© | Dror Bar-Natan: Academic Pensieve: Blackboard Shots: Random

Blackboard Shots with Prefix "10_327"

10_327 is 2010 MAT 327 - Introduction to Topology.


101206-150423: Hour 35: Baire spaces and no-where differentiable functions (9).

101206-150418: Hour 35: Baire spaces and no-where differentiable functions (8).

101206-150412: Hour 35: Baire spaces and no-where differentiable functions (7).

101206-144618: Hour 35: Baire spaces and no-where differentiable functions (6).

101206-144612: Hour 35: Baire spaces and no-where differentiable functions (5).

101206-144606: Hour 35: Baire spaces and no-where differentiable functions (4).

101206-142921: Hour 35: Baire spaces and no-where differentiable functions (3).

101206-142915: Hour 35: Baire spaces and no-where differentiable functions (2).

101206-142909: Hour 35: Baire spaces and no-where differentiable functions.

101202-154652: Hours 33-34: Compactness and completeness (14).

101202-154646: Hours 33-34: Compactness and completeness (13).

101202-153823: Hours 33-34: Compactness and completeness (12).

101202-153817: Hours 33-34: Compactness and completeness (11).

101202-153811: Hours 33-34: Compactness and completeness (10).

101202-151220: Hours 33-34: Compactness and completeness (9).

101202-151214: Hours 33-34: Compactness and completeness (8).

101202-145103: Hours 33-34: Compactness and completeness (7).

101202-145056: Hours 33-34: Compactness and completeness (6).

101202-145050: Hours 33-34: Compactness and completeness (5).

101202-144001: Hours 33-34: Compactness and completeness (4).

101202-143935: Hours 33-34: Compactness and completeness (3).

101202-142107: Hours 33-34: Compactness and completeness (2).

101202-142101: Hours 33-34: Compactness and completeness.

101129-150200: Hour 32: Compactness in metric spaces (9).

101129-150153: Hour 32: Compactness in metric spaces (8).

101129-150147: Hour 32: Compactness in metric spaces (7).

101129-144510: Hour 32: Compactness in metric spaces (6).

101129-144504: Hour 32: Compactness in metric spaces (5).

101129-144458: Hour 32: Compactness in metric spaces (4).

101129-142555: Hour 32: Compactness in metric spaces (3).

101129-142550: Hour 32: Compactness in metric spaces (2).

101129-142544: Hour 32: Compactness in metric spaces.

101125-155612: Hours 30-31: Tietze's theorem (14).

101125-155606: Hours 30-31: Tietze's theorem (13).

101125-155447: Hours 30-31: Tietze's theorem (12).

101125-153349: Hours 30-31: Tietze's theorem (11).

101125-153342: Hours 30-31: Tietze's theorem (10).

101125-153332: Hours 30-31: Tietze's theorem (9).

101125-151406: Hours 30-31: Tietze's theorem (8).

101125-151357: Hours 30-31: Tietze's theorem (7).

101125-144921: Hours 30-31: Tietze's theorem (6).

101125-144915: Hours 30-31: Tietze's theorem (5).

101125-144909: Hours 30-31: Tietze's theorem (4).

101125-142115: Hours 30-31: Tietze's theorem (3).

101125-142109: Hours 30-31: Tietze's theorem (2).

101125-142103: Hours 30-31: Tietze's theorem.

101125-131208: A hint for HW7 problem 9.

101122-150129: Hour 29: A completely regular space is a subset of a cube (6).

101122-150123: Hour 29: A completely regular space is a subset of a cube (5).

101122-150117: Hour 29: A completely regular space is a subset of a cube (4).

101122-143604: Hour 29: A completely regular space is a subset of a cube (3).

101122-143557: Hour 29: A completely regular space is a subset of a cube (2).

101122-143551: Hour 29: A completely regular space is a subset of a cube.

101118-160029: Hours 27-28: Normal spaces and Urysohn's lemma (12).

101118-160022: Hours 27-28: Normal spaces and Urysohn's lemma (11).

101118-160005: Hours 27-28: Normal spaces and Urysohn's lemma (10).

101118-151403: Hours 27-28: Normal spaces and Urysohn's lemma (9).

101118-151352: Hours 27-28: Normal spaces and Urysohn's lemma (8).

101118-144900: Hours 27-28: Normal spaces and Urysohn's lemma (7).

101118-144853: Hours 27-28: Normal spaces and Urysohn's lemma (6).

101118-143820: Hours 27-28: Normal spaces and Urysohn's lemma (5).

101118-143813: Hours 27-28: Normal spaces and Urysohn's lemma (4).

101118-142441: Hours 27-28: Normal spaces and Urysohn's lemma (3).

101118-142436: Hours 27-28: Normal spaces and Urysohn's lemma (2).

101118-142430: Hours 27-28: Normal spaces and Urysohn's lemma.

101115-150131: Hour 26: Generalized limits (7).

101115-145315: Hour 26: Generalized limits (6).

101115-145308: Hour 26: Generalized limits (5).

101115-145303: Hour 26: Generalized limits (4).

101115-143652: Hour 26: Generalized limits (3).

101115-143646: Hour 26: Generalized limits (2).

101115-143641: Hour 26: Generalized limits.

101111-160248: Hours 24-25: Tychonoff and a taste of Stone-Cech (15).

101111-160241: Hours 24-25: Tychonoff and a taste of Stone-Cech (14).

101111-155348: Hours 24-25: Tychonoff and a taste of Stone-Cech (13).

101111-154757: Hours 24-25: Tychonoff and a taste of Stone-Cech (12).

101111-154750: Hours 24-25: Tychonoff and a taste of Stone-Cech (11).

101111-154742: Hours 24-25: Tychonoff and a taste of Stone-Cech (10).

101111-152804: Hours 24-25: Tychonoff and a taste of Stone-Cech (9).

101111-152757: Hours 24-25: Tychonoff and a taste of Stone-Cech (8).

101111-152752: Hours 24-25: Tychonoff and a taste of Stone-Cech (7).

101111-145526: Hours 24-25: Tychonoff and a taste of Stone-Cech (6).

101111-145518: Hours 24-25: Tychonoff and a taste of Stone-Cech (5).

101111-145512: Hours 24-25: Tychonoff and a taste of Stone-Cech (4).

101111-143201: Hours 24-25: Tychonoff and a taste of Stone-Cech (3).

101111-143155: Hours 24-25: Tychonoff and a taste of Stone-Cech (2).

101111-143150: Hours 24-25: Tychonoff and a taste of Stone-Cech.

101104-155757: Hours 22-23: Compactness in products and in metric spaces (18).

101104-155746: Hours 22-23: Compactness in products and in metric spaces (17).

101104-155738: Hours 22-23: Compactness in products and in metric spaces (16).

101104-154358: Hours 22-23: Compactness in products and in metric spaces (15).

101104-154352: Hours 22-23: Compactness in products and in metric spaces (14).

101104-154347: Hours 22-23: Compactness in products and in metric spaces (13).

101104-153321: Hours 22-23: Compactness in products and in metric spaces (12).

101104-153315: Hours 22-23: Compactness in products and in metric spaces (11).

101104-153310: Hours 22-23: Compactness in products and in metric spaces (10).

101104-150945: Hours 22-23: Compactness in products and in metric spaces (9).

101104-150937: Hours 22-23: Compactness in products and in metric spaces (8).

101104-150927: Hours 22-23: Compactness in products and in metric spaces (7).

101104-144119: Hours 22-23: Compactness in products and in metric spaces (6).

101104-144114: Hours 22-23: Compactness in products and in metric spaces (5).

101104-144107: Hours 22-23: Compactness in products and in metric spaces (4).

101104-142355: Hours 22-23: Compactness in products and in metric spaces (3).

101104-142348: Hours 22-23: Compactness in products and in metric spaces (2).

101104-142342: Hours 22-23: Compactness in products and in metric spaces.

101101-145431: Hour 21: Compact is closed and bounded, max values (8).

101101-145425: Hour 21: Compact is closed and bounded, max values (7).

101101-145420: Hour 21: Compact is closed and bounded, max values (6).

101101-144322: Hour 21: Compact is closed and bounded, max values (5).

101101-144316: Hour 21: Compact is closed and bounded, max values (4).

101101-142729: Hour 21: Compact is closed and bounded, max values (3).

101101-142722: Hour 21: Compact is closed and bounded, max values (2).

101101-142717: Hour 21: Compact is closed and bounded, max values.

101025-145931: Hour 18: Compactness of [0,1] (10).

101025-145412: Hour 18: Compactness of [0,1] (9).

101025-145407: Hour 18: Compactness of [0,1] (8).

101025-145402: Hour 18: Compactness of [0,1] (7).

101025-143522: Hour 18: Compactness of [0,1] (6).

101025-143517: Hour 18: Compactness of [0,1] (5).

101025-143512: Hour 18: Compactness of [0,1] (4).

101025-142144: Hour 18: Compactness of [0,1] (3).

101025-142138: Hour 18: Compactness of [0,1] (2).

101025-142133: Hour 18: Compactness of [0,1].

101021-160212: Hours 16-17: Connectedness, path-connectedness, products (17).

101021-160201: Hours 16-17: Connectedness, path-connectedness, products (16).

101021-155331: Hours 16-17: Connectedness, path-connectedness, products (15).

101021-155326: Hours 16-17: Connectedness, path-connectedness, products (14).

101021-155320: Hours 16-17: Connectedness, path-connectedness, products (13).

101021-153758: Hours 16-17: Connectedness, path-connectedness, products (12).

101021-153752: Hours 16-17: Connectedness, path-connectedness, products (11).

101021-153746: Hours 16-17: Connectedness, path-connectedness, products (10).

101021-151532: Hours 16-17: Connectedness, path-connectedness, products (9).

101021-151527: Hours 16-17: Connectedness, path-connectedness, products (8).

101021-151521: Hours 16-17: Connectedness, path-connectedness, products (7).

101021-144636: Hours 16-17: Connectedness, path-connectedness, products (6).

101021-144631: Hours 16-17: Connectedness, path-connectedness, products (5).

101021-144624: Hours 16-17: Connectedness, path-connectedness, products (4).

101021-143336: Hours 16-17: Connectedness, path-connectedness, products (3).

101021-143331: Hours 16-17: Connectedness, path-connectedness, products (2).

101021-143325: Hours 16-17: Connectedness, path-connectedness, products.

101018-150814: Hour 15: Connectedness in R (11).

101018-150802: Hour 15: Connectedness in R (10).

101018-145237: Hour 15: Connectedness in R (9).

101018-145231: Hour 15: Connectedness in R (8).

101018-145226: Hour 15: Connectedness in R (7).

101018-143926: Hour 15: Connectedness in R (6).

101018-143921: Hour 15: Connectedness in R (5).

101018-143914: Hour 15: Connectedness in R (4).

101018-141842: Hour 15: Connectedness in R (3).

101018-141836: Hour 15: Connectedness in R (2).

101018-141830: Hour 15: Connectedness in R.

101014-161227: Hours 13-14: Metric spaces, sequencial closures, various products (16).

101014-160029: Hours 13-14: Metric spaces, sequencial closures, various products (15).

101014-155102: Hours 13-14: Metric spaces, sequencial closures, various products (14).

101014-155057: Hours 13-14: Metric spaces, sequencial closures, various products (13).

101014-152903: Hours 13-14: Metric spaces, sequencial closures, various products (12).

101014-152858: Hours 13-14: Metric spaces, sequencial closures, various products (11).

101014-152852: Hours 13-14: Metric spaces, sequencial closures, various products (10).

101014-145913: Hours 13-14: Metric spaces, sequencial closures, various products (9).

101014-145907: Hours 13-14: Metric spaces, sequencial closures, various products (8).

101014-145900: Hours 13-14: Metric spaces, sequencial closures, various products (7).

101014-144558: Hours 13-14: Metric spaces, sequencial closures, various products (6).

101014-144553: Hours 13-14: Metric spaces, sequencial closures, various products (5).

101014-144548: Hours 13-14: Metric spaces, sequencial closures, various products (4).

101014-142719: Hours 13-14: Metric spaces, sequencial closures, various products (3).

101014-142713: Hours 13-14: Metric spaces, sequencial closures, various products (2).

101014-142707: Hours 13-14: Metric spaces, sequencial closures, various products.

101007-160238: Hours 11-12: The box and the product topologies, metric spaces (15).

101007-160232: Hours 11-12: The box and the product topologies, metric spaces (14).

101007-160224: Hours 11-12: The box and the product topologies, metric spaces (13).

101007-154817: Hours 11-12: The box and the product topologies, metric spaces (12).

101007-154811: Hours 11-12: The box and the product topologies, metric spaces (11).

101007-154804: Hours 11-12: The box and the product topologies, metric spaces (10).

101007-152848: Hours 11-12: The box and the product topologies, metric spaces (9).

101007-152842: Hours 11-12: The box and the product topologies, metric spaces (8).

101007-152836: Hours 11-12: The box and the product topologies, metric spaces (7).

101007-145418: Hours 11-12: The box and the product topologies, metric spaces (6).

101007-145412: Hours 11-12: The box and the product topologies, metric spaces (5).

101007-145406: Hours 11-12: The box and the product topologies, metric spaces (4).

101007-143300: Hours 11-12: The box and the product topologies, metric spaces (3).

101007-143255: Hours 11-12: The box and the product topologies, metric spaces (2).

101007-143249: Hours 11-12: The box and the product topologies, metric spaces.

101004-150154: Hour 10: The axiom of choice and infinite product spaces (6).

101004-145302: Hour 10: The axiom of choice and infinite product spaces (5).

101004-145256: Hour 10: The axiom of choice and infinite product spaces (4).

101004-143150: Hour 10: The axiom of choice and infinite product spaces (3).

101004-143144: Hour 10: The axiom of choice and infinite product spaces (2).

101004-143138: Hour 10: The axiom of choice and infinite product spaces.

100930-160134: Hours 8-9: Separation axioms (12).

100930-155431: Hours 8-9: Separation axioms (11).

100930-155417: Hours 8-9: Separation axioms (10).

100930-154237: Hours 8-9: Separation axioms (9).

100930-154229: Hours 8-9: Separation axioms (8).

100930-153416: Hours 8-9: Separation axioms (7).

100930-153407: Hours 8-9: Separation axioms (6).

100930-145752: Hours 8-9: Separation axioms (5).

100930-145746: Hours 8-9: Separation axioms (4).

100930-143647: Hours 8-9: Separation axioms (3).

100930-143631: Hours 8-9: Separation axioms (2).

100930-143624: Hours 8-9: Separation axioms.

100927-150035: Hour 7: The Cantor Set, Closures (9).

100927-150030: Hour 7: The Cantor Set, Closures (8).

100927-150024: Hour 7: The Cantor Set, Closures (7).

100927-144059: Hour 7: The Cantor Set, Closures (6).

100927-144052: Hour 7: The Cantor Set, Closures (5).

100927-144046: Hour 7: The Cantor Set, Closures (4).

100927-142710: Hour 7: The Cantor Set, Closures (3).

100927-142704: Hour 7: The Cantor Set, Closures (2).

100927-142655: Hour 7: The Cantor Set, Closures.

100923-155827: Hours 5-6: Products, Subspaces, Closed Sets (14).

100923-155821: Hours 5-6: Products, Subspaces, Closed Sets (13).

100923-155812: Hours 5-6: Products, Subspaces, Closed Sets (12).

100923-154754: Hours 5-6: Products, Subspaces, Closed Sets (11).

100923-154747: Hours 5-6: Products, Subspaces, Closed Sets (10).

100923-153713: Hours 5-6: Products, Subspaces, Closed Sets (9).

100923-152224: Hours 5-6: Products, Subspaces, Closed Sets (8).

100923-152216: Hours 5-6: Products, Subspaces, Closed Sets (7).

100923-150741: Hours 5-6: Products, Subspaces, Closed Sets (6).

100923-145401: Hours 5-6: Products, Subspaces, Closed Sets (5).

100923-145356: Hours 5-6: Products, Subspaces, Closed Sets (4).

100923-143415: Hours 5-6: Products, Subspaces, Closed Sets (3).

100923-143405: Hours 5-6: Products, Subspaces, Closed Sets (2).

100923-143358: Hours 5-6: Products, Subspaces, Closed Sets.

100920-145838: Hour 4: Bases (9).

100920-145831: Hour 4: Bases (8).

100920-145823: Hour 4: Bases (7).

100920-144614: Hour 4: Bases (6).

100920-144603: Hour 4: Bases (5).

100920-142955: Hour 4: Bases (4).

100920-142946: Hour 4: Bases (3).

100920-142938: Hour 4: Bases (2).

100920-141211: Hour 4: Bases.

100916-155901: Hours 2-3: topologies, continuity, bases (15).

100916-155414: Hours 2-3: topologies, continuity, bases (14).

100916-155406: Hours 2-3: topologies, continuity, bases (13).

100916-155401: Hours 2-3: topologies, continuity, bases (12).

100916-153251: Hours 2-3: topologies, continuity, bases (11).

100916-153246: Hours 2-3: topologies, continuity, bases (10).

100916-153240: Hours 2-3: topologies, continuity, bases (9).

100916-151018: Hours 2-3: topologies, continuity, bases (8).

100916-151007: Hours 2-3: topologies, continuity, bases (7).

100916-145130: Hours 2-3: topologies, continuity, bases (6).

100916-145122: Hours 2-3: topologies, continuity, bases (5).

100916-145117: Hours 2-3: topologies, continuity, bases (4).

100916-143834: Hours 2-3: topologies, continuity, bases (3).

100916-143824: Hours 2-3: topologies, continuity, bases (2).

100916-143818: Hours 2-3: topologies, continuity, bases.

100913-145848: Hour 1: Continuity and open sets (5).

100913-144833: Hour 1: Continuity and open sets (4).

100913-143313: Hour 1: Continuity and open sets (3).

100913-143305: Hour 1: Continuity and open sets (2).

100913-143258: Hour 1: Continuity and open sets.