
8

3 7

6 2

1

A Seifert Dream
Dror Bar-Natan: Talks: Pitzer-250308:
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Abstract. Given a knot K with a Seifert surface Σ, I dream
that the well-known Seifert linking form Q, a quadratic form on
H1(Σ), has plenty docile local perturbations Pϵ such that the for-
mal Gaussian integrals of exp(Q + Pϵ) are invariants of K.
In my talk I will explain what the above means, why this dream
is oh so sweet, and why it is in fact closer to a plan than to a
delusion. Joint with Roland van der Veen.
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The Seifert-Alexander Formula. With
P,Q ∈ H1(Σ),
Q(P,G) = T 1/2lk(P+,G) − T−1/2lk(P,G+)

∆(K) = det(Q)∫

2H1(Σ)
dp dx exp Q(p, x) � det(Q)−1

(where � means “ignoring silly factors”).

Dream. There is a similar perturbed Gaussian integral formu-
la for θ, but with integration over 6H1(Σ). The quadratic Q will
be the same as in the Seifert-Alexander formula (but repeated 3
times, for each Tν). The perturbation Pϵ will be given by low-
degree finite type invariants of curves on Σ (possibly also depen-
dent on the intersection points of such curves, or on other infor-
mation coming from Σ).
Evidence. Experimentally (yet undeniably), deg θ is bounded by
the genus of Σ. How else could such a genus bound arise? Further
very strong evidence comes from the conjectural (yet undeniable)
understanding of θ as the two-loop contribution to the Kontsevich
integral [Oh] and/or as the “solvable approximation” of the uni-
versal sl3 invariant [BN1, BV2].
Why so sweet? It will allow us to prove the aforementioned ge-
nus bound and likely, the hexagonal symmetry. Sweeter and dre-
amier, it may allow us to say something about ribbon knots!

ωεβBhttp://drorbn.net/pi25
Thanks for inviting me to Pitzer College!

Right. The 132-crossing torus knot T22/7 (more at ωεβ/TK).
Below. Random knots from [DHOEBL], with 101-115 crossings
(more at ωεβ/DK).

What’s “local”? How will we compute? The Będlewo Alexan-
der formula: Let F be the faces of a knot diagram. Make an F×F
matrix A by adding for each crossing contributions

k

l! j
i

→



−1 −1 2 0
0 0 0 0
0 1 −1 0
1 0 −1 0



k

l! j
i

→



1 −1 0 0
0 0 0 0
−2 1 1 0
1 0 −1 0



at rows / columns (i, j, k, l). Then ∆ = det′
(
(T 1/2A − T−1/2A)/2

)
.

→ → →
(the Seifert algorithm by Emily Redelmeier)

Expect the like for θ! Expect more like θ! Topology first! Resist
the tyranny of quantum algebra!

where L(Xs
i j) � e

L(Xs
i j), L(Cφi ) � eL(Cφi ),

L(Xs
i j) = xi(pi+1 − pi) + x j(p j+1 − p j)

+(T s − 1)xi(pi+1 − p j+1)

+
ϵs
2

(
xi(pi − p j)

(
(T s − 1)xi p j

+2(1 − x j p j)

)
− 1

)

L(Cφi ) = xi(pi+1 − pi) + ϵφ(1/2 − xi pi)

θ(T1,T2) is likewise, with harder formulas

and integration over 6E.

From Mexico City, tariffs exempt

Perturbed Gaussian Integration. We say
that Pϵ ∈ ϵQ[x1, . . . xn]⟦ϵ⟧ is M-docile (for
some M : N → N) if for every monomial m
in Pϵ we have degx1,...,xn

(m) ≤ M(degϵ(m)).
Theorem (Feynman). If Q is a quadratic in x1, . . . , xn and Pϵ is
docile, set Zϵ =

∫
Rn dx1 · · · xn exp (Q + Pϵ). Then every coeffi-

cient in the ϵ-expansion of Zϵ is computable in polynomial time
in n. in fact,

∆1/2Zϵ �
〈
exp Q−1(∂xi), exp Pϵ

〉
=

θ(T, 1) is like that! With ϵ2 = 0,

http://www.math.toronto.edu/~drorbn
http://www.math.toronto.edu/~drorbn/Talks
http://www.math.toronto.edu/~drorbn/Talks/Pitzer-250308/
http://drorbn.net/pi25
http://www.math.toronto.edu/~drorbn/Talks/Pitzer-250308/TK
http://www.math.toronto.edu/~drorbn/Talks/Pitzer-250308/DK
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The Strongest Genuinely Computable Knot Invariant in 2024
Dror Bar-Natan: Talks: Toronto-241030:

Genuinely Computable. Here’s Θ
on a random 300 crossing knot (from
[DHOEBL]). For almost every other
invariant, that’s science fiction.
Fun. There’s so much more to see in
2D pictures than in 1D ones! Yet al-
most nothing of the patterns you see
we know how to prove. We’ll have
fun with that over the next few years.
Would you join?
Meaningful. θ gives a genus bound (unproven yet with confi-
dence). We hope (with reason) it says something about ribbon
knots.
Conventions. T , T1, and T2 are indeterminates and T3 B T1T2.

φ
4
=
−1

4

1−T−11−T T 1 0 0 T−11

α

β

T−1

0 1

0

0 1 G =


1 T−1 1
0 T−1 1
0 0 1



∑
p≥0(1−T )p = T−1

1 1

Thanks for bearing with me!

Abstract. “Genuinely computable” means we have co-
mputed it for random knots with over 300 crossings.
“Strongest” means it separates prime knots with up to
15 crossings better than the less-computable HOMFLY-
PT and Khovanov homology taken together. And hey,
it’s also meaningful and fun.
Continues Rozansky, Garoufalidis, Kricker, and Ohtsuki, joint w-
ith van der Veen.
Acknowledgement. This work was supported by NSERC grant
RGPIN-2018-04350 and by the Chu Family Foundation (NYC).

ωεβBhttp://drorbn.net/to24

Strongest. Testing Θ = (∆, θ) on prime knots up to mirrors and
reversals, counting the number of distinct values (with deficits in
parenthesis): (ρ1: [Ro1, Ro2, Ro3, Ov, BV1])

knots (H,Kh) (∆, ρ1) Θ = (∆, θ) together
reign 2005-22 2022-24 2024-

xing ≤ 10 249 248 (1) 249 (0) 249 (0) 249 (0)
xing ≤ 11 801 771 (30) 787 (14) 798 (3) 798 (3)
xing ≤ 12 2,977 (214) (95) (19) (18)
xing ≤ 13 12,965 (1,771) (959) (194) (185)
xing ≤ 14 59,937 (10,788) (6,253) (1,118) (1,062)
xing ≤ 15 313,230 (70,245) (42,914) (6,758) (6,555)

Preparation. Draw an n-crossing knot K as a
diagram D as on the right: all crossings face up,
and the edges are marked with a running index
k ∈ {1, . . . , 2n + 1} and with rotation numbers φk.
Model T Traffic Rules. Cars always drive fo-
rward. When a car crosses over a sign-s brid-
ge it goes through with (algebraic) probability

T s ∼ 1, but falls off with probability
1 − T s ∼ 0. At the very end, cars
fall off and disappear. On various ed-
ges traffic counters are placed. See
also [Jo, LTW].

Definition. The traffic function G = (gαβ) (also,
the Green function or the two-point function) is
the reading of a traffic counter at β, if car traffic
is injected at α (if α = β, the counter is after the injection point).
There are also model-Tν traffic functions Gν = (gναβ) for ν =
1, 2, 3. Example.

Don’t Look.

R11(c)= s
[
1/2 − g3ii + T s

2g1iig2 ji − T s
2g3 j jg2 ji − (T s

2−1)g3iig2 ji

+(T s
3−1)g2 jig3 ji − g1iig2 j j + 2g3iig2 j j + g1iig3 j j − g2iig3 j j

]

+
s

T s
2−1

[
(T s

1−1)T s
2

(
g3 j jg1 ji − g2 j jg1 ji + T s

2g1 jig2 ji

)

+ (T s
3−1)

(
g3 ji − T s

2g1iig3 ji + g2i jg3 ji + (T s
2−2)g2 j jg3 ji

)

−(T s
1−1)(T s

2+1)(T s
3−1)g1 jig3 ji

]

R12(c0, c1)=
s1(T s0

1 −1)(T s1
3 −1)g1 j1i0g3 j0i1

T s1
2 −1

(
T s0

2 g2i1i0 + g2 j1 j0 − T s0
2 g2 j1i0 − g2i1 j0

)

Γ1(φ, k) = φ(−1/2 + g3kk)
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Questions, Conjectures, Expectations, Dreams.
Question 1. What’s the relationship between Θ and the
Garoufalidis-Kashaev invariants [GK, GL]?
Conjecture 2. On classical (non-virtual) knots, θ always has he-
xagonal (D6) symmetry.
Conjecture 3. θ is the ϵ1 contribution to the “solvable appro-
ximation” of the sl3 universal invariant, obtained by running the
quantization machinery on the double D(b, b, ϵδ), where b is the
Borel subalgebra of sl3, b is the bracket of b, and δ the cobracket.
See [BV2, BN1, Sch]
Conjecture 4. θ is equal to the “two-loop contribution to the Kon-
tsevich Integral”, as studied by Garoufalidis, Rozansky, Kricker,
and in great detail by Ohtsuki [GR, Ro1, Ro2, Ro3, Kr, Oh].
Fact 5. θ has a perturbed Gaussian integral formula, with inte-
gration carried out over over a space 6E, consisting of 6 copies of
the space of edges of a knot diagram D. See [BN2].
Conjecture 6. For any knot K, its genus g(K) is bounded by the
T1-degree of θ: g(K) < ⌈degT1

θ(K)⌉.
Conjecture 7. θ(K) has another perturbed Gaussian integral for-
mula, with integration carried out over over the space 6H1, con-
sisting of 6 copies of H1(Σ), where Σ is a Seifert surface for K.
Expectation 8. There are many further invariants like θ, given by
Green function formulas and/or Gaussian integration formulas.
One or two of them may be stronger than θ and as computable.
Dream 9. These invariants can be explained by something less
foreign than semisimple Lie algebras.
Dream 10. θ will have something to say about ribbon knots.

Theorem. With c = (s, i, j), c0 = (s0, i0, j0),
and c1 = (s1, i1, j1) denoting crossings, there is
a quadratic R11(c) ∈ Q(Tν)[gναβ : α, β ∈ {i, j}],
a cubic R12(c0, c1) ∈ Q(Tν)[gναβ : α, β ∈ {i0, j0, i1, j1}], and a
linear Γ1(φ, k) such that the following is a knot invariant:

θ(D) B ∆1∆2∆3︸  ︷︷  ︸
normalization,

see later


∑

c

R11(c) +
∑

c0,c1

R12(c0, c1) +
∑

k

Γ1(φk, k)

 ,

If these pictures remind you of Feynman diagrams, it’s because
they are Feynman diagrams [BN2].
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Lemma 1. The traffic function gαβ is a “relative invariant”:

j k

α

β

D

Proof.

Lemma 2. With k+ B k + 1, the “g-rules” hold
near a crossing c = (s, i, j):
g jβ = g j+β + δ jβ giβ = T sgi+β + (1−T s)g j+β + δiβ g2n+,β = δ2n+,β

gαi+ = T sgαi + δαi+ gα j+ = gα j + (1 − T s)gαi + δα j+ gα,1 = δα,1
Corollary 1. G is easily computable, for AG = I (= GA), with A
the (2n+1)×(2n+1) identity matrix with additional contributions:

c = (s, i, j) 7→
A col i+ col j+

row i −T s T s − 1
row j 0 −1

For the trefoil example, we have:

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1



,

G =



1 T 1 T 1 T 1
0 1 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1−T

T 2−T+1
1

T 2−T+1
1

T 2−T+1
T

T 2−T+1 1
0 0 1−T

T 2−T+1 − (T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1



φ

2

1

3

j0 i1

D

i0 j1
This picture gave the invariant its name

Note. The Alexander polynomial ∆ is given by
∆ = T (−φ−w)/2 det(A), with φ =

∑
k φk, w =

∑
c s.

We also set ∆ν B ∆(Tν) for ν = 1, 2, 3.



Corollary 2. Proving invariance is easy:

?
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D D
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Invariance under R3
This is Theta.nb of http://drorbn.net/to24/ap.

,Once[<< KnotTheory`; << Rot.m; << PolyPlot.m];

,T3 = T1 T2;

,CF[ℰ_] :=

Module{vs = Union@Cases[ℰ , g__, ∞], ps, c},

TotalCoefficientRules[Expand[ℰ], vs] /.

(ps_  c_)  Factor[c] Times @@ vsps ;

,R11[{s_, i_, j_}] =

CF

s 1/ 2 - g3ii + T2
s g1ii g2ji - g1ii g2jj -

T2
s
- 1 g2ji g3ii + 2 g2jj g3ii - 1 - T3

s
 g2ji g3ji -

g2ii g3jj - T2
s g2ji g3jj + g1ii g3jj +

T1
s
- 1 g1ji T2

2 s g2ji - T2
s g2jj + T2

s g3jj +

T3
s
- 1 g3ji

1 - T2
s g1ii - T1

s
- 1 T2

s
+ 1 g1ji +

T2
s
- 2 g2jj + g2ij T2

s
- 1;

,R12[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=

CFs1 T1
s0

- 1 T2
s1

- 1-1
T3

s1
- 1 g1,j1,i0 g3,j0,i1

 T2
s0 g2,i1,i0 - g2,i1,j0 - T2

s0 g2,j1,i0 - g2,j1,j0

,Γ1[φ_, k_] = -φ/ 2 + φ g3kk;

,δi_,j_ := If[i === j, 1, 0];

gRs_,i_,j_ := 

gν_jβ_  gν j+β + δjβ,

gν_iβ_  Tν
s gνi+β + 1 - Tν

s
 gν j+β + δiβ,

gν_α_i+  Tν
s gναi + δαi+,

gν_α_j+  gνα j + 1 - Tν
s
 gναi + δα j+



,DSum[Cs___] := Sum[R11[c], {c, {Cs}}] +

Sum[R12[c0, c1], {c0, {Cs}}, {c1, {Cs}}]

lhs = DSum[{1, j, k}, {1, i, k+}, {1, i+, j+},

{s, m, n}] //. gR1,j,k ⋃ gR1,i,k+ ⋃ gR1,i+,j+;

rhs = DSum[{1, i, j}, {1, i+, k}, {1, j+, k+},

{s, m, n}] //. gR1,i,j ⋃ gR1,i+,k ⋃ gR1,j+,k+;

Simplify[lhs  rhs]

§True

The Main Program 
,Θ[K_] := Module{Cs, φ, n, A, Δ, G, ev, θ},

{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_} 

A〚{i, j}, {i + 1, j + 1}〛 += 
-Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];

G = Inverse[A];

ev[ℰ_] :=

Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];

θ = ev
k1=1

n


k2=1

n
R12[Cs〚k1〛, Cs〚k2〛];

θ += ev
k=1

n
R11[Cs〚k〛];

θ += ev
k=1

2 n
Γ1[φ〚k〛, k];

Factor@

{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) θ};

The Trefoil, Conway, and Kinoshita-Terasaka

,Θ[Knot[3, 1]] // Expand

§
-1 +

1

T
+ T, -

1

T1
2
- T1

2
-

1

T2
2
-

1

T1
2 T2

2
+

1

T1 T2
2
+

1

T1
2 T2

+
T1

T2
+
T2

T1
+ T1

2 T2 - T2
2
+ T1 T2

2
- T1

2 T2
2


,GraphicsRow[PolyPlot[Θ[Knot[#]]] & /@

{"3_1", "K11n34", "K11n42"}]

§

(Note that the genus of the Conway knot appears to
be bigger than the genus of Kinoshita-Terasaka)

Some Torus Knots 
,TKs = {{13, 2}, {17, 3}, {13, 5}, {7, 6}};

GraphicsRow[PolyPlot[Θ[TorusKnot @@ #]] & /@ TKs]

GraphicsRow[TubePlot[TorusKnot @@ #] & /@ TKs]

§

§


