5.
  140207-110017: Gauge fixing and Hodge theory.
  140207-105119: The formula for $d^{-1}$.
  140207-104454: Stokes for pushforwards.
  140207-104103: Reminders on pushforwards.
  140205-110540: Manifolds with corners.
  140205-104349: Implementation.
  140205-103009: Clustering.
  140203-111929: The Fundamental Theorem is equivalent to a UFTI (2).
  140203-105428: The Fundamental Theorem is equivalent to a UFTI.
  140203-104540: The fundamental theorem, universal finite type invariants.
  140203-103129: The 4T relation and $\mathcal A$-spaces.
  140203-102113: Notes and reminders.
  140131-183811: Homework Assignment 4, Questions 1-2-3.
  140131-110316: Pushforwards.
  140131-105659: An integral formula for $d^{-1}$.
  140131-104019: $d^{-1}$ and linking numbers as intersection numbers.
  140131-102906: Reminders, 1-forms, 2-forms, cycles.
  140129-110420: Sign issues.
  140129-105603: A blatantly false theorem.
  140129-105306: The configuration space $C_D({\mathbb R}^3,\gamma)$.
  140129-103734: Swaddling maps and framings.
  140129-102632: Goals, a new formula for $sl_2$.
  140127-110314: The 4T relation.
  140127-105732: The FI relation.
  140127-105435: Weight systems and finiteness.
  140127-104216: $n$-singular knots and $n$-chord diagrams.
  140127-103346: The $n$th derivative is constant.
  140127-102321: HOMFLY-PT and Conway.
  140127-101400: Notes and reminders.
  140124-190950: Homework Assignment 3, Question 3.
  140124-190949: Homework Assignment 3, Questions 1 and 2.
  140124-105724: The second moments (2).
  140124-104736: The second moments.
  140124-103755: Moments of Gaussian integrals.
  140124-102426: Gaussian integration of arbitrary quadratics.
  140124-101522: Notices and today's goal.
  140122-110556: Little on Frenet-Serret.
  140122-105652: Framings and SO(3).
  140122-104159: Framings.
  140122-102833: Reminders.
  140120-110110: Jones is a FT series, proof.
  140120-105912: The Jones skein relation.
  140120-103943: Jones is a FT series.
  140120-103110: The definition of finite-type.
  140120-102454: $n$-singular knots and differentiating invariants.
  140120-101022: Notices and the proper spelling on Wensday.
  140120-100933: Reminder on Kauffman and Jones.
  140117-185407: Just a riddle, not a HW problem.
  140117-185406: Homework Assignment 2, Questions 2-3.
  140117-185405: Homework Assignment 2, Question 1.
  140117-110102: Volumes of spheres.
  140117-104951: The most-basic Gaussian integration.
  140117-103851: Minimization problems.
  140117-102828: The goal for 2-3 Fridays.
  140115-110235: Properties of $sl_1$.
  140115-105829: Swaddling.
  140115-104033: The naive self-linking integral.
  140115-102559: Reminders and degrees.
  140113-110000: The definition of the Jones polynomial.
  140113-104126: Ikke-invariance under R1 and the writhe.
  140113-103403: Invariance under R2 and R3.
  140113-103143: Computation for the trefoil.
  140113-103130: Definition of the Kauffman bracket.
  140113-100835: Notifications.
  140110-192042: Homework 1 (3).
  140110-192041: Homework 1 (2).
  140110-191441: Homework 1.
  140110-105842: Pythagoras' theorem.
  140110-104943: Recovering classical mechanics.
  140110-102352: Trotter's formula.
  140110-102238: Arriving at Schroedinger.
  140108-120508: An ugly explicit formula for the linking number integral.
  140108-115840: Alternative choice of volume forms.
  140108-115225: Invariance of the linking number integral.
  140108-115001: Computing the linking number integral.
  140108-113910: The linking number as an integral.
  140108-113457: Invariance of the linking number sum.
  140108-112656: The linking number as a sum over xings.
  140108-111537: Scheduling.
  140106-120556: Invariance of 3-colourings under Reidemeister moves.
  140106-120118: Reidemeister theorem and 3-colourings.
  140106-114501: Defining knots.
}
AKT14 is 2014 MAT 1350 - Algebraic Knot Theory.

Notes for BBS/AKT14-140312-104503.jpg:    [edit]