| Leung-{ | hide text | 
| 100712-131330: | Universal gl(N) in greater detail. | 
| 100630-123429: | A, Aarrow, G, Gtilde. | 
| 100406-140315: | The injectivity of V->U(gl_n) (2). | 
| 100401-151441: | The injectivity of V->U(gl_n). | 
| 100316-130250: | A funny map from U(gl_k) to U(gl_n). | 
| 100309-123802: | Bulk quantities, names, interpretations. | 
| 091123-175610: | The gl(N) Lie-bialgebra, revisited. | 
| 091106-164740: | The other bi-algebra structure on sl(2). | 
| 091023-163629: | Factorial basis for descending. | 
| 091009-170956: | The EK-Verma isomorphism in degree 1. | 
| 090227-133555: | so(2N) (2). | 
| 090227-132523: | so(2N). | 
| 090122-113225: | The more general gl(N) arrow-weight-system. | 
| 090119-114318: | The two juggling diagrams. | 
| 090112-113529: | 6T. | 
| 090106-140729: | Wgl for links. | 
| 081219-112510: | An example arrow diagram. | 
| 081218-145854: | Enumeration of Arrow Diagrams, a start on the gl(N) computation. | 
| 080924-143035: | Directed marked Jacobi diagrams. | 
| 080917-144216: | Surfaces are graphs modulo relations. | 
| 080805-113556: | 6T for SO. | 
| 080229-153603: | Blobs in arrow diagrams. | 
| 080131-151919: | A proof of 6T for gl(N). | 
| 080129-162421: | The weight system of the bialgebra associated with a semi-simple Lie algebra. | 
| 071213-142750: | The SO(2N) Lie bialgebra weight system. | 
| } | 
