

Homework ~~Assignment~~ 1

Abstract. I'll start with a review of my recent paper with van der Veen, “A **Fast**, **Strong**, **Topologically Meaningful**, and **Fun** Knot Invariant” [BV3], and then assign some homework. Much of what I'll say follows earlier work of Rozansky, Kricker, Garoufalidis, and Ohtsuki [Ro1, Ro2, Ro4, Kr, GR, Oh2].

van der Veen

Acknowledgement. This work was supported by NSERC grants RGPIN-2018-04350 and RGPIN-2025-06718 and by the Chu Family Foundation (NYC).

A. With T an indeterminate, start from a presentation matrix A for the Alexander module of K , coming from the Wirtinger presentation of $\pi_1(K)$: $A := I_{2n+1} + \sum_c A_c$, where \uparrow

$$\begin{array}{c}
 \begin{array}{ccccc}
 \begin{array}{c} j^+ \\ \nearrow \\ i^+ \end{array} & \begin{array}{c} i^+ \\ \nearrow \\ j \end{array} & \begin{array}{c} i^+ \\ \nearrow \\ j \end{array} & \begin{array}{c} j^+ \\ \nearrow \\ i \end{array} & \rightarrow \begin{array}{c} A_c \\ \left| \begin{array}{cc} i+1 & j+1 \\ i & -T^s \\ j & 0 & -1 \end{array} \right. \end{array} \\
 \begin{array}{c} i \\ s=+1 \end{array} & \begin{array}{c} j \\ s=-1 \end{array} & & &
 \end{array} \\
 \begin{array}{c} A = \left(\begin{array}{ccccccc}
 1 & -T & 0 & 0 & T-1 & 0 & 0 \\
 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & -T & 0 & 0 & T-1 \\
 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
 0 & 0 & T-1 & 0 & 1 & -T & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1
 \end{array} \right) \end{array} & \begin{array}{c} \Delta \doteq \det(A) \\
 \begin{array}{c} 7 \\ \nearrow \\ 3 \\ \nearrow \\ 6 \\ \nearrow \\ 5 \\ \nearrow \\ 2 \\ \nearrow \\ 1 \\ \nearrow \\ 4 \end{array} \end{array}
 \end{array}$$

G. Let $G = (g_{\alpha\beta}) := A^{-1}$, the “two point function”:

$$G = \begin{pmatrix} 1 & T & 1 & T & 1 & T & 1 \\ 0 & 1 & \frac{1}{T^2-T+1} & \frac{T}{T^2-T+1} & \frac{T}{T^2-T+1} & \frac{T^2}{T^2-T+1} & 1 \\ 0 & 0 & \frac{1}{T^2-T+1} & \frac{T}{T^2-T+1} & \frac{T}{T^2-T+1} & \frac{T^2}{T^2-T+1} & 1 \\ 0 & 0 & \frac{1-T}{T^2-T+1} & \frac{1}{T^2-T+1} & \frac{1}{T^2-T+1} & \frac{1}{T^2-T+1} & 1 \\ 0 & 0 & \frac{1-T}{T^2-T+1} & \frac{T^2-T+1}{(T-1)T} & \frac{1}{T^2-T+1} & \frac{T}{T^2-T+1} & 1 \\ 0 & 0 & \frac{1-T}{T^2-T+1} & -\frac{T^2-T+1}{T^2-T+1} & \frac{1}{T^2-T+1} & \frac{T^2-T+1}{T^2-T+1} & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

the “traffic function”

Let T_1 and T_2 be new indeterminates, let $T_3 = T_1 T_2$, and let $G_v = (g_{v\alpha\beta})$ be G with $T \rightarrow T_v$, for $v = 1, 2, 3$.

Fast.

Data

$$\begin{aligned} F_1[\{s_0, \underline{s}_1, \underline{t}_1, \underline{j}_1\}] &:= CF[\\ & \times (1/2 - g_{31} + T_2 g_{11} (g_{22} j_1 - g_{11} (T_2 - 1)) g_{22} (g_{31} + 2 g_{22}) g_{31} - \\ & \quad (1 - T_2^2) g_{21} g_{31} - T_2 g_{31} g_{33} - T_2^2 g_{22} g_{33} + g_{11} g_{33} + \\ & \quad (T_2^2 - 1) g_{31} + (T_2^2 - T_2 g_{22} + T_2^2 g_{33}) + \\ & \quad (T_2^2 - 1) g_{33}) \cdot (1 - T_2 g_{11} + g_{22} + (T_2^2 - 2) g_{22} - (T_2^2 - 1) (T_2^2 + 1) g_{11})] / \\ & \quad (T_2^2 - 1) \\ F_2[\{s_0, \underline{s}_1, \underline{t}_0, \underline{j}_0\}, \{s_1, \underline{s}_2, \underline{t}_2, \underline{j}_2\}] &:= \\ & CF[\underline{s}_1 (T_1^{s_0} - 1) (T_2^{s_1} - 1)^{-1} (T_2^{s_2} - 1)^{-1} g_{11, j_1, 0} g_{31, j_0, 11} \\ & \quad \times (T_1^{s_0} - 1)^{-1} (T_2^{s_1} - 1)^{-1} (T_2^{s_2} - 1)^{-1} g_{11, j_1, 0} g_{31, j_0, 11} \quad \text{(ouch)} \end{aligned}$$

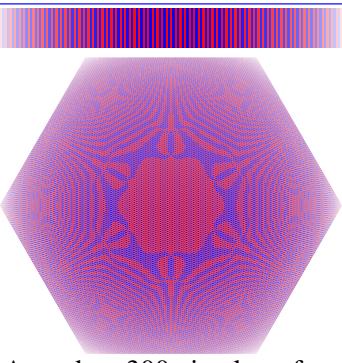
```


$$T_3 = T_1 T_2;$$

CF[A_, x_]:=ExpandCollect[ $\partial_x g_{\alpha\beta} F$ ]/.F $\rightarrow$ Factor;
B[K_]:=B[K]=Module[{X,y,n,a,d,g,ev,e,k,k1,k2},
  {X,y}=Rot[A_,n=Length[X],A=IdentityMatrix[2(n+1)];
 Cases[{X,{x_,y_,i_,j_}},{{x,{i_,j}},{{i+1,j+1}}}\mathbin{\rightarrow}{{T^{-1}}^T}^{-1}]];
 
$$\Delta \equiv T - (\text{Total}[x] - \text{Total}[M_{11}, 1])^2 \text{Det}[A];$$

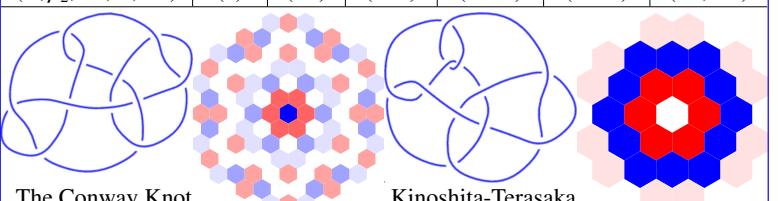
 G=Inverse[A];
 ev[ $\partial_\alpha$ _]:=Factor[ $\partial_\alpha g_{\alpha\beta} \partial_\beta$ ]/.G $\rightarrow$ (G $\partial_\alpha$ , B $\partial_\alpha$  T $\rightarrow$ T $\partial_\alpha$ );
 o=ev[Sum[F[x][k],{k,n}]];
 o+=ev[Sum[F[x][k][k1],X[k2]],{k1,n},{k2,n}]];
 o+=ev[Sum[F[x][k][k1],{k,Length[B]}]];
 Factor@ $\partial_\alpha$  (( $\partial_\alpha$  T $\rightarrow$ T $\partial_\alpha$ ) (( $\partial_\alpha$  T $\rightarrow$ T $\partial_\alpha$ ) \mathbin{\oplus}
 1...];

```



A random 300 xing knot from [DHOEBL]. For most invariants, 300 is science fiction.

n	≤ 10	≤ 11	≤ 12	≤ 13	≤ 14	≤ 15
knots	249	801	2,977	12,965	59,937	313,230
Δ	(38)	(250)	(1,204)	(7,326)	(39,741)	(236,326)
σ_{LT}	(108)	(356)	(1,525)	(7,736)	(40,101)	(230,592)
J	(7)	(70)	(482)	(3,434)	(21,250)	(138,591)
Kh	(6)	(65)	(452)	(3,226)	(19,754)	(127,261)
H	(2)	(31)	(222)	(1,839)	(11,251)	(73,892)
Vol	(~6)	(~25)	(~113)	(~1,012)	(~6,353)	(~43,607)
(Kh, H, Vol)	(~0)	(~14)	(~84)	(~911)	(~5,917)	(~41,434)
(Δ, ρ_1)	(0)	(14)	(95)	(959)	(6,253)	(42,914)
(Δ, ρ_1, ρ_2)	(0)	(14)	(84)	(911)	(5,926)	(41,469)
$(\rho_1, \rho_2, Kh, H, Vol)$	(0)	(~14)	(~84)	(~911)	(~5,916)	(~41,432)
Θ	(0)	(3)	(19)	(194)	(1,118)	(6,758)
(Θ, ρ_2)	(0)	(3)	(10)	(169)	(982)	(6,341)
(Θ, σ_{LT})	(0)	(3)	(19)	(194)	(1,118)	(6,758)
(Θ, Kh)	(0)	(3)	(18)	(185)	(1,062)	(6,555)
(Θ, H)	(0)	(3)	(18)	(185)	(1,064)	(6,563)
(Θ, Vol)	(0)	(~3)	(~10)	(~169)	(~973)	(~6,308)
$(\Theta, \rho_2, Kh, H, Vol)$	(0)	(~3)	(~10)	(~169)	(~972)	(~6,304)



Topologically Meaningful. θ is near Δ and we dream that anything Δ can do, θ does too (sometimes better). The following two conjectures are verified for knots with ≤ 13 crossings:

Conjecture 1. $\deg_{T^*} \theta(K) \leq 2g(K)$.

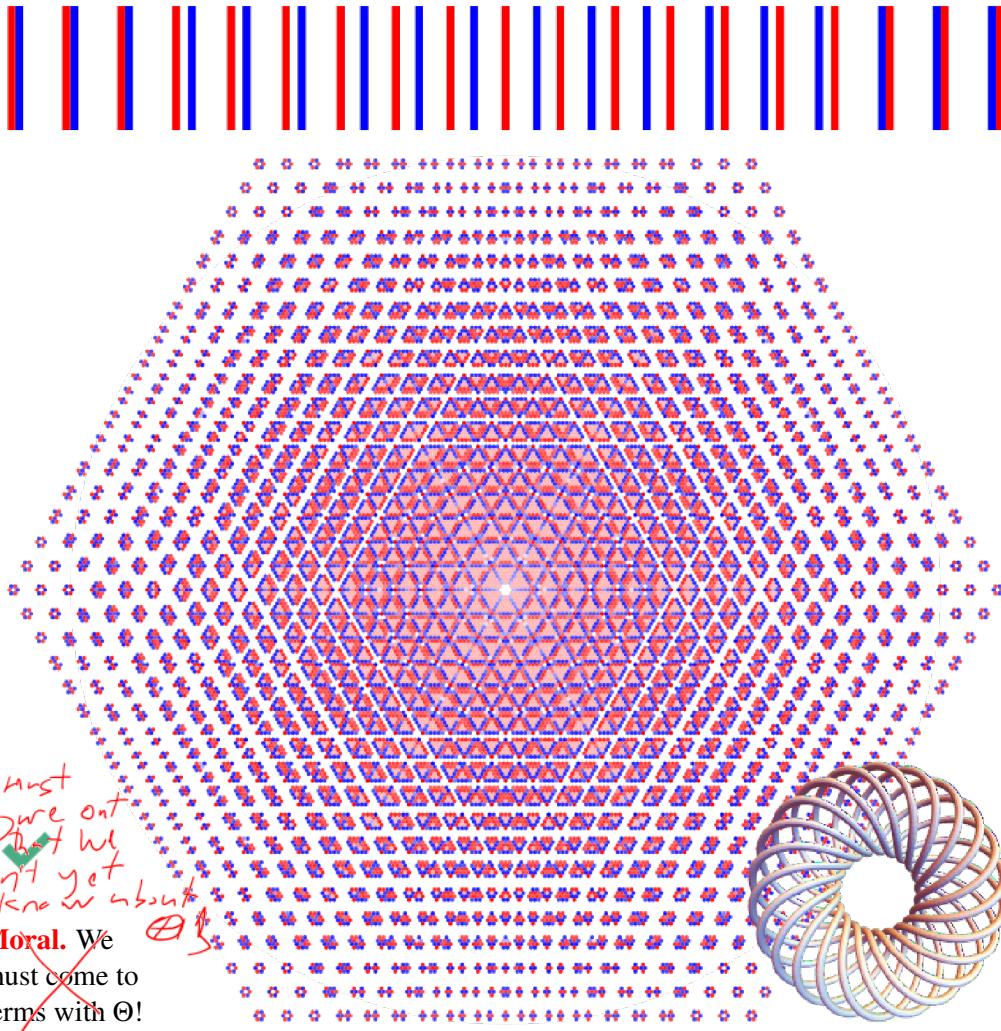
Conjecture 2. If K is a fibered knot and d is the degree of $\Delta(K)$ (the highest power of T), then the coefficient of T^{2d} in $\theta(K)$, which is a polynomial in T_1 , is an integer multiple of $T_1^d \Delta(K)|_{T=T_1}$.

Dream. θ has something to say about ribbon knots.

Fun: Θ on Rolfsen's Table:

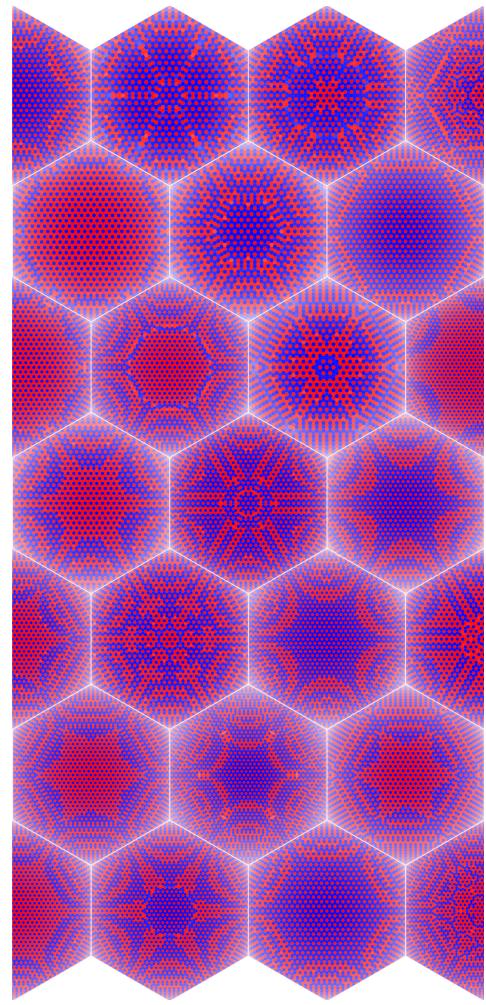
A 10x10 grid of 100 circular tiles, each featuring a complex geometric pattern of red, blue, and white shapes, resembling a stylized flower or mandala. The tiles are arranged in a grid, with some tiles being solid white or featuring a different pattern like a hexagon or a cross.

The 132-crossing torus knot $T_{22/7}$:



(many more at [\omega\beta/TK](#))

Random knots from [\[DHOEBL\]](#) with 51 – 75 crossings: (many more at [\omega\beta/DK](#))



Task 1. Make the “data” formulas human friendly.

Task 2. Prove the hexagonal symmetry of $\theta(K)$, and that $\theta(K) = \theta(-K) = -\theta(\bar{K})$.

That's harder than it seems! The formulas don't naively show any of that. Δ has a palindromic symmetry first conjectured in Alexander's original paper [\[Al\]](#) — it is invariant under $T \rightarrow T^{-1}$. Proving this took a few years, and the proof starting from the Wirtinger presentation is quite involved (e.g. [\[CF, Chapter IX\]](#)).

Task 3. With ρ_1 the Rozansky-Overbay invariant [\[Ro1, Ro2, Ro4, Ov, BV1\]](#), show that $\rho_1 = -\theta|_{T_1 \rightarrow T, T_2 \rightarrow 1}$.

This one should be easy with techniques from [\[BV3, Section 4.2\]](#).

Task 4. Explain the “Chladni patterns”. Are there “dominant modes” of θ that can be computed in isolation?

Task 5. Prove the genus bound of Conjecture 1.

This is probably coming. One can bound the degree of $\Delta = \det(A)$ in terms of $g(K)$ using the Seifert presentation of the Alexander module. Pushing further, likely one can bound the degree of $(g_{\alpha\beta}) = A^{-1}$ in terms of $g(K)$, and that's probably enough.

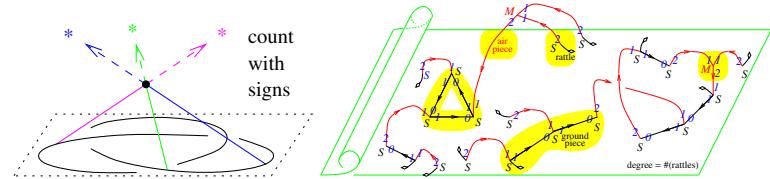
Task 6. Find a 3D interpretation of the $g_{\alpha\beta}$'s.

They must be closely related to the equivariant linking numbers

A: relate to Garsia-Fulman's ...

of [\[KY, GK, GT, Oh3, Le1\]](#).

Task 7. Find a formula \mathcal{F} for $\Theta(K)$ that starts from a Seifert surface Σ of K . Better if \mathcal{F} is completely 3D! Assuming Task 13, it is known that Θ depends only of invariants of type ≤ 3 of Σ . Maybe \mathcal{F} is about configuration space integrals / chopstick towers? See CS: [\[Th, Le2, BN1\]](#), BF: [\[CR, BN2\]](#)



Task 8. Is there an intrinsic theory of finite type invariants for Seifert surfaces? For task 11, does its gr map to functions on H_1 ?

My current best understanding of finite type invariants for Seifert surfaces goes through thick graphs.

Task 9. Prove the fibered condition of Conjecture 2.

If K is fibered, $\deg \Delta(K) = g(K)$ and $\Delta(K)$ is monic. Indeed, K is then the mapping cylinder of a diffeomorphism $f: \Sigma \rightarrow \Sigma$. The Alexander module of K is generated by $H_1(\Sigma)$ with relations $\{\gamma = Tf_*\gamma: \gamma \in H_1(\Sigma)\}$. Thus the highest monomial in Δ is $T^g \det(f_*)$ and $\det(f_*) = \pm 1$ as f_* preserves the intersection pairing. If only we had a formula for θ in terms of f ...

Task 10. In general, find a formula for Θ corresponding to each known presentation of the Alexander module.

Wirtinger is $2\{\text{xings}\} \rightarrow \{\text{edges}\}$. Dehn is $\{\text{xings}\} \rightarrow \{\text{faces}\}$. Co-Dehn is $\{\text{faces}\} \rightarrow \{\text{xings}\}$. Burau is $\{\text{braid strands}\} \rightarrow \{\text{braid strands}\}$. Seifert is $H_1(\Sigma) \rightarrow H_1(\Sigma)$, and so is the presentation from Task 9. Grid diagrams lead to $\{\text{grid number}\} \rightarrow \{\text{grid number}\}$ (may relate to HFK). There's more!

Task 11. Write up the integration story.

Claim (e.g., [BN5]). Cutting corners and with $\epsilon^2 = 0$,

$$\frac{1}{\Delta_1 \Delta_2 \Delta_3} \exp\left(\epsilon \cdot \frac{\theta}{\Delta_1 \Delta_2 \Delta_3}\right) \sim \oint_{\prod_e \mathbb{R}_{p_{1e}, p_{2e}, p_{3e}, x_{1e}, x_{2e}, x_{3e}}^6} \prod_c \mathbb{E}^{L_c},$$

where \oint denotes perturbed formal Gaussian integration (i.e., “Feynman Diagrams”) and L_c is

$$\begin{aligned} L[X_{i,j} [S]] := & \text{Plus} [\\ & \sum_{v=1}^3 (x_{vi} (p_{vi^+} - p_{vi}) + x_{vj} (p_{vj^+} - p_{vj}) + (T_v^S - 1) x_{vi} (p_{vi^+} - p_{vj^+})), \\ & (T_1^S - 1) p_{3j} x_{1i} (T_2^S x_{2i} - x_{2j}), \\ & e \cdot S (T_3^S - 1) p_{1j} (p_{2i} - p_{2j}) x_{3i} / (T_2^S - 1), \\ & e \cdot S (1/2 + T_2^S p_{1i} p_{2j} x_{1i} x_{2i} - p_{1i} p_{2j} x_{1i} x_{2j} - p_{3i} x_{3i} - (T_2^S - 1) p_{2j} p_{3i} x_{2i} x_{3i} + \\ & (T_3^S - 1) p_{2j} p_{3j} x_{2i} x_{3i} + 2 p_{2j} p_{3i} x_{2j} x_{3i} + p_{1i} p_{3j} x_{1i} x_{3j} - p_{2i} p_{3j} x_{2i} x_{3j} - \\ & T_2^S p_{2j} p_{3j} x_{2i} x_{3j} + \\ & ((T_1^S - 1) p_{1j} x_{1i} (T_2^S p_{2j} x_{2i} - T_2^S p_{2j} x_{2j} - (T_2^S + 1) (T_3^S - 1) p_{3j} x_{3i} + \\ & T_2^S p_{3j} x_{3j}) + (T_3^S - 1) p_{3j} x_{3i} + \\ & (1 - T_2^S p_{1i} x_{1i} + p_{2i} x_{2j} + (T_2^S - 2) p_{2j} x_{2j})) / (T_2^S - 1))] \end{aligned}$$

In fact, we first found L_c using the method of undetermined coefficients, and then derived F_1 and F_2 from it.

Task 12. Find a similar perturbed Gaussian integral formula for θ , but with integration over $6H_1(\Sigma)$. The quadratic Q will be the same as in the Seifert-Alexander formula (but repeated 3 times, for each T_v). The perturbation P_ϵ will be given by low-degree finite type invariants of curves on Σ (possibly also dependent on the intersection points of such curves, or on other information coming from Σ).

Task 13. Prove that θ is equal to the two-loop contribution $Z^{(2)}$ to the Kontsevich integral Z .

Composed with the inverse PBW isomorphism $\chi^{-1}, \chi^{-1} \circ Z$ takes values in unitrivalent Jacobi diagrams, $\mathcal{B} = \{\text{---} \circ \dots\} / \text{IHX}$. Rozansky conjectured [Ro3, GR] and Kricker proved [Kr] that

$$\log(\chi^{-1} \circ Z) = f_1 \begin{array}{c} t \\ \square \end{array} + f_2 \begin{array}{c} t_1 \\ \square \\ t_2 \end{array} + \text{higher loops},$$

where $t^k \begin{array}{c} t \\ \square \end{array} := \begin{array}{|c|c|c|c|} \hline & & \cdots & n \cdots & | \\ \hline \end{array}$, $f_1 \in \mathbb{Q}[[t]]$, and $f_2 \in \mathbb{Q}[[t_1, t_2]]$ satisfy $f_1 = \frac{1}{2} \log \frac{\sinh(t/2)}{t \Delta(e^{t_1})/2}$ and $f_2 = Z^{(2)}(\mathbb{E}^{t_1}, \mathbb{E}^{t_2}) / \Delta(\mathbb{E}^{t_1}) \Delta(\mathbb{E}^{t_1}) \Delta(\mathbb{E}^{t_1+t_2})$ where $Z^{(2)} \in \mathbb{Z}[T_1^{\pm 1}, T_2^{\pm 1}]$ is the “two loop polynomial”. Ohtsuki [Oh2] studied $Z^{(2)}$ extensively, and almost certainly, $Z^{(2)} = \theta$. Prove that!

Task 14. Complete and write up the \mathfrak{g}_ϵ^+ story.

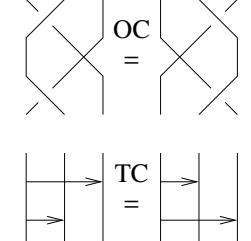
Let \mathfrak{g} be a semisimple Lie algebra, let \mathfrak{h} be its Cartan subalgebra, and let \mathfrak{b}^u and \mathfrak{b}^l be its upper and lower Borel subalgebras. Then \mathfrak{b}^u has a bracket β , and as the dual of \mathfrak{b}^l , \mathfrak{b}^u also has a cobracket δ , and in fact, $\mathfrak{g} \oplus \mathfrak{h} \equiv \text{Double}(\mathfrak{b}^u, \beta, \delta)$. Let $\mathfrak{g}_\epsilon^+ := \text{Double}(\mathfrak{b}^u, \beta, \epsilon \mathfrak{d})$ (mod ϵ^{d+1} it is solvable for any d). We expect that Θ is the universal invariant (in the sense of Lawrence and Ohtsuki [La, Oh1]) corresponding to $sl_{3,\epsilon}^+$, computed modulo ϵ^2 (in fact, that's how we guessed it). See [BN3, BV2].

Task 15. Go beyond sl_3 and the first power of ϵ !

This sounds very appealing, and you will surely get stronger and stronger invariants. But they will be less and less computable \odot .

Task 16. Find a w -style characterization of Θ .

Compare with [HKS, HS, BD], where Δ is characterized on w -knots by the overcrossings / tails commute relation. Similarly it should be possible to characterize Θ on rotational virtual knots by some “overcrossings / tails nearly commute” relation.



Assuming Task 13, there is a characterization of Θ in terms of [GR]’s “null filtration”. I find it too complicated to work with.

Task 17. Relate the \mathfrak{g}_ϵ^+ story with (rotational) virtual knots [Kau], with \mathcal{A} [Po], and with quantization of Lie bialgebras [EK1, EK2, En, Se]

$$\begin{array}{ccc} \mathcal{K}_S \xrightarrow{Z} \mathcal{A}_S & \searrow & \mathcal{K}_S / [\text{GR}]_{k+2} \xrightarrow{Z} \mathcal{A}_S / \text{loops}^{(k+1)-} \\ \downarrow a & & \downarrow a \\ \mathcal{K}_S^{rv} \xrightarrow{Z^{rv}} \mathcal{A}_S^{rv} & \nearrow & \mathcal{K}_S^{rv} / OC^{k+1} \xrightarrow{Z^{rv}} \mathcal{A}_S^{rv} / TC^{k+1} \\ & & \downarrow a \xrightarrow{\frac{u_S(\mathfrak{g}_\epsilon^+)}{\epsilon^{k+1}}} \end{array}$$

We expect that there is a commutative diagram as on the left, which descends to the one at the right, with Θ corresponding to $\mathfrak{g} = sl_3$ and $k = 1$. But we’re missing Z^{rv} which may be hidden inside [EK1, EK2, En, Se].

Task 18. Understand Chern-Simons theory with gauge group \mathfrak{g}_ϵ^+ .

Is there a gauge that leads to the formula \mathcal{F} of Task 7?

Task 19. What happens to representation theory as $\epsilon \rightarrow 0$? Is there any fun in continuous morphisms $\mathfrak{g}_\epsilon^+ \rightarrow \mathfrak{g}_{n,\epsilon}^+$?

Task 20. Study θ on links.

Does it make sense even if $\Delta = 0$? Does it depend on the choice of the cut component?

Task 21. Does Θ extend to knots in $\mathbb{Z}HS / \mathbb{Q}HS$? Z and $Z^{(2)}$ do.

Task 22. Is there a surgery formula for Θ ? Z and $Z^{(2)}$ have.

Task 23. Extend Θ to tangles and figure out how it behaves under strand doubling.

Z and $Z^{(2)}$ extend but their extensions depend on parenthesizations. From Task 14 we expect that Θ will extend without the need for parenthesizations, yet with an asymmetry built into the

doubling operations. Note that tangles and strand doubling are keys to “algebraic knot theory” [BN4].

Task 24. Make Kricker / Ohtsuki [Kr, Oh2] more computable!

Task 25. Find a multi-variable version of θ for links, like there is a multi-variable Alexander for links (e.g. [Kaw, Chapter 7]). It is predicted q^+ consideration, but not by the loop expansion.

Task 26. Find a ribbon condition satisfied by Θ . *It is suggested*

generated by the components of an unlink embedded in Σ . This makes for a presentation matrix A of the Alexander module of K that has big blocks of zeros, and this leads to the Fox-Milnor condition [FM], $\Delta \doteq \det(A) \doteq f(T)f(T^{-1})$ for some $f \in \mathbb{Z}[T^{\pm 1}]$. If $\det A$ is constrained for ribbon knots, perhaps so is A^{-1} and therefore Θ ?

Bonus Task. Carthago delenda est and every knot polynomial must be categorified.

M. Khovanov & Cato the Elder

- [AI] J. W. Alexander, *Topological invariants of knots and links*, Trans. Amer. Math. Soc. **30** (1928) 275–306.

[BN1] D. Bar-Natan, *Cosmic Coincidences and Several Other Stories*, talk given in Tennessee, March 2011. Handout and video: [oeβ/Ten](#).

[BN2] D. Bar-Natan, *A Partial Reduction of BF Theory to Combinatorics*, talk given in Vienna, February 2014. Handout and video: [oeβ/Vie](#).

[BN3] D. Bar-Natan, *Everything around sl_{2+}^c is DoPeGDO. So what?*, talk given in “Quantum Topology and Hyperbolic Geometry Conference”, Da Nang, Vietnam, May 2019. Handout and video at [oeβ/DPG](#).

[BN4] D. Bar-Natan, *Algebraic Knot Theory*, talk given in Sydney, September 2019. Handout and video at [oeβ/AKT](#).

[BN5] D. Bar-Natan, *Knot Invariants from Zero-Dimensional QFT*, talk given in Bonn, May 2025. Handout and video: [oeβ/Bonn](#).

[BD] D. Bar-Natan and Z. Dancso, *Finite Type Invariants of W-Knotted Objects I: W-Knots and the Alexander Polynomial*, Alg. and Geom. Top. **16-2** (2016) 1063–1133. [arXiv:1405.1956](#).

[BV1] D. Bar-Natan and R. van der Veen, *A Perturbed-Alexander Invariant*, Quantum Topology **15** (2024) 449–472, [arXiv:2206.12298](#).

[BV2] D. Bar-Natan and R. van der Veen, *Perturbed Gaussian Generating Functions for Universal Knot Invariants*, [arXiv:2109.02057](#).

[BV3] D. Bar-Natan and R. van der Veen, *A Fast, Strong, Topologically Meaningful, and Fun Knot Invariant*, [oeβ/Theta](#) and [arXiv:2509.18456](#).

[CR] A. S. Cattaneo and C. A. Rossi, *Wilson Surfaces and Higher Dimensional Knot Invariants*, Comm. Math. Phys. **256** (2005) 513–537, [arXiv:math-ph/0210037](#).

References

- [CF] R. H. Crowell and R. H. Fox, *Introduction to Knot Theory*, Springer-Verlag GTM 57 (1963).

[DHOEBL] N. Dunfield, A. Hirani, M. Obeidin, A. Ehrenberg, S. Bhattacharyya, D. Lei, and others, *Random Knots: A Preliminary Report*, lecture notes at oebl/DHOEBL. Also a data file at oebl/DD.

[En] B. Enriquez, *A Cohomological Construction of Quantization Functors of Lie Bialgebras*, Adv. in Math. **197-2** (2005) 430–479, [arXiv:math/0212325](https://arxiv.org/abs/math/0212325).

[EK1] P. Etingof and D. Kazhdan, *Quantization of Lie Bialgebras, I*, Sel. Math., NS **2** (1996) 1–41, [arXiv:q-alg/9506005](https://arxiv.org/abs/q-alg/9506005).

[EK2] P. Etingof and D. Kazhdan, *Quantization of Lie bialgebras, II*, Sel. Math., NS **4** (1998) 213–231, [arXiv:q-alg/9701038](https://arxiv.org/abs/q-alg/9701038).

[FM] R. H. Fox and J. W. Milnor, *Singularities of 2-Spheres in 4-Space and Cobordism of Knots*, Osaka J. Math. **3-2** (1966) 257–267.

[GK] S. Garoufalidis and A. Kricker, *A Rational Noncommutative Invariant of Boundary Links*, Geom. & Top. **8** (2004) 115–204, [arXiv:math/0105028](https://arxiv.org/abs/math/0105028).

[GR] S. Garoufalidis and L. Rozansky, *The Loop Expansion of the Kontsevich Integral, the Null-Move, and S-Equivalence*, [arXiv:math.GT/0003187](https://arxiv.org/abs/math.GT/0003187).

[GT] S. Garoufalidis and P. Teichner, *On Knots with Trivial Alexander Polynomial*, J. Diff. Geom. **67** (2004) 165–191, [arXiv:math/0206023](https://arxiv.org/abs/math/0206023).

[HKS] K. Habiro, T. Kanenobu, and A. Shima, *Finite Type Invariants of Ribbon 2-Knots, in Low Dimensional Topology*, (H. Nencka, ed.) Cont. Math. **233** (1999) 187–196.

[HS] K. Habiro and A. Shima, *Finite Type Invariants of Ribbon 2-Knots, II*, Topology Appl. **111-3** (2001) 265–287.

[Kau] L. H. Kauffman, *Rotational Virtual Knots and Quantum Link Invariants*, J. of Knot Theory and its Ramifications **24-13** (2015), [arXiv:1509.00578](https://arxiv.org/abs/1509.00578).

[Kaw] A. Kawauchi, *A Survey of Knot Theory*, Birkhauser Verlag, 1996.

[KY] S. Kojima and M. Yamasaki, *Some New Invariants of Links*, Invent. Math. **54** (1979) 213–228.

[Kr] A. Kricker, *The Lines of the Kontsevich Integral and Rozansky's Rationality Conjecture*, [arXiv:math/0005284](https://arxiv.org/abs/math/0005284).

[La] R. J. Lawrence, *Universal Link Invariants using Quantum Groups*, Proc. XVII Int. Conf. on Diff. Geom. Methods in Theor. Phys., Chester, England, August 1988. World Scientific (1989) 55–63.

[Le1] C. Lescop, *Knot Invariants Derived from the Equivariant Linking Pairing*, AMS/IP Stud. in Adv. Math. **50** (2011) 217–242, [arXiv:1001.4474](https://arxiv.org/abs/1001.4474).

[Le2] C. Lescop, *Invariants of Links and 3-Manifolds from Graph Configurations*, EMS Monographs, 2024, [arXiv:2001.09929](https://arxiv.org/abs/2001.09929).

[Oh1] T. Ohtsuki, *Quantum Invariants*, Series on Knots and Everything **29**, World Scientific 2002.

[Oh2] T. Ohtsuki, *On the 2-Loop Polynomial of Knots*, Geometry & Topology **11** (2007) 1357–1475.

[Oh3] T. Ohtsuki, *Invariants of Knots Derived from Equivariant Linking Matrices of their Surgery Presentations*, Int. J. Math. **20-7** (2009) 883–913.

[Ov] A. Overbay, *Perturbative Expansion of the Colored Jones Polynomial*, Ph.D. thesis, University of North Carolina, August 2013, [oebl/Ov](https://arxiv.org/abs/1308.0405).

[Po] M. Polyak, *On the Algebra of Arrow Diagrams*, Let. Math. Phys. **51** (2000) 275–291.

[Ro1] L. Rozansky, *A Contribution of the Trivial Flat Connection to the Jones Polynomial and Witten's Invariant of 3D Manifolds, I*, Comm. Math. Phys. **175-2** (1996) 275–296, [arXiv:hep-th/9401061](https://arxiv.org/abs/hep-th/9401061).

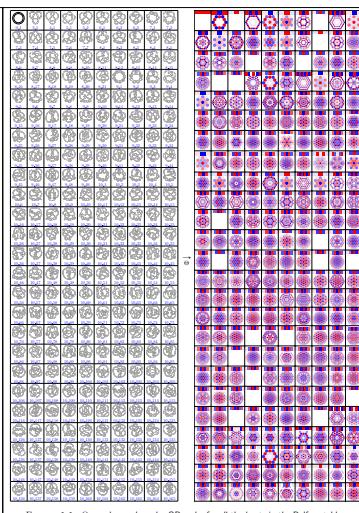
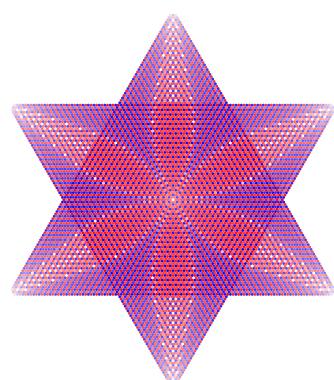
[Ro2] L. Rozansky, *The Universal R-Matrix, Burau Representation and the Melvin–Morton Expansion of the Colored Jones Polynomial*, Adv. Math. **134-1** (1998) 1–31, [arXiv:q-alg/9604005](https://arxiv.org/abs/q-alg/9604005).

[Ro3] L. Rozansky, *A Rational Structure of Generating Functions for Vassiliev Invariants*, Yale University preprint, July 1999.

[Ro4] L. Rozansky, *A Universal U(1)-RCC Invariant of Links and Rationality Conjecture*, [arXiv:math/0201139](https://arxiv.org/abs/math/0201139).

[Se] P. Ševera, *Quantization of Lie Bialgebras Revisited*, Sel. Math., NS, to appear, [arXiv:1401.6164](https://arxiv.org/abs/1401.6164).

[Th] D. Thurston, *Integral expressions for the Vassiliev knot invariants*, Harvard University senior thesis, April 1995, [arXiv:math.QA/9901110](https://arxiv.org/abs/math.QA/9901110).



A $(2, 41, -41)$ pretzel for dessert

