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Thanks for{allowing me in/Brisbane!
The Strongest Genuinely Computable Knot Invariant in 2024
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Abstract. “Genuinely computable” means we have co-
mputed it for random knots with over 300 crossings. .
“Strongest” means it separates prime knots with up to
15 crossings better than the less-computable HOMFLY-
PT and Khovanov homology taken together. And hey,
it’s also meaningful and fun.

Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint w-

ith van der Veen.
Acknowledgement. This work was supported by NSERC grants RGPIN-2018-
04350 and RGPIN-2025-06718 and by the Chu Family Foundation (NYC).
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Knots. ‘D—

@‘“>
invariants Something simple:
— = numbers, polynomials,
matrices, etc.
Tell them apart” Alternatmg‘7 Bound a genus 7 surface? Comple-
ment is fibered over S'? Complement is hyperbolic? Bounds a
disk with only ribbon singularities? Bounds a topological / smo-
oth non-singular disk in B*? ...

/

Strongest. Testing ® = (A, 6) on prime knots up to mirrors and

reversals, counting the numbey of distinct values (with deficits in
parenthesis): MMMM
S

Preparation. Draw an n-crossing knot K as a
diagram D as on the right: all crossings face up,
and the edges are marked with a running index

invariant, that’s science fiction.

Fun. There’s so much more to see in
2D pictures than in 1D ones! Yet al-
most nothing of the patterns you see
we know how to prove. We’ll have
fun with that over the next few years.
'Would you join? -
Meaningful, -6 gives a genus bound (unproven yet with confi-
dence). “We hope.(with reason) it says something about nbbon
knots. E;Cﬂ L Indad T Yanwg, ,&-,riﬂz S/

knots (H,Kh) | (A,p1) = (A,0) | together |k € {1,...,2n + 1} and with rotation numbers ¢y. NN
reign 2005-22 | 2022-24 2024- odel 7 Traffic Rules. Cars always drive fo- Q o

xing< 10 | 249 248 (1) | 249(0) | 249(0) | 249(0) rward. When a car crosses over a sign-s brid- / 4
xing< 11 | 801 | 77130) | 787(14) | 7983) | 798(3) jge it goes through with (algebraic) probability | 5, 3 L
xing<12 | 2977 | @14 | 5 (19) (18) T* ~ 1, but falls off with probability |
xing < 13 | 12,965 (1,771) (959) (194) (185) 1 - T% ~ 0. At the very end, cars
xing < 14 | 59,937 | (10,788) | (6,253) | (L,118) | (1,062) fall off and disappear, On various ed- | /[, \U
xing < 15 | 313,230 | (70.245) | (42914 | (6,758) (6,555) masecredis: @S Iraffic counters are placed. See

Genuinely Computable. Here's © | NN 5= 5 T o

on a random 300 crossing knot (from [K@ll

[DHOEBLY]). For almost every other = N
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| p=1-T
- Definition. The traffic function G = (g,p) (also, ~\
the Green function or the two-point function) is
the reading of a traffic counter at g, if car traffic
is injected at « (if @ = S, the counter is after the injection point).
There are also model-T,, traffic functions G, = (g,.p) for v =

Conventions. T, T}, and T, are indetermmates and T; '=TT,.1
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1,2,3. Example.
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https://diamondtraffic.com/productcategory/Portable-Counters
https://labs.openai.com/
http://www.math.toronto.edu/~drorbn
http://www.math.toronto.edu/~drorbn/Talks
http://www.math.toronto.edu/~drorbn/Talks/Brisbane-250616/
http://drorbn.net/b25

Theorem [BV3]. With ¢ (s,i, ), co =
(0, i0, jo), and ¢y (81,11, j1) denoting cros-
sings, there is a quadratic Fi(c) € Q(T,)[gvep : |; j
«,B € {i,j}], a cubic F(co,c1) € QT))[gvap @, /3 E
{70, jo, i1, j1}], and a linear F3(¢p, k) such that 6 is a knot invariant:

(D) =

Aidahs Z File)+ D Falco,en) + Z Fileu.h)|.

4
normallzatlon ¢ I

see later .-
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This picture gave the invariant its name

If these pictures remind you of Feynman diagrams, it’s because
they are Feynman diagrams [BN2].

Questions, Conjectures, Expectations, Dreams.

Question 1. What’s the relationship between ® and .the
Garoufalidis-Kashaev invariants [GK, GL]?

Conjecture 2. On classical (non-virtual) knots, 6 always has he-
xagonal (Dg) symmetry.

Conjecture 3. 6 is the €' contribution to the “solvable appro-
ximation™ of the s/3 universal invariant, obtained by running the
quantization machinery on the double D(b, b, €6); where b is the
Borel subalgebra of s/3, b is the bracket of b, and ¢ the cobracket.
See [BV2, BN1, Sch]

Conjecture 4. 0 is equal to the “two-loop contribution to the Kon-
tsevich Integral”, as studied by Garoufalidis, Rozansky, Kricker,
and in great detail by Ohtsuki [GR, Ro1, Ro2, Ro3, Kr, Oh].
IFact 5. 6 has a perturbed Gaussian integral formula, with inte-
lgration carried out over over aspace 6F, consisting of 6 copies of

ILemma 1. The traffic function gaﬁ is a “relative invariant’:

Xm\pw<

-7 J‘j\(l—r)

ﬁ

60

he space of edges of a knot‘diagram D. See [BN2].

Conjecture 6. For any knot K, its genus g(K) is bounded by the
T -degree of 6: 2g(K)= degy, 6(K).

Conjecture 7. 6(K) has another perturbed Gaussian integral for-
mula, with integration carried out over over the.space 6H, con-
sisting of 6 copies of H{(X), where X is a Seifert surface for K.
I[Expectation 8. There are many further invariants like 6, given by
Green function formulas and/or Gaussian integration formulas.
One or two of them may be stronger than 6 and as computable.

Dream 9. These invariants can be explained by  FREETOPOLOGY
something less foreign than semisimple Lie alge- £ €/ @i
£ i

bras. 0N in~ e e fer s B E
[ VN AN & TYRANNY or OF
. . A\ UANTUM ALGEBRA

Dream 10. With Conjectu- P it
Y

re 7 in mind, 6 will have

Lemma 2. With k™ = k + 1, the “g-rules” hold
near a crossing ¢ = (s, I, j):

j+*\/’i+
i/ \j
ip = 8ptojp 8ip =T 8ip+(1=T")gjp+0ig gup=Omp
8ait = T°8ai + Ouir 8aj = 8aj t (1 =T"gui + Oajr a1 = Oal

Corollary 1. G is easily computable, for AG = I (= GA), with A
the (2n+1)x(2n+1) identity matrix with additional contributions:

A ‘ colit col j*
c=(s,i,j)r rowi | =T° T*-1
For the trefoil example, we have: rowJ 0 -1
1 -T 0 0O T-1 O 0
0 1 -1 0 0 0 0
0 O 1 -T 0 0 T-1
A= 0 O 0 1 -1 0 0 ,
0O 0 T-1 O 1 =7 0
0 O 0 0 0 1 = 1|
0 O 0 0 0 0 1
1 T 1 T 1 T 1
1 T T Y
0 1 T>-T+1 T>-T+1 T>-T+1  T*-T+1 1
00 7 1T+1 T2 ; = T 1
B e ST+l TTAl 17
G=[0 0 p ; : 1
~-T+1 T T+% T*-T+1 T°-T+1
0 0 -T -1 1 T 1
T2-T+1 T2 T+l T2-T+1 T?>-T+1
0 0 0 1 1
00 0 0 0 0 1

something to say about rib-
bon knots.
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Corollary 2. Proving invariance is easy:
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Invariance under R3

This is Theta.nb of http://drorbn.net/v25/ap.

©®O0nce[<< KnotTheory™ ; << Rot.m; << PolyPlot.m];
OT3=T1Ty;
©CF[&_] := ExpandeCollect[&, g , F] /. F » Factor;
OF1[{s_, 1,7 _}]=
CF[
s (1 /2 - 8335 + T3 811 8251 - B1ii 8245 -
(T3 - 1) 825i 8311 + 2 8255 8311 - (1 - T3) 825 B3ji -
82ii 835 - T3 8251 8355 + B1ii 834 +
((T1-1) g5 (Tgs 821 - T3 8255 + T5 8355) +
(13-1) 835
(1-T38ui- (T1-1) (T3+1) gaja +
(T3-2) 253 + 8215) ) / (T2 - 2) ) |5
OF,[{s0_, i0_, jO_}, {s1_, il , j1_}] :=
CF[s1 (T3°-1) (15" -1) " (73" - 1) g4, 51,10 83, 50,11
( (TZ" 82,i1,10 - 82,i1,70) - (Tie 82,571,106 - 82,51,50) ) |
OF3[¢_, R_1 =-0/2+0¢83;
©é6; ,; =If[i===7,1,0];
gR. i, i={
8v.js »8vi*s* 655
8y isp ¥ Tf, Britp + (1 - Ti) 8yits +8ips
8 ai* T, Brai+baits
8y ajt D Brajt (1 - Tf,) €y a1+ éaj+
}
©DSum[Cs__ ] :=Sum[Fy[c], {c, {Cs}}] +
Sum[F,[cO, c1], {cO, {Cs}}, {cl, {Cs}}]
lhs =DSum[ {1, j, k}, {1, i, k*}, {1, i*, '},
{s, my n}] //.8Ry 5,k UBRy, i, i* UBRy i+, 4+3
rhs =DSum[ {1, i, j}, {1, i*, k}, {1, §*, k*},
{s, myn}] //.8Ryi U8Ry i+ k UBRy 5+ k+5
Simplify[lhs == rhs]

O True

(Note that the genus of the Conway knot appears to
be bigger than the genus of Kinoshita-Terasaka)

The Main Program
e[k ] :=Modu1e[{Cs, o, n, A, A, G, ev, 6},

{Cs, ©} =Rot[K]; n=Length[Cs];
A = IdentityMatrix[2n+1];
Cases[Cs, {s ,1,7J }»
9 . . =17 77 = 4
(pnct, 35 it 5o = (T3 T )]s
A = T(-Total[¢]-Total[Cs[ALL,1]]1) /2 pat [A];
G = Inverse[A];
evi&s ] :=
Factor[& /.8, ,.,s » (GLa, A1 /. T>T,)1;
n .
3 = ev[Z‘k=1 F1[CsOKD1]3
0 += ev[Z‘L:1=1 Z‘:H F2[Cs[k1], Cs[k211];
o +=ev[Y"" F3[oIKI, k1];
Factore
{A, (A/.T>Ty) (A/.T>Ty) (A/.T->T3) 6}];

The Trefoil, Conway, and Kinoshita-Terasaka

©e[Knot[3, 1]] // Expand Q\
{1 I 1 1 < ~<
“1+—=4+T, - — -T7]-— - —— + + N\

T T2 T2 1272 T, T2 ﬁ/

10T T
f e 2T, T T T - T T

T, T, T O(;D
D\
® GraphicsRow[PolyPlot[@[Knot[#]]] & /@ @)

{"3_1", "K11n34", "K11n42"}]

)

Some Torus Knots

® GraphicsRow[ImageCompose [

PolyPlot[©[Torusknot @@ #], ImageSize - 480],
TubePlot [TorusKnot @@ #, ImageSize - 240],
{Right, Bottom}, {Right, Bottom}

1 &/@ {{13, 23}, {17, 3}, {13, 5}, {7, 6}}]
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The 132-crossing torus knot 7;,7: (many more at wef/TK)
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Random knots from [DHOEBL], with 50-73 crossings:

W J. |4+
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