Dror Bar-Natan: Talks: Pitzer-25039§immmé wep:=http://drorbn.net/pi2SMHEIDream. There is a similar perturbed Gaussian integral formu-
A Seifert Dream | Thanks for inviting me to Pitzer College! @55 a for 6, but with integration over 6H;(X). The quadratic Q will
Abstract. Given a knot K with a Seifert surface ¥, I dream € the same as in the Seifert-Alexander formula (but repeated 3
that the well-known Seifert linking form Q, a quadratic form on [times, for.each Tv')- Tbe perturbation P will bf_? given by low-
H{(X), has plenty docile local perturbations P, such that the for- [d€8ree finite type invariants of curves on X (possibly also depen-
mal Gaussian integrals of exp(Q + P,) are invariants of K. dent on the intersection points of such curves, or on other infor-
In my talk I will explain what the above means, why this dream | ation coming from X).

is oh so sweet, and why it is in fact closer to a plan than to a Evidence. Experimentally (yet undeniably), deg 6 is bounded by
delusion. Joint with Roland van der Veen. [the genus of . How else could such a genus bound arise? Further

The Seifert-Alexander Formula. With = ery strong evidence comes from the conjectural (yet undeniable)
P.O € H(%). /! junderstanding of 6 as the two-loop contribution to the Kontsevich
OP.G) = T\2Ik(P*.G) — T-V2Ik(P.G") [integral [Oh] and/or as the “solvable approximation” of the uni-
ST ’ ’ ersal sl; invariant [BN1, BV2].
A(K) = det(Q) hy so sweet? It will allow us to prove the aforementioned ge-
dp dx exp Q(p, x) = det(Q)™! nus bound and likely, the hexagonal symmetry. Sweeter and dre-
2H,(2) [Iamier, it may allow us to say something about ribbon knots!

(where = means “ignoring silly factors”). =
Perturbed Gaussian Integration. We say .
that P, € €Q[xi, ... x,][€]l is M-docile (for = e

some M: N — N) if for every monomial s From Mexico City, tariffs exempt
in Pe we have deg,, . (m) < M(deg.(m)).

.....

Theorem (Feynman). If Q is a quadratic in xi,..., x, and P, is [What’s “local”’? How will we compute? The Bedlewo Alexan-
docile, set Z, = J[;{ dxy - x, exp(Q + P.). Then every coeffi- der formula: Let F be the faces of a knot diagram. Make an F X F
cient in the e-expansion of Z, is computable in polynomial time matrix A by adding for each crossing contributions
o oy o o (B0 00 Wk (00 00
AV?Z, = <CXP Q_l(axi)’ exp Pe> = sum over all pairings . > .
l /o 0 1-10 l /i -21 10
0

w w ! 1 0-10 ! 1
P, P,

at rows / columns (i, j, k, I). Then A = det’ ((T”ZA - T‘I/ZA)/2).
2E=R!. . S (i — %\/ -
\ (5

=
. LX . ®
where £(X) = o™, £(Cf) = oM, “ @
Y ! the Seifert algorithm by Emily Redelmeier)

L(Xisj) = xi(pix1 — pi)) + xj(pj+1 — Pj) Expect the like for 8! Expect more like 8! Topology first! Resist
T E ST NN DDES S S

|
+(T* = D)xi(pist — pjs1) the tyranny of quantum algebra!
and integration over 6FE. TIIOBEBBRTIIOTTRDBD BB L L
TR REFRFFORWNRDDDDDH D W%

+2(1 — ijj)
L(C;P) = x,(pH.l - pl) + 690(1/2 - -xlpl) D0 O S M ATITEIELEEREE M M O O O
[Right. The 132-crossing torus knot 7,/7 (more at wef/TK). FIIPEEAADDARRNBDDDDD RS Y %
Below. Random knots from [DHOEBL], with 101-115 crossings C o e PP REEEEETRIBDDRDREEE% %

Pl o & SO DDR D DS s "8 ",
(more at weB/DK). P P

0(T,, T,) is likewise, with harder formulas GO0 mE e liEiR B e o 0O
? 3 & Y = % - 4 4
ete * I"t'#{f 8‘? : ) : ?@ 'G%%%t‘z 3 :s
rrr 3R EEEEE, AR Rk A EER
¢ AR X
codt &b S @t dd oo

O(T, 1) is like that! With €2 = 0,

—= Z= ¢ LOGH LX) LX) LC, ( L 4 e

+§ (x,-(pi - Pj)(
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Dror Bar-Natan: Talks: Toronto-241030:

Thanks for bearing with me!

The Strongest Genuinely Computable Knot Invariant in 2024

Abstract. “Genuinely computable” means we have co-
mputed it for random knots with over 300 crossings. .
“Strongest” means it separates prime knots with up to|
15 crossings better than the less-computable HOMFLY-
PT and Khovanov homology taken together. And hey,
it’s also meaningful and fun.

Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint w-
ith van der Veen.

Acknowledgement. This work was supported by NSERC grant
RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

van der Veen

B diagram D as on the right: all crossings face up,
" |land the edges are marked with a running index
L kefl,...
% Model T Traffic Rules.

Preparation. Draw an n-crossing knot K as a

,2n + 1} and with rotation numbers .
Cars always drive fo-
rward. When a car crosses over a sign-s brid-
ge it goes through with (algebraic) probability
T® ~ 1, but falls off with probability
1 -T° ~ 0. At the very end, cars
fall off and disappear. On various ed-

¢4 = -1

Strongest. Testing ® = (A, #) on prime knots up to mirrors and
reversals, counting the number of distinct values (with deficits in
parenthesis):

(o1: [Rol, Ro2, Ro3, Ov, BV1]) [

ges traffic counters are placed. See
also [Jo, LTW]

L

image credits:

tliamondtraffic.com

most nothing of the patterns you see
we know how to prove. We’ll have
fun with that over the next few years.
'Would you join?

Meaningful. 6 gives a genus bound (unproven yet with confi-
dence). We hope (with reason) it says something about ribbon
knots.

knots (H,Kh) (A,p1) | ®=(A,0) | together [g—" g -TQ -k )L
reign 2005-22 | 2022-24 2024- p=1-T° 1maEe credits:

xing < 10 249 248 (1 249 (0 249 (0 249 (0 ope

xini <11] 801 | 771 ((30)) 787 ((143) 798 53; 798 8 Definition. The.tm]ﬁcf unction G. - (g“ﬁ).(alsf” D W

Xing =12 | 2,977 214) ©5) (19) (18) the Gree.n function or the two-point functton) is

xing < 13 | 12,965 | (1,771) 959) (194) (135) the reading of a traffic counter at §, if car traffic =)

xing < 14 | 59,937 | (10,788) | (6,253) (1,118) (1,062) is injected at « (if @ = B, the counter is after the injection point).

xing < 15 | 313,230 | (70,245) | (42,914) (6,758) (6,555) here are also model-T), traffic functions G, = (g,.p) for v =
Genuinely Computable. Here’s © | 1,2,3. Example.
on a random 300 crossing knot (from Zpso(l= T)” =7 R L7t
[DHOEBLY]). For almost every other 1 % p G=[0 T 1]
invariant, that’s science fiction. : —+ —+ o o0 1
Fun. There’s so much more to see in ~ D0n’t L00k
2D pictures than in 1D ones! Yet al- Ri(0)=s [1/2 = gii + T581i82ji — T>83ji82ji — (T5—1)g3iig2ji

+(T5- 1)82jig3ji 81ii82jj + 283ii82jj + §1i83jj — g2iig3jj]

TS N [(TY DT, (g3jjg1ji — 82jj81ji +Tzsgljig2ji)

+(T5-1) (83ji = T5g1i83ji + 82ij&3ji + (Tzs—z)gzjjgyi)
~(T{=D(T3+D(T3=Dg1jgs;i]
s1(T7° = D(T5' = D)g iy 83,
Ts1 1

j— S0 S0
Ryx(co,c1)= (Tz 82iip + 82j1jo — T 82j1ig — gZiljo)

Conventions. T, T, and T, are indeterminates and T
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Theorem. With ¢ = (s,1, j), co = (S0, 0, jo),
and ¢, = (s1, 11, j1) denoting crossings, there is
a quadratic Ri1(¢) € QI8 : B € il ;) (7
a cubic Ryx(co,c1) € Q(T))[gvap : @.B € fio, jo, i1, j1}], and a
linear I'; (¢, k) such that the following is a knot invariant:

A1A2A3 [Z Rii(c) + Z R12(Co, c1) + Z Fl(‘#’k,k)]

normahzatlon © €0,C1
see later .-

a(D) =

D &
\/

SN &
A & ’1

This picture gave the invariant its name
If these pictures remind you of Feynman dlagrams, it’s because

they are Feynman diagrams [BN2].

Questions, Conjectures, Expectations, Dreams.
Question 1. What’s the relationship between ® and the

-] (Garoufalidis-Kashaev invariants [GK, GL]?

Conjecture 2. On classical (non-virtual) knots, 6 always has he-
xagonal (Dg) symmetry.

Conjecture 3. 6 is the €' contribution to the “solvable appro-
ximation” of the s/3 universal invariant, obtained by running the
quantization machinery on the double D(b, b, €6), where b is the
Borel subalgebra of s/, b is the bracket of b, and § the cobracket.
See [BV2, BN1, Sch]

Conjecture 4. 0 is equal to the “two-loop contribution to the Kon-
tsevich Integral”, as studied by Garoufalidis, Rozansky, Kricker,
and in great detail by Ohtsuki [GR, Rol, Ro2, Ro3, Kr, Oh].
IFact 5. 6 has a perturbed Gaussian integral formula, with inte-
lgration carried out over over a space 6F, consisting of 6 copies of

ILemma 1. The traffic function gaﬁ is a “relative invariant’:

o)

o

T2

ﬁ

he space of edges of a knot diagram D. See [BN2].

Conjecture 6. For any knot K, its genus g(K) is bounded by the
T\-degree of 6: g&AMIow IR 23(K) 7 doar, O(K)
Conjecture 7. 9(K) has another perturbed Gaussian integral for-
imula, with integration carried out over over the space 6H;, con-
sisting of 6 copies of H{(X), where X is a Seifert surface for K.
I[Expectation 8. There are many further invariants like 6, given by
Green function formulas and/or Gaussian integration formulas.
One or two of them may be stronger than 6 and as computable.
Dream 9. These invariants can be explained by something less
foreign than semisimple Lie algebras.

Dream 10. 6 will have something to say about ribbon knots.

[BN1] D. Bar-Natan, Everything around sl5, is DoPeGDO. So References.
what?, talk in Da Nang, May 2019. Handout and video at we/DPG.

Lemma 2. With k* := k + 1, the “g-rules” hold
near a crossing ¢ = (s, i, j):

j+*\/’i+
i/ N\
8ig = 8B + 51B 8ip = ngi+ﬁ + (1 — Ts)gﬁlg + 5,[; 8ot g = 62n+,ﬂ
Lait = ngai + Oait 8ajr = 8aj t+ (- Ts)ga/i + 6aj+ 8a,l = 5(1/,1
Corollary 1. G is easily computable, for AG = I (= GA), with A
the (2n+1)x(2n+1) identity matrix with additional contributions:

A ‘ col i* col j*
c=(s,i,j)—» rowi | -T° T°-1
IFor the trefoil example, we have: row.J 0 -1
1 . 0 0O T-1 0 0
0 1 -1 0 0 0 0
0 0 1 = 0 0 @@=
A=l 0 O 0 1 -1 0 0 i
0O 0 T-1 0 1 = 0
0 O 0 0 0 1 -1
0 O 0 0 0 1
1 T 1 T 1 T 1
1 T T TZ
0 1 T2-T+1 T2-T+1 T2_T+1 T2—€+l 1
0 0 Tz—lT 1 T2—T 1 Tz_T 1 Tz_T 1 1
G={0 0 =L i L
2_T+1 T2—T+% T2-T+1  T?-T+1
0 0 =1 _(T-1n 1 T 1
T2-T+1 T2-T+1 T2-T+1 T_T+1
v 1
0 0 0 0 0 0 1

[BN2] —, Knot Invariants from Finite Dimensional Integration, talks in Bei-
jing (July 2024, wef/icbs24) and in Geneva (August 2024, wef3/ge24).

[BV1] —, R. van der Veen, A Perturbed-Alexander Invariant, Quantum Topo-
logy 15 (2024) 449472, weB/APAL

[BV2] —, —, Perturbed Gaussian Generating Functions for Universal Knot
Invariants, arxiv:2109.02057.

[DHOEBL] N. Dunfield, A. Hirani, M. Obeidin, A. Ehrenberg, S. Bhattachary-
ya, D. Lei, and others, Random Knots: A Preliminary Report, lecture notes
at wef/DHOEBL. Also a data file at wef3/DD.

[GK] S. Garoufalidis, R. Kashaev, Multivariable Knot Polynomials from Brai-
ded Hopf Algebras with Automorphisms, arxiv:2311.11528.

[GL] —, S. Y. Li, Patterns of the V,-polynomial of knots, arxiv.:2409.03557.

[GR] —, L. Rozansky, The Loop Expansion of the Kontsevich Integral, the
Null-Move, and S -Equivalence, arxiv:math.GT/0003187.

[Jo] V.F R.Jones, Hecke Algebra Representations of Braid Groups and Link
Polynomials, Annals Math., 126 (1987) 335-388.

[Kr] A. Kricker, The Lines of the Kontsevich Integral and Rozansky’s Rationa-
lity Conjecture, arxiv:-math/0005284.

[LTW] X-S. Lin, F. Tian, Z. Wang, Burau Representation and Random Walk
on String Links, Pac. J. Math., 182-2 (1998) 289-302, arxiv:q-alg/9605023.
[Oh] T. Ohtsuki, On the 2—loop Polynomial of Knots, Geom. Top. 11 (2007)

1357-1475.

[Ov] A. Overbay, Perturbative Expansion of the Colored Jones Polynomial,
Ph.D. thesis, University of North Carolina, Aug. 2013, wef3/Ov.

[Rol] L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones
Polynomial and Witten’s Invariant of 3D Manifolds, I, Comm. Math. Phys.
175-2 (1996) 275-296, arxiv:hep-th/9401061.

[Ro2] —, The Universal R-Matrix, Burau Representation and the Melvin-

Morton Expansion of the Colored Jones Polynomial, Adv. Math. 134-1

(1998) 1-31, arxiv:q-alg/9604005.

Note. The Alexander polynomial A is given by
A = T2 det(A), withp =Y, 0, w=Y,s
'We also set A, := A(T,) forv =1,2,3.

[Ro3] —, A Universal U(1)-RCC Invariant of Links and Rationality Conjectu-
re, arxiv:imath/0201139.

[Sch] S. Schaveling, Expansions of Quantum Group Invariants, Ph.D. thesis,

Universiteit Leiden, September 2020, wef3/Scha.




Corollary 2. Proving invariance is easy:

™\ ™\
koo D sl D
?
K/ = (s
N N
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J J

Invariance under R3

This is Theta.nb of http://drorbn.net/to24/ap.
©O0nce[<< KnotTheory™ ; << Rot.m; << PolyPlot.m];

OT3 =Ty Ty;
OCF[& ]
Module[{vs = UnioneCases[&, g , =], ps, €},
Total[Coe-FficientRules[Expand[&], vs] /.

(ps_ > c_) = Factor[c] (Timeseevs™)] |;
ORua[{s_, 1_, J_}]=
CF[
s (1 /2 - 835 + T3 8141 8241 - B1ii 825 -
(T§ = 1) 82ji 83ii + 2 8255 83ii - (1 = T:-s;) 82ii 835i -
82ii 8335 - T> B2ji 8353 + B1ii B335 +
((T2-1) gaji (T2° 8251 - T3 Basj + T3 8333) +
(T3-1) &35
(1-T38us- (Ti-1) (T3+1) gajs +
(T3-2) &255 + 8215) ) / (T3 - 2) ) ]
©Rya[{sO_, 10 , jO_}, {s1_, i1, j1_}] :=
CF[s1 (T3°-1) (15" -1) " (73" - 1) 84, 51,10 83, 50,11
( (Tie 82,i1,i0 - 82,i1,70) - (Tie 82,71,i0 - 82,1,50) ) |
OT1[e , R.1=-0/2+¢8a;
@51- i i=If[i===7, 1, 0];
- |
gv_j/f_ P 8yjts+ 64,
B is P 8its+ (1-T) Brjrs+8iss
8 ait T, 8rai+baits
8, a it 8raj+ (1 - Tf,) €yai + 6aj+
}
©DSum[Cs__ ] :=Sum[Ry;[c], {c, {Cs}}] +
Sum[R;;[cO, c1], {cO, {Cs}}, {cl, {Cs}}]
lhs =DSum[ {1, j, k}, {1, i, k*}, {1, i*, 7'},
{s, my n}] /7. 8Ry 5,k UBRy ikt UBRy i+ 5+
rhs =DSum[ {1, i, j}, {1, i*, k}, {1, 7, k*},
{s, myn}] //.8Ry i U8Ry s+ Kk UBRy j+,i3
Simplify[lhs == rhs]

STrue

5;1;

Q___

The Main Program
Oe[K ] :=Modu1e[{Cs, ©, n, A, A, G, ev, 6},
{Cs, ¢} =Rot[K]; n =Length[Cs];
A = IdentityMatrix[2n +1];
Cases[Cs, {s ,1,7 }»

(prcts 3, tiv, o= (0T

A = T(-Total[¢]-Total[CS[ALL,1]1) /2 pat [A];

DIE

G = Inverse[A];
ev[& ] :=
Factor[& /.8, o,z » (Gla, A1 /. T->T,)1;

o= ev[ZHZE2=1 R12 [CsIk1], CsEk211];
0 += ev[Z::=1 Ri [CsTkI1];
o +=ev[>"" T1[0lkI, k1];
Factore
{8y (A/.ToTy) (A/.T>Ty) (A/.T>Ts) e}];

The Trefoil, Conway, and Kinoshita-Terasaka

®e[Knot[3, 1]] // Expand
1 1 1 1 1
g{—1+—+T‘,———i——— + + \
T T2 T2 TIT3 T, T3 Q
1 T T
P AT, ST T T - T TS
1T, T, T A
® GraphicsRow[PolyPlot[@[Knot[#]]] & /@ Q)
{"3_1", "K11n34", "K11n42"}]

Qr o

(Note that the genus of the Conway knot appears to
be bigger than the genus of Kinoshita-Terasaka)
Some Torus Knots

©TKs = {{13, 2}, {17, 3}, {13, 5}, {7, 6}};
GraphicsRow[PolyPlot [®[TorusKnotee #]] & /@ TKs]
GraphicsRow[TubePlot [TorusKnot @@ #] & /@ TKs]



