## Title. A Seifert Dream

Abstract. Given a knot K with a Seifert surface \Sigma, I dream that the well-known Seifert linking form Q, a quadratic on H1xH1, has a docile local perturbation P\_\eps such that the formal Gaussian integral of \exp(Q+P\_\eps) is an invariant of K.

In my talk I will explain what the above means, why this dream is oh so sweet, and why it is in fact closer to a plan than to a delusion.

#### Plan.

- 1. I want to give a dreamy talk today... but it won't make sense w/o the preliminaries. So I'll give 2 talks today. The first a fast-paced abreviated repeat of a colloquium talk I gave in Toronto, and the second, dreamy. There will be a 3m intermission in between.
- 2. Then go over Toronto-24... with KiW highlighting.
- 3. Then the ASD talk.

### A Seifert Dream

**Abstract.** Given a knot K with a Seifert surface  $\Sigma$ , I dream that the well-known Seifert linking form Q, a quadratic form on  $H_1(\Sigma)$ , has decree local perturbation  $P_{\epsilon}$  such that the formal Gaussian integral of  $\exp(Q + P_{\epsilon})$  an invariant of K.

In my talk I will explain what the above means, why this dream is oh so sweet, and why it is in fact closer to a plan than to a delusion.

Joint with Roland van der Veen.

A soifert surface & P

DEF PEFOEX, - XNJEFJ & Sould - THE For every monomial in inthe Ft would give ging somesof Lyse, an (m) Though m +b Thm (Flynnin)

is like hat 9= I new
Sacre for
Bellowo
Slidel Drom 7

It has a shot an saying something / ribbon
something / ribbon
something / ribbon

Thick like

Below. Random knots from [DHOBL], with 101-115 crossings (many more are at  $\omega \epsilon \beta/DK$ ).

**Right.** The 132-crossing torus knot  $T_{22/7}$  (many more at  $\omega$ -14/11/  $\varepsilon \beta /TK$ ).





A Seifert Dream

Thanks for inviting me to Pitzer College!

**Abstract.** Given a knot K with a Seifert surface  $\Sigma$ , I dream that the well-known Seifert linking form Q, a quadratic form on  $H_1(\Sigma)$ , has plenty docile local perturbations  $P_{\epsilon}$  such that the formal Gaussian integrals of  $\exp(Q + P_{\epsilon})$  are invariants of K.

In my talk I will explain what the above means, why this dream is oh so sweet, and why it is in fact closer to a plan than to a Joint with Roland van der Veen. delusion.

#### The Seifert-Alexander Formula.

$$Q(P,G) = T^{1/2}lk(P^+,G) + T^{-1/2}lk(P,G^+)$$

$$\Delta(K) = \det(Q)$$

$$\int_{2H_1(\Sigma)} dp \, dx \, \exp Q(p,x) \doteq \det(Q)^{-1}$$
(where  $\doteq$  means "ignoring silly factors").



**Theorem** (Feynman). If Q is a quadratic in  $x_1, \ldots, x_n$  and  $P_{\epsilon}$  is docile, set

$$Z_{\epsilon} = \int_{\mathbb{R}^n} dx_1 \cdots x_n \, \exp\left(Q + P_{\epsilon}\right).$$

Then every coefficient in the  $\epsilon$ -expansion of  $Z_{\epsilon}$  is computable in polynomial time in n. in fact,  $Q^{-1}$   $Q^{-1}$   $Q^{-1}$ 

$$Z_{\epsilon} \doteq \left\langle \exp Q^{-1}(\partial_{x_i}), \exp P_{\epsilon} \right\rangle = \text{sum over all pairings}$$

 $\theta(T, 1)$  is like that! With  $\epsilon^2 = 0$ ,





where 
$$\mathcal{L}(X_{ij}^{s}) \doteq e^{L(X_{ij}^{s})}$$
,  $\mathcal{L}(C_{i}^{\varphi}) \doteq e^{L(C_{i}^{\varphi})}$ ,  $\mathcal{L}(C_{i}^{\varphi}) \doteq e^{L(C_{i}^{\varphi})}$ ,  $\mathcal{L}(X_{ij}^{s}) = x_{i}(p_{i+1} - p_{i}) + x_{j}(p_{j+1} - p_{j}) + (T^{s} - 1)x_{i}(p_{i+1} - p_{j+1}) + \frac{\epsilon s}{2} \left( x_{i}(p_{i} - p_{j}) \begin{pmatrix} (T^{s} - 1)x_{i}p_{j} \\ +2(1 - x_{j}p_{j}) \end{pmatrix} - 1 \right)$ 

$$\mathcal{L}(C_{i}^{\varphi}) = x_{i}(p_{i+1} - p_{i}) + \epsilon \varphi(1/2 - x_{i}p_{i})$$

$$\theta(T_{1}, T_{2}) \text{ is likewise, with harder formulas}$$

and integration over 6E.

**Right.** The 132-crossing torus knot  $T_{22/7}$  (more at  $\omega \epsilon \beta/TK$ ). **Below.** Random knots from [DHOBL], with 101-115 crossings (more at  $\omega \varepsilon \beta/DK$ ).





Whit's "bow"? How will we compute?



The Seifert Algorithm, by Emily Redelmeier



# A Seifert Dream

mal Gaussian integrals of  $\exp(Q + P_{\epsilon})$  are invariants of K.

In my talk I will explain what the above means, why this dream mation coming from  $\Sigma$ ). is oh so sweet, and why it is in fact closer to a plan than to a delusion.

# The Seifert-Alexander Formula.

$$Q(P,G) = T^{1/2}lk(P^+,G) + T^{-1/2}lk(P,G^+)$$

$$\Delta(K) = \det(Q)$$

$$\int_{2H_1(\Sigma)} dp \, dx \, \exp Q(p, x) \doteq \det(Q)^{-1}$$
(where \(\displie\) means "ignoring silly factors").





$$Z_{\epsilon} = \int_{\mathbb{R}^n} dx_1 \cdots x_n \, \exp\left(Q + P_{\epsilon}\right)$$

 $Z_{\epsilon} = \int_{\mathbb{R}^n} dx_1 \cdots x_n \exp(Q + P_{\epsilon}).$  Then every coefficient in the  $\epsilon$ -expansion of  $Z_{\epsilon}$  is computable in polynomial time in n. in fact,

$$Z_{\epsilon} \doteq \left\langle \exp Q^{-1}(\partial_{x_i}), \exp P_{\epsilon} \right\rangle =$$

 $\theta(T, 1)$  is like that! With  $\epsilon^2 = 0$ ,

 $\mathcal{L}(X_{37}^+)$ 

 $\mathcal{L}(X_{62}^+)$ 

 $\mathcal{L}(X_{15}^+)$ 



$$+\frac{\epsilon s}{2} \left( x_i (p_i - p_j) \begin{pmatrix} (T^s - 1) x_i p_j \\ +2(1 - x_j p_j) \end{pmatrix} - 1 \right)$$

$$L(C_i^{\varphi}) = x_i(p_{i+1} - p_i) + \epsilon \varphi(1/2 - x_i p_i)$$

 $\theta(T_1, T_2)$  is likewise, with harder formulas and integration over 6E.

**Right.** The 132-crossing torus knot  $T_{22/7}$  (more at  $\omega \epsilon \beta/TK$ ). **Below.** Random knots from [DHOEBL], with 101-115 crossings (more at  $\omega \epsilon \beta/DK$ ).



ωεβ:=http://drorbn.net/pi25 Dream. There is a similar perturbed Gaussian integral formu-Thanks for inviting me to Pitzer College!  $\blacksquare \Sigma \blacksquare$  a for  $\theta$ , but with integration over  $6H_1(\Sigma)$ . The quadratic Q will **Abstract.** Given a knot K with a Seifert surface  $\Sigma$ , I dream be the same as in the Seifert-Alexander formula (but repeated 3 that the well-known Seifert linking form Q, a quadratic form on times, for each  $T_{\nu}$ ). The perturbation  $P_{\epsilon}$  will be given by low- $H_1(\Sigma)$ , has plenty docile local perturbations  $P_{\epsilon}$  such that the fordegree finite type invariants of curves on  $\Sigma$  (possibly also dependent) dent on the intersection points of such curves, or on other infor-

> **Evidence.** Experimentaly (yet undeniably), deg  $\theta$  is bounded by Joint with Roland van der Veen. the genus of  $\Sigma$ . How else could such a genus bound arise? Further very strong evidence comes from the conjectural (yet undeniable) understanding of  $\theta$  as the two-loop contribution to the Kontsevich integral [Oh] and/or as the "solvable approximation" of the universal  $sl_3$  invariant [BN1, BV2].

Why so sweet? It will allow us to prove the aforementioned genus bound. Sweeter and dreamier, it may allow us to say something about pibbon knots! It i hexageness you me by



What's "local"? How will we compute? The Bedlewo Alexander formula: Let F be the faces of a knot diagram. Make an  $F \times F$ matrix A by adding for each crossing contributions

morphism in 
$$n$$
. in fact,  $Q^{-1}$   $Q^$ 

at rows / columns (i, j, k, l). Then  $\Delta = \det' \left( (T^{1/2}A - T^{-1/2}A)/2 \right)$ .



