25-1301-{ |
hide text
|
250326-140557: | Hours 32-33: Degrees, CW complexes (12). |
250326-140556: | Hours 32-33: Degrees, CW complexes (11). |
250326-140555: | Hours 32-33: Degrees, CW complexes (10). |
250326-140554: | Hours 32-33: Degrees, CW complexes (9). |
250326-140553: | Hours 32-33: Degrees, CW complexes (8). |
250326-140552: | Hours 32-33: Degrees, CW complexes (7). |
250326-140551: | Hours 32-33: Degrees, CW complexes (6). |
250326-140550: | Hours 32-33: Degrees, CW complexes (5). |
250326-140549: | Hours 32-33: Degrees, CW complexes (4). |
250326-140548: | Hours 32-33: Degrees, CW complexes (3). |
250326-140547: | Hours 32-33: Degrees, CW complexes (2). |
250326-140546: | Hours 32-33: Degrees, CW complexes. |
250325-110650: | Hour 31: Proof of Borsuk-Ulam (9). |
250325-110649: | Hour 31: Proof of Borsuk-Ulam (8). |
250325-110648: | Hour 31: Proof of Borsuk-Ulam (7). |
250325-110647: | Hour 31: Proof of Borsuk-Ulam (6). |
250325-110646: | Hour 31: Proof of Borsuk-Ulam (5). |
250325-110645: | Hour 31: Proof of Borsuk-Ulam (4). |
250325-110644: | Hour 31: Proof of Borsuk-Ulam (3). |
250325-110643: | Hour 31: Proof of Borsuk-Ulam (2). |
250325-110642: | Hour 31: Proof of Borsuk-Ulam. |
250318-185347: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (15). |
250318-185346: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (14). |
250318-185345: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (13). |
250318-185344: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (12). |
250318-185343: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (11). |
250318-185342: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (10). |
250318-185341: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (9). |
250318-185340: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (8). |
250318-185339: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (7). |
250318-185338: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (6). |
250318-185337: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (5). |
250318-185336: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (4). |
250318-185335: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (3). |
250318-185334: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (2). |
250318-185333: | Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam. |
250318-112344: | Hour 28: Mayer-Vietoris and some ${\mathbb R}^n/S^n$ theorems (6). |
250318-112343: | Hour 28: Mayer-Vietoris and some ${\mathbb R}^n/S^n$ theorems (5). |
250318-112342: | Hour 28: Mayer-Vietoris and some ${\mathbb R}^n/S^n$ theorems (4). |
250318-112341: | Hour 28: Mayer-Vietoris and some ${\mathbb R}^n/S^n$ theorems (3). |
250318-112340: | Hour 28: Mayer-Vietoris and some ${\mathbb R}^n/S^n$ theorems (2). |
250318-112339: | Hour 28: Mayer-Vietoris and some ${\mathbb R}^n/S^n$ theorems. |
250314-155310: | Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (10). |
250314-155309: | Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (9). |
250314-155308: | Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (8). |
250314-155307: | Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (7). |
250314-155306: | Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (6). |
250314-155305: | Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (5). |
250314-155304: | Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (4). |
250314-155303: | Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (3). |
250314-155302: | Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (2). |
250314-155301: | Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology. |
250311-111221: | Hour 25: More on excision (5). |
250311-111220: | Hour 25: More on excision (4). |
250311-111219: | Hour 25: More on excision (3). |
250311-111218: | Hour 25: More on excision (2). |
250311-111217: | Hour 25: More on excision. |
250305-172545: | Hours 23-24: short and long exact sequences, excision (12). |
250305-172544: | Hours 23-24: short and long exact sequences, excision (11). |
250305-172543: | Hours 23-24: short and long exact sequences, excision (10). |
250305-172542: | Hours 23-24: short and long exact sequences, excision (9). |
250305-172541: | Hours 23-24: short and long exact sequences, excision (8). |
250305-172540: | Hours 23-24: short and long exact sequences, excision (7). |
250305-172539: | Hours 23-24: short and long exact sequences, excision (6). |
250305-172538: | Hours 23-24: short and long exact sequences, excision (5). |
250305-172537: | Hours 23-24: short and long exact sequences, excision (4). |
250305-172536: | Hours 23-24: short and long exact sequences, excision (3). |
250305-172535: | Hours 23-24: short and long exact sequences, excision (2). |
250305-172534: | Hours 23-24: short and long exact sequences, excision. |
250303-143832: | Hour 22: Prizms and exact sequences (6). |
250303-143831: | Hour 22: Prizms and exact sequences (5). |
250303-143830: | Hour 22: Prizms and exact sequences (4). |
250303-143829: | Hour 22: Prizms and exact sequences (3). |
250303-143828: | Hour 22: Prizms and exact sequences (2). |
250303-143827: | Hour 22: Prizms and exact sequences. |
250303-143312: | Hours 20-21: Functoriallity, invariance under homotopy (7). |
250303-143311: | Hours 20-21: Functoriallity, invariance under homotopy (6). |
250303-143310: | Hours 20-21: Functoriallity, invariance under homotopy (5). |
250303-143309: | Hours 20-21: Functoriallity, invariance under homotopy (4). |
250303-143308: | Hours 20-21: Functoriallity, invariance under homotopy (3). |
250303-143307: | Hours 20-21: Functoriallity, invariance under homotopy (2). |
250303-143306: | Hours 20-21: Functoriallity, invariance under homotopy. |
250224-165159: | Hour 19: Homology basics (6). |
250224-165158: | Hour 19: Homology basics (5). |
250224-165157: | Hour 19: Homology basics (4). |
250224-165156: | Hour 19: Homology basics (3). |
250224-165155: | Hour 19: Homology basics (2). |
250224-165154: | Hour 19: Homology basics. |
250213-084759: | Hours 17-18: Proof of the fundamental theorems on covering spaces (5). |
250213-084758: | Hours 17-18: Proof of the fundamental theorems on covering spaces (4). |
250213-084757: | Hours 17-18: Proof of the fundamental theorems on covering spaces (3). |
250213-084756: | Hours 17-18: Proof of the fundamental theorems on covering spaces (2). |
250213-084755: | Hours 17-18: Proof of the fundamental theorems on covering spaces. |
250213-084628: | Hour 16: Proof of the fundamental theorems on covering spaces (4). |
250213-084627: | Hour 16: Proof of the fundamental theorems on covering spaces (3). |
250213-084626: | Hour 16: Proof of the fundamental theorems on covering spaces (2). |
250213-084625: | Hour 16: Proof of the fundamental theorems on covering spaces. |
250206-073359: | Hours 14-15: The fundamental theorems on covering spaces (10). |
250206-073358: | Hours 14-15: The fundamental theorems on covering spaces (9). |
250206-073357: | Hours 14-15: The fundamental theorems on covering spaces (8). |
250206-073356: | Hours 14-15: The fundamental theorems on covering spaces (7). |
250206-073355: | Hours 14-15: The fundamental theorems on covering spaces (6). |
250206-073354: | Hours 14-15: The fundamental theorems on covering spaces (5). |
250206-073353: | Hours 14-15: The fundamental theorems on covering spaces (4). |
250206-073352: | Hours 14-15: The fundamental theorems on covering spaces (3). |
250206-073351: | Hours 14-15: The fundamental theorems on covering spaces (2). |
250206-073350: | Hours 14-15: The fundamental theorems on covering spaces. |
250206-072721: | Hour 13: Examples of covering spaces (4). |
250206-072720: | Hour 13: Examples of covering spaces (3). |
250206-072719: | Hour 13: Examples of covering spaces (2). |
250206-072718: | Hour 13: Examples of covering spaces. |
250130-154049: | Hours 11-12: More van Kampen examples; proof of van Kampen (11). |
250130-154048: | Hours 11-12: More van Kampen examples; proof of van Kampen (10). |
250130-154047: | Hours 11-12: More van Kampen examples; proof of van Kampen (9). |
250130-154046: | Hours 11-12: More van Kampen examples; proof of van Kampen (8). |
250130-154045: | Hours 11-12: More van Kampen examples; proof of van Kampen (7). |
250130-154044: | Hours 11-12: More van Kampen examples; proof of van Kampen (6). |
250130-154043: | Hours 11-12: More van Kampen examples; proof of van Kampen (5). |
250130-154042: | Hours 11-12: More van Kampen examples; proof of van Kampen (4). |
250130-154041: | Hours 11-12: More van Kampen examples; proof of van Kampen (3). |
250130-154040: | Hours 11-12: More van Kampen examples; proof of van Kampen (2). |
250130-154039: | Hours 11-12: More van Kampen examples; proof of van Kampen. |
250130-145613: | Hour 10: van Kampen examples (6). |
250130-145612: | Hour 10: van Kampen examples (5). |
250130-145611: | Hour 10: van Kampen examples (4). |
250130-145610: | Hour 10: van Kampen examples (3). |
250130-145609: | Hour 10: van Kampen examples (2). |
250130-145608: | Hour 10: van Kampen examples. |
250122-064610: | Hours 8-9: Homotopy equivalences, van Kampen (8). |
250122-064609: | Hours 8-9: Homotopy equivalences, van Kampen (7). |
250122-064608: | Hours 8-9: Homotopy equivalences, van Kampen (6). |
250122-064607: | Hours 8-9: Homotopy equivalences, van Kampen (5). |
250122-064606: | Hours 8-9: Homotopy equivalences, van Kampen (4). |
250122-064605: | Hours 8-9: Homotopy equivalences, van Kampen (3). |
250122-064604: | Hours 8-9: Homotopy equivalences, van Kampen (2). |
250122-064603: | Hours 8-9: Homotopy equivalences, van Kampen. |
250121-162901: | Mon 250120 H7: Borsuk-Ulam (6). |
250121-162900: | Mon 250120 H7: Borsuk-Ulam (5). |
250121-162859: | Mon 250120 H7: Borsuk-Ulam (4). |
250121-162858: | Mon 250120 H7: Borsuk-Ulam (3). |
250121-162857: | Mon 250120 H7: Borsuk-Ulam (2). |
250121-162856: | Mon 250120 H7: Borsuk-Ulam. |
250115-112346: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (10). |
250115-112345: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (9). |
250115-112344: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (8). |
250115-112343: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (7). |
250115-112342: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (6). |
250115-112341: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (5). |
250115-112340: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (4). |
250115-112339: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (3). |
250115-112338: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (2). |
250115-112337: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem. |
250114-075239: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (7). |
250114-075238: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (6). |
250114-075237: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (5). |
250114-075236: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (4). |
250114-075235: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (3). |
250114-075234: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (2). |
250114-075233: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra. |
250107-162817: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (14). |
250107-162816: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (13). |
250107-162815: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (12). |
250107-162814: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (11). |
250107-162813: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (10). |
250107-162812: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (9). |
250107-162811: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (8). |
250107-162810: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (7). |
250107-162809: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (6). |
250107-162808: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (5). |
250107-162807: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (4). |
250107-162806: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (3). |
250107-162805: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (2). |
250107-162804: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$. |
250106-142329: | Mon 250106 H1: The definition of $\pi_1$ (7). |
250106-142328: | Mon 250106 H1: The definition of $\pi_1$ (6). |
250106-142327: | Mon 250106 H1: The definition of $\pi_1$ (5). |
250106-142326: | Mon 250106 H1: The definition of $\pi_1$ (4). |
250106-142325: | Mon 250106 H1: The definition of $\pi_1$ (3). |
250106-142324: | Mon 250106 H1: The definition of $\pi_1$ (2). |
250106-142323: | Mon 250106 H1: The definition of $\pi_1$. |
} |