
F1[{s_, i_, j_}] := CF�
s �1/2 - g3ii + T2

s g1ii g2ji - g1ii g2jj - �T2s - 1� g2ji g3ii + 2 g2jj g3ii -

�1 - T3
s� g2ji g3ji - g2ii g3jj - T2

s g2ji g3jj + g1ii g3jj +

��T1s - 1� g1ji �T22 s g2ji - T2
s g2jj + T2

s g3jj� +

�T3s - 1� g3ji �1 - T2
s g1ii + g2ij + �T2s - 2� g2jj - �T1s - 1� �T2s + 1� g1ji���

�T2s - 1���
F2[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=

CF�s1 �T1s0 - 1� �T2s1 - 1�-1 �T3s1 - 1� g1,j1,i0 g3,j0,i1

� �T2s0 g2,i1,i0 - g2,i1,j0� - �T2s0 g2,j1,i0 - g2,j1,j0���
F3[�_, k_] = � g3kk - �/2;

T3 = T1 T2;

CF[�_] := Expand@Collect[� , g__, F] /. F � Factor;

�[K_] := �[K] = Module	{X, �, n, A, 
, G, ev, �, k, k1, k2},

{X, �} = Rot[K]; n = Length[X]; A = IdentityMatrix[2 n + 1];

Cases	X, {s_, i_, j_} � 
A�{i, j}, {i + 1, j + 1}� += 
 -Ts Ts - 1

0 -1
���;


 = T(-Total[�]-Total[X�All,1�])/2 Det[A];
G = Inverse[A];

ev[�_] := Factor[� /. g�_,�_,�_ � (G��, �� /. T � T�)];

� = ev[Sum[F1[X�k�], {k, n}]];

� += ev[Sum[F2[X�k1�, X�k2�], {k1, n}, {k2, n}]];

� += ev[Sum[F3[��k�, k], {k, Length@�}]];
Factor@{
, (
 /. T � T1) (
 /. T � T2) (
 /. T � T3) �}

�;
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the
“traffic function”

Homework 1–26
Dror Bar-Natan: Talks: LesDiablerets-2601:

i1 c1 i0
c0

4

Abstract. I’ll start with a review of my recent paper
with van der Veen, “A Fast, Strong, Topologically Me-
aningful, and Fun Knot Invariant” [BV3], and then as-
sign some homework. Much of what I’ll say follows
earlier work of Rozansky, Kricker, Garoufalidis, and
Ohtsuki [Ro1, Ro2, Ro4, Kr, GR, Oh2].
Acknowledgement. This work was supported by NSERC grants RGPIN-2018-
04350 and RGPIN-2025-06718 and by the Chu Family Foundation (NYC).

OMG, thanks!
ωεβBhttp://drorbn.net/ld26

A. With T an indeterminate, start from a presentation matrix A
for the Alexander module of K, coming from the Wirtinger pre-
sentation of π1(K): A B I2n+1 +

∑
c Ac, where

j

i+ j+

i
s = −1

i

j+ i+

j
s = +1

→

Ac i + 1 j + 1
i −T s T s − 1
j 0 −1

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1



θ ∼ ∆1∆2∆3

∑
c0,c1

g1i0i1g2i0i1g3i1i0 + l.o.

Θ = (∆, θ) ∈ Z[T±1] × Z[T±1
1 ,T

±1
2 ]

T1

T2

T3

Fast.

The Conway Knot Kinoshita-Terasaka

Strong. Θ vs. a slew of other reasonably-computable invariants
(deficits shown):

n ≤ 10 ≤ 11 ≤ 12 ≤ 13 ≤ 14 ≤ 15
knots 249 801 2,977 12,965 59,937 313,230
∆ (38) (250) (1,204) (7,326) (39,741) (236,326)
σLT (108) (356) (1,525) (7,736) (40,101) (230,592)

J (7) (70) (482) (3,434) (21,250) (138,591)
Kh (6) (65) (452) (3,226) (19,754) (127,261)
H (2) (31) (222) (1,839) (11,251) (73,892)

Vol (∼6) (∼25) (∼113) (∼1,012) (∼6,353) (∼43,607)
(Kh,H,Vol) (∼0) (∼14) (∼84) (∼911) (∼5,917) (∼41,434)

(∆, ρ1) (0) (14) (95) (959) (6,253) (42,914)
(∆, ρ1, ρ2) (0) (14) (84) (911) (5,926) (41,469)

(ρ1, ρ2,Kh,H,Vol) (0) (∼14) (∼84) (∼911) (∼5,916) (∼41,432)
Θ (0) (3) (19) (194) (1,118) (6,758)

(Θ, ρ2) (0) (3) (10) (169) (982) (6,341)
(Θ, σLT ) (0) (3) (19) (194) (1,118) (6,758)
(Θ,Kh) (0) (3) (18) (185) (1,062) (6,555)
(Θ,H) (0) (3) (18) (185) (1,064) (6,563)
(Θ,Vol) (0) (∼3) (∼10) (∼169) (∼973) (∼6,308)

(Θ, ρ2,Kh,H,Vol) (0) (∼3) (∼10) (∼169) (∼972) (∼6,304)

Topologically Meaningful. θ is near ∆ and we dream that anyth-
ing ∆ can do, θ does too (sometimes better). The following two
conjectures are verified for knots with ≤ 13 crossings:
Conjecture 1. degT1

θ(K) ≤ 2g(K).
Conjecture 2. If K is a fibered knot and d is the degree of ∆(K)
(the highest power of T ), then the coefficient of T 2d

2 in θ(K), which
is a polynomial in T1, is an integer multiple of T d

1∆(K)|T→T1 .
Dream. θ has something to say about ribbon knots.
Fun. Θ on Rolfsen’s Table:

A random 300 xing knot from
[DHOEBL]. For most inva-
riants, 300 is science fiction.

G. Let G = (gαβ) B A−1, the “two point function”:

G =



1 T 1 T 1 T 1
0 1 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1−T

T 2−T+1
1

T 2−T+1
1

T 2−T+1
T

T 2−T+1 1
0 0 1−T

T 2−T+1 −
(T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1


Let T1 and T2 be new indeteminates, let T3 = T1T2, and let Gν =
(gναβ) be G with T → Tν, for ν = 1, 2, 3.

∆ � det(A)

Data

Program

(ouch)

http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2601/pi
http://www.math.toronto.edu/~drorbn
http://www.math.toronto.edu/~drorbn/Talks
http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2601/
http://drorbn.net/ld26


The 132-crossing torus knot T22/7: (many more at ωεβ/TK) Random knots from [DHOEBL] with 51
– 75 crossings: (many more at ωεβ/DK)

Moral. We
must come to
terms with Θ!

Task 1. Make the “data” formulas human friendly.

Task 2. Prove the hexagonal symmetry of θ(K), and that θ(K) =
θ(−K) = −θ(K̄).
That’s harder than it seems! The formulas don’t naively show
any of that. ∆ has a palindromic symmetry first conjectured in
Alexander’s original paper [Al] — it is invariant under T → T−1.
Proving this took a few years, and the proof starting from the
Wirtinger presentation is quite involved (e.g. [CF, Chapter IX]).

Task 3. With ρ1 the Rozansky-Overbay invariant [Ro1, Ro2,
Ro4, Ov, BV1], show that ρ1 = −θ|T1→T,T2→1.
This one should be easy with techniques from [BV3, Section 4.2].

Task 4. Explain the “Chladni patterns”. Are there “dominant
modes” of θ that can be
computed in isolation?
left: © Whipple Museum of the History of Science,
University of Cambridge; right: CC-BY-SA 4.0 / W-
ikimedia / Matemateca (IME USP) / Rodrigo Tetsuo
Argenton

Task 5. Prove the genus bound of Conjecture 1.
This is probably coming. One can bound the degree of ∆ = det(A)
in terms of g(K) using the Seifert presentation of the Alexan-
der module. Pushing further, likely one can bound the degree of
(gαβ) = A−1 in terms of g(K), and that’s probably enough.

Task 6. Find a 3D interpretation of the gαβ’s.
They must be closely related to the equivariant linking numbers

of [KY, GK, GT, Oh3, Le1].

Task 7. Find a formula F for Θ(K) that starts from a Seifert sur-
face Σ of K. Better if F is completely 3D! Assuming Task 13, it is
known that Θ depends only of invariants of type ≤ 3 of Σ. May-
be F is about configuration space integrals / chopstick towers?
See CS: [Th, Le2, BN1], BF: [CR, BN2]
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Task 8. Is there an intrinsic theory of finite type invariants for
Seifert surfaces? For task 11, does its gr map to functions on H1?

My current best understanding of finite type
invariants for Seifert surfaces goes through
thick graphs.

Task 9. Prove the fibered condition of Conjecture 2.
If K is fibered, deg∆(K) = g(K) and ∆(K) is monic. Indeed,
K is then the mapping cylinder of a diffeomorphism f : Σ → Σ.
The Alexander module of K is generated by H1(Σ) with relations
{γ = T f∗γ : γ ∈ H1(Σ)}. Thus the highest monomial in ∆ is
T g det( f∗) and det( f∗) = ±1 as f∗ preserves the intersection pai-
ring. If only we had a formula for θ in terms of f . . .

http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2601/TK
http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2601/DK
https://www.whipplemuseum.cam.ac.uk/explore-whipple-collections/acoustics/ernst-chladni-physicist-musician-and-musical-instrument-maker
https://www.whipplemuseum.cam.ac.uk/explore-whipple-collections/acoustics/ernst-chladni-physicist-musician-and-musical-instrument-maker
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://en.wikipedia.org/wiki/Chladni%27s_law
https://en.wikipedia.org/wiki/Chladni%27s_law


Task 10. In general, find a formula for Θ corresponding to each
known presentation of the Alexander module.

Wirtinger is 2{xings} → {edges}. Dehn is {xings} → {faces}.
Co-Dehn is {faces} → {xings}. Burau is {braid strands} →
{braid strands}. Seifert is H1(Σ) → H1(Σ), and so is the pre-
sentation from Task 9. Grid diagrams lead to {grid number} →
{grid number} (may relate to HFK). There’s more!

Task 11. Write up the integration story.

Claim (e.g., [BN5]). Cutting corners and with ϵ2 = 0,
1

∆1∆2∆3
exp

(
ϵ ·

θ

∆1∆2∆3

)
∼ G

∫
∏

e R
6
p1e ,p2e ,p3e ,x1e ,x2e ,x3e

∏
c

e
Lc ,

where G
∫

denotes perturbed formal Gaussian integration (i.e.,
“Feynman Diagrams”) and Lc is

L[Xi_,j_[s_]] := Plus


ν=1

3
xνi (pνi+ - pνi) + xνj (pνj+ - pνj) + Tν

s
- 1 xνi (pνi+ - pνj+),

T1
s
- 1 p3j x1i T2

s x2i - x2j,

ϵ s T3
s
- 1 p1j (p2i - p2j) x3i  T2

s
- 1,

ϵ s 1/ 2 + T2
s p1i p2j x1i x2i - p1i p2j x1i x2j - p3i x3i - T2

s
- 1 p2j p3i x2i x3i +

T3
s
- 1 p2j p3j x2i x3i + 2 p2j p3i x2j x3i + p1i p3j x1i x3j - p2i p3j x2i x3j -

T2
s p2j p3j x2i x3j +

T1
s
- 1 p1j x1i T2

2 s p2j x2i - T2
s p2j x2j - T2

s
+ 1 T3

s
- 1 p3j x3i +

T2
s p3j x3j + T3

s
- 1 p3j x3i

1 - T2
s p1i x1i + p2i x2j + T2

s
- 2 p2j x2j T2

s
- 1

In fact, we first found Lc using the method of undetermined coef-
ficients, and then derived F1 and F2 from it.

Task 12. Find a similar perturbed Gaussian integral formula for
θ, but with integration over 6H1(Σ). The quadratic Q will be the
same as in the Seifert-Alexander formula (but repeated 3 times,
for each Tν). The perturbation Pϵ will be given by low-degree
finite type invariants of curves on Σ (possibly also dependent on
the intersection points of such curves, or on other information
coming from Σ).

Task 13. Prove that θ is equal to the two-loop contribution Z(2)

to the Kontsevich integral Z.

Composed with the inverse PBW isomorphism χ−1, χ−1 ◦ Z ta-
kes values in unitrivalent Jacobi diagrams, B = {#+ . . .}/IHX.
Rozansky conjectured [Ro3, GR] and Kricker proved [Kr] that

log(χ−1 ◦ Z) =
higher
loops,

tf1 + f2
t1

t2
+

where t B · · · n · · ·tk , f1 ∈ Q⟦t⟧, and

f2 ∈ Q⟦t1, t2⟧ satisfy f1 = 1
2 log sinh(t/2)

t∆(et)/2 and f2 =

Z(2)(et1 , et2)
/
∆(et1)∆(et1)∆(et1+t2) where Z(2) ∈ Z[T±1

1 ,T
±1
2 ] is

the “two loop polynomial”. Ohtsuki [Oh2] studied Z(2) extensi-
vely, and almost certainly, Z(2) = θ. Prove that!

Task 14. Complete and write up the g+ϵ story.

Let g be a semisimple Lie algebra, let h be its Cartan subalgebra,
and let bu and bl be its upper and lower Borel subalgebras. Then
bu has a bracket β, and as the dual of bl, bu also has a cobracket δ,
and in fact, g ⊕ h ≡ Double(bu, β, δ). Let g+ϵ B Double(bu, β, ϵδ)
(mod ϵd+1 it is solvable for any d). We expect that Θ is the uni-
versal invariant (in the sense of Lawrence and Ohtsuki [La, Oh1])
corresponding to sl+3,ϵ , computed modulo ϵ2 (in fact, that’s how
we guessed it). See [BN3, BV2].

Task 15. Go beyond sl3 and the first power of ϵ!

This sounds very appealing, and you will surely get stronger and
stronger invariants. But they will be less and less computable /.

Task 16. Find a w-style charaterization of Θ.

=
TC

=
OCCompare with [HKS, HS, BD], where ∆

is charaterized on w-knots by the overcros-
sings / tails commute relation. Similarly it
should be possible to charactize Θ on rota-
tional virtual knots by some “overcrossings
/ tails nearly commute” relation.

Assuming Task 13, there is a characteriza-
tion of Θ in terms of [GR]’s “null filtration”. I find it too compli-
cated to work with.

Task 17. Relate the g+ϵ story with (rotational) virtual knots
[Kau], with A⃗ [Po], and with quantization of Lie bialgebras
[EK1, EK2, En, Se]

KS
Z //

a
��

AS ))
α
��

US (g+ϵ )

K rv
S

Zrv
// Arv

S

55

KS /[GR]k+2
Z //

a��

AS /
(k+1)−
loops **
α��

US (g+ϵ )
ϵk+1

K rv
S /OCk+1 Zrv

// Arv
S /TCk+1

44

We expect that there is a commutative diagram as on the left, w-
hich descends to the one at the right, with Θ corresponding to
g = sl3 and k = 1. But we’re missing Zrv which may be hidden
inside [EK1, EK2, En, Se].

Task 18. Understand Chern-Simons theory with gauge group g+ϵ .

Is there a gauge that leads to the formula F of Task 7?

Task 19. What happens to representation theory as ϵ → 0? Is
there any fun in continuous morphisms g+ϵ → gl+n,ϵ?

Task 20. Study θ on links.

Does it make sense even if ∆ = 0? Does it depend on the choice
of the cut component?

Task 21. Does Θ extend to knots in ZHS / QHS ? Z and Z(2) do.

Task 22. Is there a surgery formula for Θ? Z and Z(2) have.

Task 23. Extend Θ to tangles and figure out how it behaves un-
der strand doubling.

Z and Z(2) extend but their extensions depend on parenthesiza-
tions. From Task 14 we expect that Θ will extend without the
need for parenthesizations, yet with an asymmetry built into the



doubling operations. Note that tangles and strand doubling are
keys to “algebraic knot theory” [BN4].

Task 24. Make Kricker / Ohtsuki [Kr, Oh2] more computable!

Task 25. Find a multi-variable version of θ for links, like there is
a multi-variable Alexander for links (e.g. [Kaw, Chapter 7]).
It is predicted g+ϵ consideration, but not by the loop expansion.

Task 26. Find a ribbon condition satisfied by Θ.

For a ribbon knot K,
one may find a Sei-
fert surface Σ half of
whose homology is
generated by the components of an unlink embedded in Σ. Th-
is makes for a presentation matrix A of the Alexander module of
K that has big blocks of zeros, and this leads to the Fox-Milnor
condition [FM], ∆ � det(A) � f (T ) f (T−1) for some f ∈ Z[T±1].
If det A is constrained for ribbon knots, perhaps so is A−1 and
therefore Θ?

Bonus Task. Carthago delenda est and e-
very knot polynomial must be categorified.
M. Khovanov & Cato the Elder
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A FAST, STRONG, TOPOLOGICALLY MEANINGFUL, AND FUN KNOT
INVARIANT

DROR BAR-NATAN AND ROLAND VAN DER VEEN

Abstract. In this paper we discuss a pair of polynomial knot invariants Θ “ p∆, θq which
is:
‚ Theoretically and practically fast: Θ can be computed in polynomial time. We can

compute it in full on random knots with over 300 crossings, and its evaluation at simple
rational numbers on random knots with over 600 crossings.

‚ Strong: Its separation power is much greater than the hyperbolic volume, the HOMFLY-
PT polynomial and Khovanov homology (taken together) on knots with up to 15 crossings
(while being computable on much larger knots).

‚ Topologically meaningful: It likely gives a genus bound, and there are reasons to hope
that it would do more.

‚ Fun: Scroll to Figures 1.1–1.4, 3.1, and 6.2.
∆ is merely the Alexander polynomial. θ is almost certainly equal to an invariant that
was studied extensively by Ohtsuki [Oh2], continuing Rozansky, Kricker, and Garoufalidis
[Roz1, Roz2, Roz3, Kr, GR]. Yet our formulas, proofs, and programs are much simpler and
enable its computation even on very large knots.
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1. Fun

The word “fun” rarely appears in the title of a math paper, so let us start with a brief
justification.
Θ is a pair of polynomials. The first, ∆, is old news, the Alexander polynomial [Al]. It is

a one-variable Laurent polynomial in a variable T . For example, ∆p.q “ T´1 ´ 1 ` T . We
turn such a polynomial into a list of coefficients (for ., it is p1,´1, 1q), and then to a chain
of bars of varying colours: white for the zero coefficients, and red and blue for the positive
and negative coefficients (with intensity proportional to the magnitude of the coefficients).
The result is a “bar code”, and for the trefoil . it is .

-T1 T2

T1

T2

2

-
1

T2

-
1

T1
1

T1 T2

Similarly, θ is a 2-variable Laurent polynomial, in variables T1 and T2.
We can turn such a polynomial into a 2D array of coefficients and then
using the same rules, into a 2D array of colours, namely, into a picture.
To highlight a certain conjectured hexagonal symmetry of the resulting
pictures, we apply a shear transformation to the plane before printing. So
a monomial cT n1

1 T n2
2 gets printed at position pn1 ´n2{2,

?
3n2{2q instead

of the more straightforward pn1, n2q. On the right is the 2D picture corresponding to the
polynomial 2 ` T1 ´ T1T2 ` T2 ´ T´1

1 ` T´1
1 T´1

2 ´ T´1
2 .

Thus Θ becomes a pair of pictures: a bar code, and a 2D picture that we call a “hexagonal
QR code”. For the knots in the Rolfsen table (with the unknot prepended at the start), they
are in Figure 1.1. For some alternating square weave knots, they are in Figure 1.2, and for a
random square weave, in Figure 1.3. In addition, the hexagonal QR codes of 15 knots with
ě 300 crossings are in Figure 1.4, and Θ of a 132-crossing torus knot is in Figure 3.1. Some
further computations and figures, also highlighting the parity of coefficients rather than just
their signs, are at [Lal].

left: © Whipple Museum of the History of Science,

University of Cambridge; right: CC-BY-SA 4.0 /

Wikimedia / Matemateca (IME USP) / Rodrigo Tetsuo

Argenton

Clearly there are patterns in these figures.
There is a hexagonal symmetry and the QR
codes are nearly always hexagons (these are in-
dependent properties). Much more can be seen
in Figure 1.1. In Figure 1.4 there seem to be
large-scale patterns perhaps reminiscent of the
“Chladni figures” formed by powders atop vi-
brating plates (on right). We can’t prove any
of these things, and the last one, we can’t even
formulate properly. Yet they are clearly there, too clear to be the result of chance alone.
We plan to have fun over the next few years observing and proving these patterns. We

hope that others will join us too.

See http://drorbn.net/Theta/
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0 1 3 1 4 1 5 1 5 2 6 1 6 2 6 3 7 1 7 2

7 3 7 4 7 5 7 6 7 7 8 1 8 2 8 3 8 4 8 5

8 6 8 7 8 8 8 9 8 10 8 11 8 12 8 13 8 14 8 15

8 16 8 17 8 18 8 19 8 20 8 21 9 1 9 2 9 3 9 4

9 5 9 6 9 7 9 8 9 9 9 10 9 11 9 12 9 13 9 14

9 15 9 16 9 17 9 18 9 19 9 20 9 21 9 22 9 23 9 24

9 25 9 26 9 27 9 28 9 29 9 30 9 31 9 32 9 33 9 34

9 35 9 36 9 37 9 38 9 39 9 40 9 41 9 42 9 43 9 44

9 45 9 46 9 47 9 48 9 49 10 1 10 2 10 3 10 4 10 5

10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 15

10 16 10 17 10 18 10 19 10 20 10 21 10 22 10 23 10 24 10 25

10 26 10 27 10 28 10 29 10 30 10 31 10 32 10 33 10 34 10 35

10 36 10 37 10 38 10 39 10 40 10 41 10 42 10 43 10 44 10 45

10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55

10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65

10 66 10 67 10 68 10 69 10 70 10 71 10 72 10 73 10 74 10 75

10 76 10 77 10 78 10 79 10 80 10 81 10 82 10 83 10 84 10 85

10 86 10 87 10 88 10 89 10 90 10 91 10 92 10 93 10 94 10 95

10 96 10 97 10 98 10 99 10 100 10 101 10 102 10 103 10 104 10 105

10 106 10 107 10 108 10 109 10 110 10 111 10 112 10 113 10 114 10 115

10 116 10 117 10 118 10 119 10 120 10 121 10 122 10 123 10 124 10 125

10 126 10 127 10 128 10 129 10 130 10 131 10 132 10 133 10 134 10 135

10 136 10 137 10 138 10 139 10 140 10 141 10 142 10 143 10 144 10 145

10 146 10 147 10 148 10 149 10 150 10 151 10 152 10 153 10 154 10 155

10 156 10 157 10 158 10 159 10 160 10 161 10 162 10 163 10 164 10 165

Ñ
Θ

Figure 1.1. Θ as a bar code and a QR code, for all the knots in the Rolfsen table.

See http://drorbn.net/Theta/

A (2, 41,−41) pretzel for
dessert

http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2601/Ten
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http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2601/AKT
http://www.math.toronto.edu/~drorbn/Talks/LesDiablerets-2601/Bonn
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Figure 1.2. Θ of some square weave knots, as computed by [BV3, WeaveKnots.nb].

Figure 1.3. Θ of a randomized weave knot, as computed by [BV3, WeaveKnots.nb].
Crossings were chosen to be positive or negative with equal probabilities.

2. The Main Theorem

1

2

3

4

6

7

5

D

φ4 “ ´1

Figure 2.1. An example
upright knot diagram.

We start with the definition of Θ. Given an oriented n-
crossing knot K, we draw it in the plane as a long knot di-
agram D in such a way that the two strands intersecting at
each crossing are pointing up (that’s always possible because
we can always rotate crossings as needed), and so that at its
beginning and at its end the knot is oriented upward. We call
such a diagram an upright knot diagram. An example of an
upright knot diagram is shown on the right.

We then label each edge of the diagram with two labels: a
running index k which runs from 1 to 2n` 1, and a “rotation
number” φk, the geometric rotation number of that edge1. In

1The signed number of times the tangent to the edge is horizontal and heading right, with cups counted
with `1 signs and caps with ´1; this number is well defined because at their ends, all edges are headed up.

See http://drorbn.net/Theta/

A FAST, STRONG, TOPOLOGICALLY MEANINGFUL, AND FUN KNOT INVARIANT 5

Figure 1.4. θ (hexagonal QR code only) of the 15 largest knots that we have com-
puted by September 16, 2024. They are all “generic” in as much as we know, and
they all have ě 300 crossings. The knots come from [DHOEBL]. Warning: Some
screens/printers may introduce spurious Moiré interference patterns.

Figure 2.1 the running index runs from 1 to 7, and the rotation numbers for all edges are 0
(and hence are omitted) except for φ4, which is ´1.

Let X be the set of all crossings in the diagram D, where we encode each crossing as a
triple (sign of the crossing, incoming over edge, incoming under edge). In our example we
have X “ tp1, 1, 4q, p1, 5, 2q, p1, 3, 6qu.

We let A be the p2n`1q ˆ p2n`1q matrix of Laurent polynomials in a variable T , defined
by

A :“ I ´
ÿ

c“ps,i,jqPX
pT sEi,i`1 ` p1 ´ T sqEi,j`1 ` Ej,j`1q ,

where I is the identity matrix and Eαβ denotes the elementary matrix with 1 in row α and
column β and zeros elsewhere.

See http://drorbn.net/Theta/
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Alternatively, A “ I`ř
cAc, where Ac is a matrix of zeros except for the blocks as follows:

s “ ´1

j

i ` 1 j ` 1

ii

s “ `1

j ` 1 i ` 1

j
ÝÑ

Ac column i ` 1 column j ` 1
row i ´T s T s ´ 1
row j 0 ´1

(1)

We note that the determinant of A is equal up to a unit to the normalized Alexander
polynomial ∆ of K.2 In fact, we have that

∆ “ ∆pKq “ T p´φpDq´wpDqq{2 detpAq, (2)

where φpDq :“ ř
k φk is the total rotation number of D and where wpDq “ ř

c sc is the
writhe of D, namely the sum of the signs sc of all the crossings c in D.

We let G “ pgαβq “ A´1, and, thinking of it as a function gαβ of a pair of edges α and
β, we call it the Green function of the diagram D. When inspired by physics (e.g. Fact 33
and [BN6]) we sometimes call it “the 2-point function”, and when thinking of car traffic (e.g.
Comment 3 and [BV1, BN7]) we sometimes call it “the traffic function”. As an example,
here are A and G for the knot diagram D of Figure 2.1:

¨
˚̊
˚̊
˚̊
˚̋

1 ´T 0 0 T ´ 1 0 0

0 1 ´1 0 0 0 0

0 0 1 ´T 0 0 T ´ 1

0 0 0 1 ´1 0 0

0 0 T ´ 1 0 1 ´T 0

0 0 0 0 0 1 ´1
0 0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‚
,

¨
˚̊
˚̊
˚̊
˚̋

1 T 1 T 1 T 1

0 1 1
T 2´T`1

T
T 2´T`1

T
T 2´T`1

T 2

T 2´T`1 1

0 0 1
T 2´T`1

T
T 2´T`1

T
T 2´T`1

T 2

T 2´T`1 1

0 0 1´T
T 2´T`1

1
T 2´T`1

1
T 2´T`1

T
T 2´T`1 1

0 0 1´T
T 2´T`1

T´T 2

T 2´T`1
1

T 2´T`1
T

T 2´T`1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‚
.

Let T1 and T2 be indeterminates and let T3 :“ T1T2. Let ∆ν :“ ∆|TÑTν and Gν “ pgναβq :“
G|TÑTν be ∆ and G subject to the substitution T Ñ Tν , where ν “ 1, 2, 3.

Given crossings c “ ps, i, jq, c0 “ ps0, i0, j0q, and c1 “ ps1, i1, j1q in X and an edge label k,
let

F1pcq “ s r1{2 ´ g3ii ` T s
2 g1iig2ji ´ T s

2 g3jjg2ji ´ pT s
2 ´ 1qg3iig2ji (3)

`pT s
3 ´ 1qg2jig3ji ´ g1iig2jj ` 2g3iig2jj ` g1iig3jj ´ g2iig3jjs

` s

T s
2 ´ 1

rpT s
1 ´ 1qT s

2 pg3jjg1ji ´ g2jjg1ji ` T s
2 g1jig2jiq

` pT s
3 ´ 1qg3ji p1 ´ T s

2 g1ii ` g2ij ` pT s
2 ´ 2qg2jj ´ pT s

1 ´ 1qpT s
2 ` 1qg1jiqs

F2pc0, c1q “ s1pT s0
1 ´ 1qpT s1

3 ´ 1qg1j1i0g3j0i1
T s1
2 ´ 1

pT s0
2 g2i1i0 ` g2j1j0 ´ T s0

2 g2j1i0 ´ g2i1j0q (4)

F3pkq “ pg3kk ´ 1{2qφk (5)

These formulas are uninspiring, yet they are easy to compute (given G), and they work:

2The informed reader will note that A is a presentation matrix for the Alexander module of K, obtained
by using Fox calculus on the Wirtinger presentation of the fundamental group of the complement of K.

See http://drorbn.net/Theta/
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Theorem 1 (The Main Theorem, proof in Section 4). The following are knot invariants:

θ0pDq :“
ÿ

cPX
F1pcq `

ÿ

c0,c1PX
F2pc0, c1q `

ÿ

edges k

F3pkq and θpDq :“ ∆1∆2∆3θ0pDq. (6)

Furthermore, θ is a Laurent polynomial in T1 and T2, with integer coefficients.

Some comments are now in order:

Comment 2. The entries of Gν are rational functions with denominators ∆ν , and so θ0 is
valued in the ring of rational functions QpT1, T2q. The point of θ is to clear these denomi-
nators by multiplying by ∆1∆2∆3 so as to get an invariant valued in Laurent polynomials.
(There remains a potential denominator of the form pT2 ´ 1q´1 coming from the explicit
denominators in Equations (3) and (4). It will be shown to cancel in Section 4.2.)

Comment 3. We note following [BV1] that gαβ can be interpreted as measuring “car traffic”,
assuming a stream of traffic is injected near the start of edge α and a “traffic counter” is
placed near the end of edge β, and where cars always obey the following traffic rules:

‚ Car travel on the edges of the knot, always in a direction consistent with the orientation
of these edges.

‚ When a car reaches a crossing on the under-strand, it travels through and continues on
the other side.

‚ When a car reaches a crossing of sign s “ ˘1 on the over-strand, it continues right through
with probability T s, yet with probability 1 ´ T s it falls down and continues travelling on
the lower strand. (It matters not that T and T´1 cannot be between 0 and 1 at the
same time — we merely use the algebraic rules of probability without caring about the
inequalities that normally come with them).

‚ When cars reach the “end” of the knot, the abyss that follows edge 2n ` 1, they fall off
the picture never to be seen again.

These rules can be summarized by the following pictures:

p “ 1 ´ T s image credits:
Dall-E

1´T T 1 0 0 1 T´1 1´T´1

2n ` 1

For further details, see [BV1]. 3

Comment 4. We note without detail that there is an alternative formula for θ in terms of
perturbed Gaussian integration [BN6]. In that language, and using also the traffic motifs of
Discussion 3, the three summands in (6) become Feynman diagrams for processes in which
cars ν governed by parameter Tν “ T1, T2, or T3 interact:

D

i µν j

D

k 3

φ
j0 i1

D

i0 j1

2

1

3

See http://drorbn.net/Theta/
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In particular, the middle diagram which resembles the Greek letter Θ gave the invariant
its name. 4

Comment 5. The computation of G is a bottleneck for the computation of Θ. It requires
inverting a p2n ` 1q ˆ p2n ` 1q matrix whose entries are (degree 1) Laurent polynomials in
T . It’s a daunting task yet it takes polynomial time. Even a naive inversion using Gaussian
elimination requires only „ n3 operations in the ring QpT q. So G can be computed in
practice even if n is in the hundreds, and everything which then follows is not worse.

The polynomials F1pcq, F2pc0, c1q and F3pkq are not unique, and we are not certain that
we have the cleanest possible formulas for them. They are ugly from a human perspective,
yet from a computational perspective, having 18 terms (as is the case for F1pcq) isn’t really
a problem; computers don’t care.

Computationally, the worst term in (6) is the middle one, and even it takes merely „ n2

operations in the ring QpT1, T2q to evaluate. 5

3. Implementation and Examples

3.1. Implementation. A concise yet reasonably efficient implementation is worth a thou-
sand formulas. It completely removes ambiguities, it tests the theories, and it allows for
experimentation. Hence our next task is to implement. The section that follows was gener-
ated from a Mathematica [Wo] notebook which is available at [BV3, Theta.nb]. A second
implementation of Θ, using Python and SageMath (https://www.sagemath.org/) is avail-
able at https://www.rolandvdv.nl/Theta/.

We start by loading the package KnotTheory‘ — it is only needed because it has many

specific knots pre-defined. In this Section and in the next, and mean “human input”

while means “computer output”:

Once[<< KnotTheory`] Loading KnotTheory` version of October 29, 2024, 10:29:52.1301.

Read more at http://katlas.org/wiki/KnotTheory.

Next we quietly define the modules Rot, used to compute rotation numbers, and PolyPlot,
used to plot polynomials as bar codes and as hexagonal QR codes. Neither is a part of the
core of the computation of Θ, so neither is shown; yet we do show one usage example for
each.

(* The definitions of Rot and PolyPlot are suppressed *)

Rot[Mirror@Knot[3, 1]] {{{1, 1, 4}, {1, 3, 6}, {1, 5, 2}}, {0, 0, 0, -1, 0, 0, 0}}

We urge the reader to compare the above output with the knot diagram in Figure 2.1.

PolyPlot2 T - 1 + T-1, -1 + T1 - 2 T2 + 4 T1
-1 T2

-1
,

ImageSize  100, Labeled  True

2 T-1
1

T

T1

-2 T2

-1

4

T1 T2

See http://drorbn.net/Theta/
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The definition of CF below is a technicality telling the computer how to best store poly-
nomials in the gναβ’s such as F1 and F2. The programs would run just the same without it,
albeit a bit more slowly:

CF[ℰ_] := Expand@Collect[ℰ , g__, F] /. F  Factor;

Next, we decree that T3 “ T1T2 and define the three “Feynman Diagram” polynomials F1,
F2, and F3:

T3 = T1 T2;

F1[{s_, i_, j_}] := CF

s 1/ 2 - g3ii + T2
s g1ii g2ji - g1ii g2jj - T2

s
- 1 g2ji g3ii + 2 g2jj g3ii - 1 - T3

s
 g2ji g3ji -

g2ii g3jj - T2
s g2ji g3jj + g1ii g3jj +

T1
s
- 1 g1ji T2

2 s g2ji - T2
s g2jj + T2

s g3jj +

T3
s
- 1 g3ji 1 - T2

s g1ii + g2ij + T2
s
- 2 g2jj - T1

s
- 1 T2

s
+ 1 g1ji T2

s
- 1

F2[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=

CFs1 T1
s0

- 1 T2
s1

- 1-1
T3

s1
- 1 g1,j1,i0 g3,j0,i1

 T2
s0 g2,i1,i0 - g2,i1,j0 - T2

s0 g2,j1,i0 - g2,j1,j0

F3[φ_, k_] = φ g3kk - φ/ 2;

Next comes the main program computing ΘpKq. Fortunately, it matches perfectly with
the mathematical description in Section 2. In line 1 below we use Rot to let X and φ be
the crossings and rotation numbers of K. In addition we let n be the length of X, namely,
the number of crossings in K, and we let the starting value of A be the p2n ` 1q ˆ p2n ` 1q
identity matrix. Then in line 2, for each crossing in X we add to A a 2 ˆ 2 block, in rows
i and j and columns i ` 1 and j ` 1, as explain in Equation (1). In line 3 we compute the
normalized Alexander polynomial ∆ as in (2). In line 4 we let G be the inverse of A. In line
5 we declare what it means to evaluate, ev, a formula E that may contain symbols of the
form gναβ: each such symbol is to be replaced by the entry in position α, β of G, but with
T replaced with Tν . In line 6 we start computing θ by computing the first summand in (6),
which in itself, is a sum over the crossings of the knot. In line 7 we add to θ the double sum
corresponding to the second term in (6), and in line 8, we add the third summand of (6).
Finally, line 9 outputs a pair: ∆, and the re-normalized version of θ.

See http://drorbn.net/Theta/
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Θ[K_] := Θ[K] = Module{X, φ, n, A, Δ, G, ev, θ, k, k1, k2},

(* 1 *) {X, φ} = Rot[K]; n = Length[X]; A = IdentityMatrix[2 n + 1];

(* 2 *) CasesX, {s_, i_, j_}  A〚{i, j}, {i + 1, j + 1}〛 += 
-Ts Ts - 1

0 -1
;

(* 3 *) Δ = T(-Total[φ]-Total[X〚All,1〛])/2 Det[A];

(* 4 *) G = Inverse[A];

(* 5 *) ev[ℰ_] := Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];

(* 6 *) θ = ev[Sum[F1[X〚k〛], {k, n}]];

(* 7 *) θ += ev[Sum[F2[X〚k1〛, X〚k2〛], {k1, n}, {k2, n}]];

(* 8 *) θ += ev[Sum[F3[φ〚k〛, k], {k, Length@φ}]];

(* 9 *) Factor@{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) θ}

;

3.2. Examples. On to examples! Starting with the trefoil knot.

Expand[Θ[Knot[3, 1]]]

-1 +
1

T
+ T, -

1

T1
2
- T1

2
-

1

T2
2
-

1

T1
2 T2

2
+

1

T1 T2
2
+

1

T1
2 T2

+
T1

T2
+
T2

T1
+ T1

2 T2 - T2
2
+ T1 T2

2
- T1

2 T2
2


PolyPlot[Θ[Knot[3, 1]], ImageSize  Tiny]

Next are the Conway knot 11n34 and the Kinoshita-Terasaka
knot 11n42. The two are mutants and famously hard to separate:
they both have ∆ “ 1 (as evidenced by their one-bar Alexan-
der bar codes below), and they have the same hyperbolic volume,
HOMFLY-PT polynomial, and Khovanov homology. Yet their θ
invariants are different. Note that the genus of the Conway knot is 3, while the genus of the
Kinoshita-Terasaka knot is 2. This agrees with the apparent higher complexity of the QR
code of the Conway polynomial and with Conjecture 18 below.

PolyPlot[Θ[Knot[#]], ImageSize  120] & /@

{"K11n34", "K11n42"}

 , 

Torus knots have particularly nice-looking Θ invariants. Here are the torus knots T13{2,
T17{3, T13{5, and T7{6:

See http://drorbn.net/Theta/
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ImageCompose[PolyPlot[Θ[TorusKnot @@ #], ImageSize  480],

TubePlot[TorusKnot @@ # , ImageSize  240], {Right, Bottom}, {Right, Bottom}] & /@

{{13, 2}, {17, 3}, {13, 5}, {7, 6}} // GraphicsRow

The next line shows the computation time in seconds for the 132-crossing torus knot T22{7
on a 2024 laptop, without actually showing the output. The output plot is in Figure 3.1.

AbsoluteTiming[Θ[TorusKnot[22, 7]];] {1020.73, Null}

We note that if T1 and T2 are assigned specific rational numbers and if the program for Θ is
slightly modified so as to compute each Gν separately (rather than computing G symbolically
and then substituting T Ñ Tν), then the program becomes significantly more efficient, for
inverting a numerical matrix is cheaper than inverting a symbolic matrix (but then one
obtains numerical answers and the beauty and the topological significance (Section 5) are
lost). The Mathematica notebook that accompanies this paper, [BV3, Theta.nb], contains
the required modified program as well as a few computational examples. One finds that with
T1 “ 22{7 and T2 “ 21{13, the invariant Θ can be computed for knots with 600 crossings,
and that for knots with up to 15 crossings, its separation power remains the same.

If T1 and T2 are assigned approximate real values, say π and e computed to 100 decimal
digits, then Θ can be computed on knots with 1,000 crossings and, for knots with up to 15
crossings it remains very strong. But approximate real numbers are a bit thorny. It is hard
to know how far one needs to compute before deciding that two such numbers are equal,
and when two such numbers appear unequal, it is hard to tell if that is merely because they
were computed differently and different roundings were applied. Thorns and snares are in
the way of the perverse; He who guards his soul will be far from them (Proverbs 22:5)3.

4. Proof of the Main Theorem, Theorem 1

We divide the proof into to parts: the invariance of θ0 (and therefore of θ) is in Section 4.1,
and the polynomiality of θ is in Section 4.2.

4.1. Proof of Invariance. Our proof of the invariance of θ (Theorem 1) is very similar,
and uses many of the same pieces, as the proof of the invariance of ρ1 in [BV1]. Thus at
some places here we are briefer than at [BV1], and sadly, yet in the interest of saving space,
we understate here the interpretation of gαβ as a “traffic function”.

Some Reidemeister moves create or lose an edge and to avoid the need for renumbering
it is beneficial to also allow labelling the edges with non-consecutive labels. Hence we allow
that, and write i` for the successor of the label i along the knot, and i`̀ for the successor of

3 . ירחק! נפשו שומר

See http://drorbn.net/Theta/
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ImageCompose[PolyPlot[Θ[TorusKnot[22, 7]], ImageSize  720],

TubePlot[TorusKnot[22, 7], ImageSize  360], {Right, Bottom}, {Right, Bottom}]

Figure 3.1. The 132-crossing torus knot T22{7 and a plot of its Θ invariant

i` (these are i ` 1 and i ` 2 if the labelling is by consecutive integers). Also, by convention
“1” will always refer to the label of the first edge, and “2n` 1” will always refer to the label
of the last. With this in mind, we have that A “ I ` ř

cAc, with Ac given by

s “ ´1

j

i` j`

ii

s “ `1

j` i`

j
ÝÑ

Ac column i` column j`
row i ´T s T s ´ 1
row j 0 ´1

(7)

Like in [BV1, Lemma 3], the equalities AG “ I and GA “ I imply that for any crossing
c “ ps, i, jq in a knot diagram D, the Green function G “ pgαβq of D satisfies the following

See http://drorbn.net/Theta/
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“g-rules”, with δ denoting the Kronecker delta:

giβ “ δiβ ` T sgi`,β ` p1 ´ T sqgj`,β, gjβ “ δjβ ` gj`,β, g2n`1,β “ δ2n`1,β, (8)

gα,i` “ T sgαi ` δα,i` , gα,j` “ gαj ` p1 ´ T sqgαi ` δα,j` , gα,1 “ δα,1. (9)

Furthermore, the systems of equations (8) is equivalent to AG “ I and so it fully determines
gαβ, and likewise for the system (9), which is equivalent to GA “ I.

Of course, the same g-rules also hold for Gν “ pgναβq for ν “ 1, 2, 3, except with T replaced
with Tν .

We also need a variant g̃ab of gαβ, defined whenever a and b are two distinct points on the
edges of a knot diagram D, away from the crossings. If α is the edge on which a lies and β
is the edge on which b lies, g̃ab is defined as follows:

g̃ab “

$
’&
’%

gαβ if α ‰ β,

gαβ if α “ β and a ă b relative to the orientation of the edge α “ β,

gαβ ´ 1 if α “ β and a ą b relative to the orientation of the edge α “ β.

(10)

Of course, we can define g̃νab from gαβ in a similar way.
It is clear that g and g̃ contain the same information and are easily computable from each

other. The variant g̃ is, strictly speaking, not a matrix and so g is a bit more suitable for
computations. Yet g̃ is a bit better behaved when we try to track, as below, the changes in g
and g̃ under Reidemeister moves. Reidemeister moves sometimes merge two edges into one
or break an edge into two. In such cases the points a and b can be “pulled” along with the
move so as to retain their ordering along the overall parametrization of the knot, yet mere
edge labels lose this information. From the perspective of traffic functions, g̃ is somewhat
more natural than g, as it makes sense to inject traffic and to count traffic anywhere along
an edge, provided the injection point and the counting point are distinct.

The following discussion and lemma further exemplify the advantage of g̃ of g:

j kDiscussion 6. We introduce “null vertices” as on the right into knot dia-
grams, whose only function (as we shall see) is to cut edges into parts that
may carry different labels. When dealing with upright knot diagrams as in Figure 2.1, we
only allow null vertices where the tangent to the knot is pointing up, so that the rotation
numbers φk remain well defined on all edges. In the presence of null vertices the matrix
A becomes a bit larger (by as many null vertices as were added to a knot diagram). The
rule (7) for the creation of the matrix A gets an amendment for null vertices,

j k ÝÑ Anv column k
row j ´1

,

and the summation for A, A “ I `ř
c Ac `ř

nv Anv is extended to include summands for the
null vertices. The matrix G “ A´1 and the function gαβ are defined as before. The g-rules
of (8) and (9) get additions,

gjβ “ δjβ ` gkβ, (11) and gαk “ δαk ` gαj, (12)

and it remains true that the system of equations (8)Y(11) (as well as (9)Y(12)) fully deter-
mines gαβ. The variant g̃ab is also defined as before, except now a and b need to also be away
from the null vertices.

See http://drorbn.net/Theta/
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R1

R2

R3

a

b

D
g̃ab

Figure 4.1. The modified Green function g̃ab is invariant under Reidemeister moves
performed away from where it is measured.

Lemma 7. Inserting a null vertex does not change g̃ab provided it is inserted away from the
points a and b.4

Proof. Let D be an upright knot diagram having an edge labelled i and let D1 be obtained
from it by adding a null vertex within edge i, naming the two resulting half-edges j and k
(in order). Let gαβ be the Green function for D, and similarly, g1

αβ for D1. We claim that

g1
αβ “

$
&
%

if β “ j if β “ k if β R tj, ku
gii gii giβ if α “ j

gii ´ 1 gii giβ if α “ k
gαi gαi gαβ if α R tj, ku

Indeed, all we have to do is to verify that the above-defined g1
αβ satisfies all the g-rules

(8)Y(11), and that is easy. The lemma now follows easily from the definition of g̃1 in Equa-
tion (10). l

Remark 8. The statement of our Main Theorem, Theorem 1, does not change in the pres-
ence of null vertices: There are no “F” terms for those, and their only effect on the definition
of Θ in Equation (6) is to change the edge labels that appear within c, c1, and c2, and within
the F3 sum.

The following theorem was not named in [BV1] yet it was stated there as the first part of
the first proof of [BV1, Theorem 1].

Theorem 9. The variant Green function g̃ab is a “relative invariant”, meaning that once
points a and b are fixed within a knot diagram D, the value of g̃ab does not change if Rei-
demeister moves are performed away from the points a and b (an illustration appears in
Figure 4.1). It follows that the same is also true for g̃νab for ν “ 1, 2, 3.

We note that g̃ab is nearly the same as gαβ, if a is on α and b is on β. So Theorem 9
also says that gαβ is invariant under Reidemeister moves away from α and β, except for
edge-renumbering issues and ˘1 contributions that arise if α and β correspond to edges that
get merged or broken by the Reidemeister moves.

The proof of Theorem 9 is perhaps best understood in terms of the traffic function of
Discussion 3: One simply needs to verify that for each of the Reidemeister moves, traffic
entering the tangle diagram for the left hand side of the move exits it in the same manner
as traffic entering the tangle diagram for the right hand side of the move, and each of
these verifications, as explained in [BV1, BN4, BN7], is very easy. Yet that proof is a bit

4This statement does not make sense for gαβ , as inserting a null vertex changes the dimensions of the
matrix G “ pgαβq.

See http://drorbn.net/Theta/
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R1rR1l

R1-left and R1-right

R3b

braid-like R3

R2c` R2c´

counterclockwise and clockwise cyclic R2

Aside 1:

Aside 2:

Figure 4.2. A generating set of oriented Reidemeister moves as in [Po2, Figure 6].
Aside 1: the braid-like R2b is not needed. Aside 2: yet R2b cannot replace R2c˘
because in the would-be proof, an unpostulated form of R3 is used (which in itself
follows from R2c˘).

informal, so we opt here to give a fully formal proof along the lines of the first halves of [BV1,
Propositions 7-9].

Proof of Theorem 9. We need to know how the Green function gαβ changes under the
orientation-sensitive Reidemeister moves of Figure 4.2 (note that the gαβ do not see the
rotation numbers and don’t care if a knot diagram is upright in the sense of Figure 2.1.

We start with R3b. Below are the two sides of the move, along with the g-rules of
type (8) corresponding to the crossings within, written with the assumption that β isn’t
in ti`, j`, k`u, so several of the Kronecker deltas can be ignored. We use g for the Green
function at the left-hand side of R3b, and g1 for the right-hand side:

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
further
g-rules

further
crossings

further
g1-rules

further
crossings

gi,β “ δiβ`Tgi`,β`p1´T qgk`̀ ,β

gk`,β “ gk`̀ ,β

gi`,β “ Tgi`̀ ,β`p1´T qgj`̀ ,β

gj`,β “ gj`̀ ,β

gj,β “ δjβ`Tgj`,β`p1´T qgk`,β

gk,β “ δkβ`gk`,β

g1
i`,β “ Tg1

i`̀ ,β`p1´T qg1
k`,β

g1
k,β “ δkβ`g1

k`,β

g1
j`,β “ Tg1

j`̀ ,β`p1´T qg1
k`̀ ,β

g1
k`,β “ g1

k`̀ ,β

g1
i,β “ δiβ`Tg1

i`,β`p1´T qg1
j`,β

g1
j,β “ δjβ`g1

j`,β

k`̀ j`̀ i`̀

i j k

i`
j`

k`

k`̀ j`̀ i`̀

i j k

i`
j`

k`

Recall that along with the further g-rules and/or g1-rules corresponding to all the non-
moving knot crossings, these rules fully determine gαβ and g1

αβ for β R ti`, j`, k`u.
A routine computation (eliminating gi`,β, gj`,β, and gk`,β) shows that the first system of

6 equations is equivalent to the following system of 6 equations:

See http://drorbn.net/Theta/
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gi,β “ δiβ ` T 2gi`̀ ,β ` T p1 ´ T qgj`̀ ,β ` p1 ´ T qgk`̀ ,β,

gj,β “ δjβ ` Tgj`̀ ,β ` p1 ´ T qgk`̀ ,β, gk,β “ δkβ ` gk`̀ ,β,
(13)

gi`,β “ Tgi`̀ ,β ` p1 ´ T qgj`̀ ,β, gj`,β “ gj`̀ ,β, gk`,β “ gk`̀ ,β. (14)

In this system the indices i`, j` and k` do not appear in (13) or in the further g-rules
corresponding to the further crossings. Hence for the purpose of determining gαβ with
α, β R ti`, j`, k`u, Equations (14) can be ignored.

Similarly eliminating g1
i`,β, g

1
j`,β, and g1

k`,β from the second set of equations, we find that
it is equivalent to

g1
i,β “ δiβ ` T 2g1

i`̀ ,β ` T p1 ´ T qg1
j`̀ ,β ` p1 ´ T qg1

k`̀ ,β,

g1
j,β “ δjβ ` Tg1

j`̀ ,β ` p1 ´ T qg1
k`̀ ,β, g1

k,β “ δkβ ` g1
k`̀ ,β,

(15)

g1
i`,β “ Tg1

i`̀ ,β`p1´T qg1
k`̀ ,β, g1

j`,β “ Tg1
j`̀ ,β`p1´T qg1

k`̀ ,β, g1
k`,β “ g1

k`̀ ,β. (16)

Using the same logic as before, for the purpose of determining g1
αβ with α, β R ti`, j`, k`u,

Equations (16) can be ignored.
But now we compare the unignored equations, (13) and (15), and find that they are

exactly the same, except with g Ø g1, and the same is true for the further g-rules and/or
g1-rules coming from the further crossings. Hence so long as α, β R ti`, j`, k`u, we have that
gαβ “ g1

αβ. In the case of the R3b move no edges merge or break up, and hence this implies
that g̃ab “ g̃1

ab so long as a and b are away from the move.
Next we deal with the case of R2c`. We use the privileges afforded to us by Lemma 7 to

insert 4 null vertices into the right-hand-side of the move, and like in the case of R3b, we
start with pictures annotated with the relevant type (8) and (11) g-rules, written with the
assumption that β R ti`, j`u:

¨ ¨ ¨
further
g1-rules

¨ ¨ ¨
further
crossings

i` j`

gi`,β “ Tgi`̀ ,β ` p1 ´ T qgj`,β

gj,β “ δj,β ` gj`,β

gi,β “ δi,β ` T´1gi`,β ` p1 ´ T´1qgj`̀ ,β

gj`,β “ gj`̀ ,β

¨ ¨ ¨
further
g-rules

i

g1
i`,β “ g1

i`̀ ,β

g1
j,β “ δj,β ` g1

j`,β

g1
i,β “ δi,β ` g1

i`,β

g1
j`,β “ g1

j`̀ ,β

j

j`̀

i`̀

¨ ¨ ¨
further
crossings

i`̀ j

i j`̀

i`j`

As in the case of R3b, we eliminate gi`,β and gj`,β from the equations for the left hand
side, and find that for the purpose of determining gαβ with β R ti`, j`u, they are equivalent
to the equations

gi,β “ δi,β ` gi`̀ ,β and gj,β “ δj,β ` gj`̀ ,β.

Likewise, the right hand side is clearly equivalent to

g1
i,β “ δi,β ` g1

i`̀ ,β and g1
j,β “ δj,β ` g1

j`̀ ,β,

and as in the case of R3b, this establishes the invariance of g̃ab under R2c moves.
For the remaining moves, R2c´, R1l, and R1r, we merely display the g-rules and leave it

to the readers to verify that when the edges i` and/or j` are eliminated, the left hand sides

See http://drorbn.net/Theta/
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R1rR1l

φ
“
m

φ
“
n

φ
“
m

`
n

NV Sw“

φ
“

´1

φ
“

´1

φ
“

1

φ
“

1

R2c` R2c´ R3b

Figure 4.3. The upright Reidemeister moves: The R1 and R3 moves are already
upright and remain the same as in Figure 4.2. The crossings in the R2 moves of
Figure 4.2 are rotated to be upright. We also need two further moves: The null vertex
move NV for adding and removing null vertices, and the swirl move Sw which then
implies that any two ways of turning a crossing upright are the same. We sometimes
indicate rotation numbers symbolically rather than using complicated spirals.

become equivalent to the right hand sides:

i` j`
g1
i`,β “ g1

i`̀ ,β

g1
j,β “ δj,β ` g1

j`,β

g1
i,β “ δi,β ` g1

i`,β

g1
j`,β “ g1

j`̀ ,β

i

i`̀ j

j`̀

i`j`

gi,β “ δi,β ` Tgi`,β ` p1 ´ T qgj`̀ ,β

gj`,β “ gj`̀ ,β

gi`,β “ T´1gi`̀ ,β ` p1 ´ T´1qgj`,β

gj,β “ δj,β ` gj`,β

i

i`̀ j

j`̀

i`̀

i

i`
gi`,β “ Tgi`̀ ,β

`p1 ´ T qgi`,β

gi,β “ δi,β ` gi`,β

i`̀

i

i` g1
i`,β “ g1

i`̀ ,β

g1
i,β “ δi,β ` g1

i`,β
i`

g2
i`,β “ g2

i`̀ ,β

g2
i,β “ δi,β ` Tg2

i`,β

`p1 ´ T qg2
i`̀ ,β

i`̀

i

9

We can now move on to the main part of the proof of our Main Theorem, Theorem 1. We
need to show the invariance of θ under the “upright Reidemeister” moves of Figure 4.3.

Proposition 10. The moves in Figure 4.3 are sufficient. If two upright knot diagrams (with
null vertices) represent the same knot, they can be connected by a sequence of moves as in
the figure.

Proof Sketch. There is an obvious well-defined map

upright knot diagrams

relations as in Figure 4.3
ÝÑ oriented knot diagrams

relations as in Figure 4.2

We merely have to construct an inverse to that map. To do that we have to choose how to
turn each crossing in an oriented knot diagram to be upright. The different ways of doing so
differ by instances of the Sw relation (if deeper spirals need to be swirled away, null vertices
may be inserted using NV and the spirals can be undone one rotation at a time). A more
detailed version of the proof is in [BVH]. l

Proposition 11. The quantity θ0 is invariant under R3b.

See http://drorbn.net/Theta/
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Dl Dr

m n

s

m n

s

cl1

cl2

cl3

cy

i j k

k`̀ j`̀ i`̀

i j k

k`̀ j`̀ i`̀

cy

cr3

cr1

j`
i`

k`
cr2

j`
i`

k`

Figure 4.4. The two sides Dl and Dr of the R3b move. The left side Dl consists of
3 distinguished crossings cl1 “ p1, j, kq, cl2 “ p1, i, k`q, cl3 “ p1, i`, j`q and a collection
of further crossings cy “ ps,m, nq P Y , where Y is the set of crossings not participating
in the R3b move. The right side Dr consists of cr1 “ p1, i, jq, cr2 “ p1, i`, kq, cr3 “
p1, j`, k`q and the same set Y of further crossings cy.

Proof. Let Dl and Dr be two knot diagrams that differ only by an R3b move, and label
their relevant edges and crossings as in Figure 4.4. Let glναβ and grναβ be their corresponding

Green functions. Let F l
1pcq, F l

2pc0, c1q and F l
3pφ, kq be defined from glναβ as in (3)–(5), and

similarly make F r
1 , F

r
2 and F r

3 using grναβ.

By Theorem 9, glναβ “ grναβ so long as α, β R ti`, j`, k`u. And so the only terms that may

differ in θpDhq between h “ l and h “ r are the terms

Ah “
ÿ

cPtch1 ,ch2 ,ch3 u
F h
1 pcq `

ÿ

c0,c1Ptch1 ,ch2 ,ch3 u
F h
2 pc0, c1q, Bh “

ÿ

c0Ptch1 ,ch2 ,ch3 u, cyPY
F h
2 pc0, cyq, and Ch “

ÿ

c1Ptch1 ,ch2 ,ch3 u, cyPY
F h
2 pcy, c1q. (17)

We claim that Al “ Ar, Bl “ Br, and C l “ Cr.
To show that Al “ Ar, we need to compare polynomials in glναβ with polynomials in grναβ in

which α and β may belong to the set ti`, j`, k`u on which it may be that gl ‰ gr. Fortunately
the g-rules of Equations (8) and (9) allow us to rewrite the offending g’s, namely the ones with
subscripts in ti`, j`, k`u, in terms of other g’s whose subscripts are in ti, j, k, i`̀ , j`̀ , k`̀ u,
where gl “ gr. So it is enough to show that

under gl “ gr, Al {. (the g-rules for cl1, c
l
2, c

l
3) “ Ar {. (the g-rules for cr1, c

r
2, c

r
3), (18)

where the symbol {. means “apply the rules”. This is a finite computation that can in-
principle be carried out by hand. But each Ah is a sum of 3 ` 9 “ 12 polynomials in the
gl’s or the gr’s, these polynomials are rather unpleasant (see (3) and (4)), and applying the
relevant g-rules adds a bit further to the complexity. Luckily, we can delegate this pages-long
calculation to an entity that works accurately and doesn’t complain.

First, we implement the Kronecker δ-function, the g-rules for a crossing ps, i, jq, and the
g-rules for a list of crossings X:

δα_,β_ := If[α === β, 1, 0];

gRules[{s_, i_, j_}] := gν_jβ_  gν j+β + δjβ, gν_iβ_  Tν
s gνi+β + 1 - Tν

s
 gν j+β + δiβ,

gν_α_i+  Tν
s gναi + δαi+, gν_α_j+  gνα j + 1 - Tν

s
 gναi + δα j+;

gRules[X___List] := Union @@ Table[gRules[c], {c, {X}}]

We then let Xl be the three crossings in the left-hand-side of the R3b move, as in Figure 4.4,
we let Al be the Al term of (17), and we let lhs be the result of applying the g-rules for the

See http://drorbn.net/Theta/
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crossings in Xl to Al. We print only a “Short” version of lhs because the full thing would
cover about 2.5 pages:

Xl = {{1, j, k}, {1, i, k+}, {1, i+, j+}};

Al = Sum[F1[c], {c, Xl}] + Sum[F2[c0, c1], {c0, Xl}, {c1, Xl}];

lhs = Simplify[Al //. gRules @@ Xl];

Short[lhs, 5]

-
1

2 (1 - T2)
3 - 3 T2 +129 +

2 (1 - T2) 1 + T2 T2 g2,i++,i - (-1 + T2) g2,j++,i - (-1 + T2) g2,k++,i

1 + (1 - T1 T2) g3,k++,j + g3,k++,k

We do the same for Ar, except this time, without printing at all:

Xr = {{1, i, j}, {1, i+, k}, {1, j+, k+}};

Ar = Sum[F1[c], {c, Xr}] + Sum[F2[c0, c1], {c0, Xr}, {c1, Xr}];

rhs = Simplify[Ar //. gRules @@ Xr];

We then compare lhs with rhs. The output, True, tells us that we have proven (18):

Simplify[lhs  rhs] True

We show that Bl “ Br by following exactly the same procedure. Note that we ignore the
summation over cy and instead treat cy as a fixed crossing ps,m, nq. If an equality is proven
for every fixed cy, it is of course also proven for the sum over cy P Y .

lhs = Sum[F2[c0, {s, m, n}], {c0, Xl}] //. gRules @@ Xl;

rhs = Sum[F2[c0, {s, m, n}], {c0, Xr}] //. gRules @@ Xr;

Simplify[lhs  rhs]

True

Similarly we prove that C l “ Cr, and this concludes the proof of Proposition 11.

lhs = Sum[F2[{s, m, n}, c1], {c1, Xl}] //. gRules @@ Xl;

rhs = Sum[F2[{s, m, n}, c1], {c1, Xr}] //. gRules @@ Xr;

Simplify[lhs  rhs]

True

11

Remark 12. The computations above were carried out for generic gναβ and for a generic
cy “ ps,m, nq; namely, without specifying the knot diagrams in full, and hence without
assigning specific values to gναβ, and without specifying m and n. Under these conditions
the three parts of (17) cannot mix (namely, terms from, say, Ah cannot cancel terms in Bh

or Ch), and so it would have been enough to show that El “ Er, where Eh combines Ah and
Bh and Ch (and a few harmless further terms) by adding cy to the summation corresponding
to Ah:

Eh “
ÿ

cPtch1 ,ch2 ,ch3 ,cyu
F h
1 pcq `

ÿ

c0,c1Ptch1 ,ch2 ,ch3 ,cyu
F h
2 pc0, c1q.

But that’s a simpler computation:

ESum[X_] := (Sum[F1[c], {c, X}] + Sum[F2[c0, c1], {c0, X}, {c1, X}]) //. gRules @@ X;

See http://drorbn.net/Theta/
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Xl = {{1, j, k}, {1, i, k+}, {1, i+, j+}};

Xr = {{1, i, j}, {1, i+, k}, {1, j+, k+}};

Simplify[ESum[Append[Xl, {s, m, n}]]  ESum[Append[Xr, {s, m, n}]]]

True

12

Proposition 13. The quantity θ0 is invariant under the upright R2c` and R2c´.

Proof. For R2c` we follow the same logic as in the proof of Proposition 11, as simplified by
Remark 12. We start with the figure that replaces Figure 4.4 (note the null vertices in Dr

and their minimal effect as in Lemma 7 and Remark 8):

j

i`̀

i

i`j`
j`̀

Dl Dr

i

j

j`̀

i`̀

j`i`

m n

s

m n

s
cy cy

cl1

cl2

As in Remark 12, we let El and Er be the sums corresponding to the diagrams Dl and
Dr above:

El “
ÿ

cPtcl1,cl2,cyu
F l
1pcq `

ÿ

c0,c1Ptcl1,cl2,cyu
F l
2pc0, c1q ` F l

3pj`q|φj` “1, Er “ F r
1 pcyq ` F r

2 pcy, cyq ` F r
3 pj`q|φj` “1.

We need to show that El “ Er after all relevant g-rules are applied to both sides.
To compute these E sums we first have to extend the ESum routine to accept also a list R

of pairs pφ, kq of the form (rotation number, edge label):

ESum[X_, R_] :=

(Sum[F1[c], {c, X}] + Sum[F2[c0, c1], {c0, X}, {c1, X}] + Sum[F3 @@ r, {r, R}]) //.

gRules @@ X;

We then compute El (and apply the relevant g-rules) by calling ESum with crossings
p´1, i, j`q, p1, i`, jq, and ps,m, nq, and a rotation number of 1 on edge j`:

El = Simplify[ESum[{{-1, i, j+}, {1, i+, j}, {s, m, n}}, {{1, j+}}]];

Short[El, 5]

-
1

2 (-1 + T2
s)

1 + s + 2 s (T1 T2)
s g3,m+,m +11 + 2 g3,j++,j -

T2
s
1 + s - 2 s g1,n+,m g2,n+,m +29 + 2 s g2,m+,m (1 + g3,n+,n) + 2 g3,j++,j

The computation of Er is simpler, as it only involves the generic ps,m, nq and the rotation
p1, j`q. We implement the g-rules for null vertices as in Equations (11) and (12), compute
Er, and then compare El with Er to conclude the invariance under R2c`:

gRules[j_] := {gν_,j,β_  δj,β + gν,j+,β, gν_,α_,j+  δα,j+ + gν,α,j}

Er = ESum[{{s, m, n}}, {{1, j+}}] //. (Union @@ gRules /@ {i, i+, j, j+});

Simplify[El  Er]

True

See http://drorbn.net/Theta/
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For R2c´ we allow ourselves to be even more concise:

i` j`

i

j

i`̀

j`̀

j

j` i`

i`̀

j`̀

i

El = ESum[{{1, i, j+}, {-1, i+, j}, {s, m, n}}, {{-1, j+}}];

Er = ESum[{{s, m, n}}, {{-1, j+}}] //.

(Union @@ gRules /@ {i, i+, j, j+});

Simplify[Er  El]

True

13

i`̀

i

i`

i`̀

i

i` i`

i`̀

i

Proposition 14. The quantity θ0 is invariant under R1l and R1r.

Proof. We aim to use the same approach and conventions as in the
previous two proofs but hit a minor snag. The g-rules for R1l include

gi`β “ δi`β ` Tgi`̀ ,β ` p1 ´ T qgi`,β and gα,i` “ gαi ` p1 ´ T qgαi` ` δα,i` ,

and if these are implemented as simple left to right replacement rules, they lead to infinite
recursion. Fortunately, these rules can be rewritten in the form

gi`β “ T´1δi`β ` gi`̀ ,β and gα,i` “ T´1gαi ` T´1δα,i` ,

which makes perfectly valid replacement rules. We thus redefine:

gRules[{1, i+, i}] = gν_iβ_  gνi+β + δiβ, gν_i+β_  gνi++β + Tν
-1

δi+β,

gν_α_i++  Tν gναi+ + δαi++, gν_α_i+  Tν
-1 gναi + Tν

-1
δαi+;

The same issue does not arise for R1r (!), and thus the following lines conclude the proof:

El = ESum[{{1, i+, i}, {s, m, n}}, {{1, i+}}];

Em = ESum[{{s, m, n}}];

Er = ESum[{{1, i, i+}, {s, m, n}}, {{-1, i+}}];

Simplify[El  Em  Er]

True

14

j

j` i`

i

φ“1φ“1

i j

j` i`

φ“ ´1 φ“ ´1

Proposition 15. The quantity θ0 is invariant under Sw.

Proof. This one is routine:

El = ESum[{{1, i, j}, {s, m, n}}];

Er = ESum[{{1, i, j}, {s, m, n}}, {{-1, i}, {-1, j}, {1, i+}, {1, j+}}];

Simplify[El  Er]

True
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Proposition 16. The quantity θ0 is invariant under NV.

Proof. Indeed, F3 is linear in φ. l

We are now ready to complete the proof of the first part of the Main Theorem.

Proof of Invariance. The invariance statement in the Main Theorem, Theorem 1, now follows
from the invariance of the Alexander polynomial and from Propositions 10, 11, 13, 14, 15,
and 16. l

See http://drorbn.net/Theta/

22 DROR BAR-NATAN AND ROLAND VAN DER VEEN

4.2. Proof of Polynomiality. We already know (see Comment 2) that the only obstruction
to the polynomiality of θ comes from the explicit denominators in Equations (3) and (4).
These denominators are pT2´1q´1 (if s, s1 “ 1) or pT´1

2 ´1q´1 “ ´T2pT2´1q´1 (if s, s1 “ ´1).
So it is enough that we show that the residue R of θ at T2 “ 1 vanishes, and this residue
comes solely from the residues of F1 and F2 at T2 “ 1. Thus R is the knot invariant coming
from the same procedure as θ, only replacing F1, F2, and F3 by their residues R1, R2 and
R3 at T2 “ 1. These residues are easily seen to be

R1pcq “ pT s ´ 1qgji pgii ` 2pT s ´ 1qgji ´ gjjq ,
R2pc0, c1q “ pT s0 ´ 1qpT s1 ´ 1qgj0i1gj1i0 pχi1ďi0 ´ χi1ďi0 ´ χj1ďi0 ` χj1ďj0q ,

and R3 “ 0, where we have simplified these formulas by making the following observations:

‚ R depends only on T1 which we rename to be T .
‚ At T2 “ 1, g3αβ “ g1αβ “ gαβ.
‚ At T2 “ 1, by a simple calculation of the matrices A and G and/or using the traffic

interpretation of Comment 3, g2αβ is the indicator function χαďβ of the inequality α ď β,
which is 1 if the inequality holds and 0 otherwise.

An explicit calculation for some specific knots shows that the sums corresponding to R1

and to R2 do not vanish individually; instead, they cancel each other. So we’d better find
a technique that relates a double sum to a single sum. That’s the content of the following
lemma:

Lemma 17. If there is a function fpc0, γq that depends on a crossing c0 and an additional
edge label γ such that pBfqpc0q :“ fpc0, 2n`1q´fpc0, 1q “ 0 and such that for any additional
crossing c1 “ ps1, i1, j1q we have that

pBc1fqpc0, c1q :“ fpc0, i`
1 q ` fpc0, j`

1 q ´ fpc0, i1q ´ fpc0, j1q “ R2pc0, c1q ` δc0,c1R1pc0q, (19)

then the invariant R vanishes.

Proof. Indeed, using the above equation and then telescopic summation over c1 and the
vanishing of Bf ,

R “
ÿ

c0,c1

R2pc0, c1q `
ÿ

c

R1pcq “
ÿ

c0,c1

pBc1fqpc0, c1q “
ÿ

c0

pBfqpc0q “ 0.

l

We can now complete the proof of the second part of the Main Theorem.

Proof of Polynomiality. Take fpc0, γq :“ pT s0 ´ 1qgγi0gj`
0 γ pχγďi0 ´ χγďj0q. Use the easily

proven facts that g2n`1,i0 “ 0 “ gj`
0 1 to show that Bf “ 0 and then use g-rules to verify

Equation (19). Now using Lemma 17 we have that R “ 0 and therefore θ is a Laurent
polynomial. The only non-integrality for the coefficients of θ may arise from the s{2 term in
Equation (3) and from the ´φk{2 terms in Equation (5). These add up to pwpDq ´φpDq{2,
using the notation of Equation (2). But wpDq ´ φpDq is always an even number as it is 0
for the long unknot Ò and its parity is unchanged by crossing changes and by the moves of
Figure 4.3. l

An implementation and a verification of the assertions made in this section is at [BV3,
Polynomiality.nb].

See http://drorbn.net/Theta/
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1 n ď 10 ď 11 ď 12 ď 13 ď 14 ď 15
2 knots 249 801 2,977 12,965 59,937 313,230
3 ∆ (38) (250) (1,204) (7,326) (39,741) (236,326)
4 σLT (108) (356) (1,525) (7,736) (40,101) (230,592)
5 J (7) (70) (482) (3,434) (21,250) (138,591)
6 Kh (6) (65) (452) (3,226) (19,754) (127,261)
7 H (2) (31) (222) (1,839) (11,251) (73,892)
8 Vol („6) („25) („113) („1,012) („6,353) („43,607)
9 pKh, H,Volq („0) („14) („84) („911) („5,917) („41,434)
10 p∆, ρ1q (0) (14) (95) (959) (6,253) (42,914)
11 p∆, ρ1, ρ2q (0) (14) (84) (911) (5,926) (41,469)
12 pρ1, ρ2,Kh, H,Volq (0) („14) („84) („911) („5,916) („41,432)
13 Θ (0) (3) (19) (194) (1,118) (6,758)
14 pΘ, ρ2q (0) (3) (10) (169) (982) (6,341)
15 pΘ, σLT q (0) (3) (19) (194) (1,118) (6,758)
16 pΘ,Khq (0) (3) (18) (185) (1,062) (6,555)
17 pΘ, Hq (0) (3) (18) (185) (1,064) (6,563)
18 pΘ,Volq (0) („3) („10) („169) („973) („6,308)
19 pΘ, ρ2,Kh, H,Volq (0) („3) („10) („169) („972) („6,304)

Table 5.1. The separation powers of some knot invariants and combinations of knot
invariants (in lines 3–19, smaller numbers are better). The data in this table was
assembled by [BV3, Stats.nb].

5. Strong and Meaningful

5.1. Strong. To illustrate the strength of Θ, Table 5.1 summarizes the separation powers of
Θ and of some common knot invariants and combinations of those knot invariants on prime
knots with up to 15 crossings (up to reflections and reversals).

In line 2 of the table we list the total number of tabulated knots with up to n crossings.
For example, there are 313,230 prime knots up to reflections and reversals with at most 15
crossings. In the following lines we list the separation deficits on these knots, for different
invariants or combinations of invariants. For example, in line 3 we can see that on knots
with up to 10 crossings, the Alexander polynomial ∆ has a separation deficit of 38: meaning,
that it attains 249 ´ 38 “ 211 distinct values on the 249 knots with up to 10 crossings. For
deficits, the smaller the better!5 Thus the deficit of 236,326 for ∆ at n ď 15 means that
the Alexander polynomial is a rather weak invariant, in as much as separation power is
concerned.

In line 4 we shows the deficits for the Levine-Tristram signature σLT [Le, Tr, Co] as
computed by the program in [BN5]. We were surprised to find that for knots with up to 15
crossings these deficits are smaller than those of ∆.

Line 5 shows the deficits for the Jones polynomial J . It is better than ∆, and better
than ∆ and σLT taken together (deficits not shown) but still rather weak. Line 6 shows the

5This is not a political statement.

See http://drorbn.net/Theta/
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Figure 5.1. The three pairs responsible for the deficit of 3 in the column n ď 11 of
line 13 of Table 5.1. They are p11a44, 11a47q, p11a57, 11a231q, and p11n73, 11n74q, and
each pair is a pair of mutant Montesinos knots (though Θ sometimes does separate
mutant pairs, as was shown in Section 3.2).

deficits for Khovanov homology Kh. They are only a bit lower than those of J . On line 7,
the HOMFLY-PT polynomial H is noticeably better.

On line 8 we consider the hyperbolic volume Vol of the knot complement, as computed
by SnapPy [CDGW]. We computed volumes using SnapPy’s high_precision flag, which
makes SnapPy compute to roughly 63 decimal digits, and then truncated the results to 58
decimal digits to account for possible round-off errors within the last few digits. But then we
are unsure if we computed enough. . . . Hence the uncertainty symbols “„” on some of the
results here and in the other lines that contain Vol. This said, Vol seems to be the champion
so far.

Line 9 is “everything so far, taken together”. Note that Kh dominates J and H dominates
both ∆ and J , so there’s no point adding ∆ and/or J into the mix. We note that adding
σLT to the triple pKh, H,Volq, or even to the pair pKh,Volq, does not improve the results;
namely, for knots with up to 15 crossings the pair pKh,Volq dominates σLT , even though each
of Kh and Vol does not dominate σLT and the discrepancies start already at 11 crossings.
We don’t know if this means anything.

On line 10, the Rozansky-Overbay invariant ρ1 [Roz1, Roz2, Roz3, Ov], also discussed
by us in [BV1], does somewhat better. Note that the computation of ∆ is a part of the
computation of ρ1, so we always take them together. In line 11 we add ρ2 [BN4] to make
the results yet a bit better.

Line 12 is “everything before Θ”.
Line 13 makes our case that Θ is strong — the deficit here, for knots with up to 15

crossings, is about a sixth of the deficit in line 12! For the interested, Figure 5.1 shows the
3 pairs that create the deficit in the column n ď 11 of this line.

Line 14 reinforces our case by just a bit: note that it makes sense to bundle ρ2 along with
Θ, for their computations are very similar. Note also that Conjecture 24 below means that
it is pointless to consider pΘ, ρ1q.

Line 15 shows that for knots with up to 15 crossings, Θ dominates σLT . We don’t know if
this persists.

See http://drorbn.net/Theta/
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Figure 5.2. The 48-crossing Gompf-Scharlemann-Thompson GST 48 knot [GST].

Lines 16 through 18 show that at crossing number ď 15 and in the presence of Θ, and
especially in the presence of both Θ and ρ2, it is pointless to also consider H or Kh, and
only mildly useful to also consider Vol. Line 19 shows that once Vol has been added to Θ,
the other invariants contribute almost nothing.

We note that of all the invariants considered above, the only one known to (sometimes)
detect knot mutation is Θ (see Section 3.2).

We also note that the Vn polynomials of Garoufalidis and Kashaev [GK], and in particular
V2 [GL] share many properties with Θ and are stronger than Θ on knots with up to 15
crossings. But they are not nearly as computable on large knots. It would be very interesting
to explore the relationship between the Vn’s and Θ.

5.2. Meaningful. Many knot polynomials have some separation power, some more and
some less, yet they seem to “see” almost no other topological properties of knots. The
greatest exception is the Alexander polynomial, which despite having rather weak separation
powers, gives a genus bound, a fiberedness condition, and a ribbon condition. The definition
of θ is in some sense “near” the definition of ∆, and one may hope that θ will share some of
the good topological properties of ∆.

5.2.1. The Knot Genus. With significant computational and theoretical evidence (see also
Discussion 26 and Comment 29 below) we believe the following to be true:

Conjecture 18. Let K be a knot and gpKq the genus of K. Then degT1
θpKq ď 2gpKq.

Using the available genus data in KnotInfo [LM] we have verified this conjecture for all
knots with up to 13 crossings (see [BV3, KnotGenus.nb]). The example of the Conway knot
and the Kinoshita-Terasaka knot in Section 3.2 shows that the bound in Conjecture 18 can
be stronger than the bound degT ∆pKq ď gpKq coming from the Alexander polynomial.
Another such example is the 48-crossing Gompf-Scharlemann-Thompson GST 48 knot [GST]
of Figure 5.2. Here’s the relevant computation, with X14,1 (say) meaning “the crossing
p1, 14, 1q” and X̄2,29 (say) meaning “p´1, 2, 29q”:

See http://drorbn.net/Theta/
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GST48 = EPDX14,1, X2,29, X3,40, X43,4, X26,5,

X6,95, X96,7, X13,8, X9,28, X10,41, X42,11, X27,12,

X30,15, X16,61, X17,72, X18,83, X19,34, X89,20,

X21,92, X79,22, X68,23, X57,24, X25,56, X62,31,

X73,32, X84,33, X50,35, X36,81, X37,70, X38,59,

X39,54, X44,55, X58,45, X69,46, X80,47, X48,91,

X90,49, X51,82, X52,71, X53,60, X63,74, X64,85,

X76,65, X87,66, X67,94, X75,86, X88,77, X78,93;

AbsoluteTiming@

PolyPlot[{Δ48, θ48} = Θ[GST48],

ImageSize  Small]

14.5823, 

{Exponent[Δ48, T], ⌈Exponent[θ48, T1] / 2⌉} {8, 10}

Thus θ gives a better lower bound on the genus of GST 48, 10, then the lower bound
coming from ∆, which is 8. Seeing that GST 48 may be a counter-example to the ribbon-slice
conjecture [GST], we are happy to have learned more about it. Also see Dream 38 below.

The hexagonal QR code of large knots is often a clear hexagon (e.g. Figure 1.4), but the
hexagonal QR code of GST 48, displayed above, is rounded at the corners. We don’t know if
this is telling us anything about topological properties of GST 48.

5.2.2. Fibered Knots. Upon inspecting the values of Θ on the Rolfsen table, Figure 1.1, we
noticed that often (but not always) the bar code shows the exact same colour sequence as
the top row of the QR code, or exactly its opposite. This and some experimentation lead
us to the following conjecture, for which we do not have theoretical support. See a similar
result on the ADO invariant at [LV].

Conjecture 19. If K is a fibered knot and d is the degree of ∆pKq (the highest power of
T ), then the coefficient of T 2d

2 in θpKq, which is a polynomial in T1, is an integer multiple
of T d

1∆pKq|TÑT1. See examples in Figure 5.3, where the integer factor is denoted spKq.
Using the available fiberedness data in KnotInfo [LM] we found that the condition in this

conjecture holds for all 5,397 fibered knots with up to 13 crossings, while it fails on all but
48 of the 7,568 non-fibered knots with up to 13 crossings. See [BV3, FiberedKnots.nb].

We note that if K is fibered then degree d of ∆pKq is the genus of K, and ∆pKq is
monic, meaning that the coefficient of T d in ∆pKq is ˘1 (see [Rol, Section 10H]). The latter
condition is an often-used fast-to-compute criterion for a knot to be fibered.

If Conjecture 19 is true then the condition in it is another fast-to-compute criterion for a
knot to be fibered, and this criterion is sometimes stronger than the Alexander condition.
For example, both the Conway and the Kinoshita-Terasaka knots are not fibered yet their
Alexander polynomial is 1, which is monic. In both cases the coefficient of T 0

2 in θ is not an
integer multiple of 1 (see Section 3.2), so the condition in Conjecture 19 would detect that
these two knots are not fibered.

6. Stories, Conjectures, and Dreams

There is a storyteller in each of us, who wants to tell a coherent story, with a beginning,
a middle, and an end. Unfortunately of us, the Θ story isn’t that neat. Calling the content

See http://drorbn.net/Theta/
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Figure 5.3. The invariant Θ of the
fibered knot 12n242, also known as the
p´2, 3, 7q pretzel knot, and of the fibered
knot 77. For the first, spKq ą 0 and the
bar code visibly matches with the top row
of the QR code (though our screens and
printers and eyes may not be good enough
to detect minor shading differences, so a
visual inspection may not be enough). For
the second, twice the degree of ∆ is visibly
greater than the degree of θ, so spKq “ 0.

Figure 6.1. A long version of the rotational
virtual knot KS from [Kau3]. It has X “
tp´1, 1, 6q, p´1, 2, 4q, p1, 9, 3q, p´1, 7, 5q, p1, 10, 8qu
and φ “ p´1, 0, 0, 1, 0,´1, 0, 0, 1, 0, 0q. 1

2

3

4

5

6

7

8

9

10

`

` ´
´

´

φ9 “ 1

φ4 “ 1

φ6 “ ´1

11

of the first few sections of this paper “the middle”, we are quite unsure about the beginning
and the end. The “beginning” can be construed to mean “the thought process that lead us
here”. But that process was too long and roundabout to be given in full here (though much
of it can be gleaned by reading this section). What’s worse, we believe that ultimately, our
peculiar thought process will be replaced by much more solid foundations and motivations,
perhaps along the lines of Dreams 35 and 36. But this solid foundation is not available yet,
even if we are working hard to expose it. As for the end of the story, it is clearly in the
future.

Hence this section is a bit sketchy and disorganized. Those facts that we already know,
those conjectures we believe in, and the dreams we dream, are here in some random order.
But the narrative is lacking.

Many of the statements below continue a theme from Section 5.2, that θ shares many of
the properties of ∆, and sometimes sharpens them.

Conjecture 20. θ has hexagonal symmetry. That is, for any knot K, θpKq is invariant
under the substitutions pT1 Ñ T1, T2 Ñ T´1

1 T´1
2 q (“the QR code is invariant under reflection

about a horizontal line”), and pT1 Ñ T1T2, T2 Ñ T´1
2 q (“the QR code is invariant under

reflection about the line of slope 30˝”).

The Alexander polynomial ∆ is invariant under a simpler symmetry, T Ñ T´1. It is
rather difficult to deduce the symmetry of ∆ from the formula in this paper, Equation (2)
(though it is possible; once notational differences are overcome, the proof is e.g. in [CF,
Chapter IX]). Instead, the standard proof of the symmetry of ∆ uses the Seifert surface
formula for ∆ (e.g. [Li, Chapter 6]). We expect that Conjecture 20 will be proven as soon
as a Seifert formula is found for θ. See Dream 35 below.

See http://drorbn.net/Theta/
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A rotational virtual knot is a virtual knot diagram [Kau2] whose edges6 are marked with
“rotation numbers” φk, modulo the same moves as in Figure 4.3.7 Clearly, Θ extends to long
rotational virtual knots, and the proof of the Main Theorem, Theorem 1, extends nearly
verbatim8. Yet as shown below, on the long rotational virtual knot KS of Figure 6.1 (and
indeed, on almost any other long rotational virtual knot which is not a classical knot), the
hexagonal symmetry of θ fails. So something non-local must happen within any proof of
Conjecture 20.

KS = {{{-1, 1, 6}, {-1, 2, 4}, {1, 9, 3}, {-1, 7, 5}, {1, 10, 8}},

{0, 0, 0, 1, 0, -1, 0, 0, 1, 0, 0}};

PolyPlot[Θ[KS], ImageSize  Tiny]

Conjecture 21. If K̄ denotes the mirror image of a knot K, then θpK̄q “ ´θpKq.
Conjecture 22. If ´K denotes the reverse of a knot K (namely, K taken with the opposite
orientation), then θp´Kq “ θpKq.
Fact 23. θ0pKq is additive under the connected sum operation of knots: θ0pKl#Krq “
θ0pKlq ` θ0pKrq. Equivalently, using the known multiplicativity of ∆,

θpKl#Krq “ θpKlq∆1pKrq∆2pKrq∆3pKrq ` θpKrq∆1pKlq∆2pKlq∆3pKlq.
Oddly, Fact 23 is easier to prove than Conjectures 21 and 22:

Proof Sketch. The F1 and F3 summations in Equation (6) are clearly additive, and so is the
part of the F2 summation in which c0 and c1 fall within the same component. It remains
to consider the case where c0 and c1 fall within different components. But in that case, the
factor g1j1i0g3j0i1 within the definition of F2 in (4) vanishes because cars only drive forward,
and either g1j1i0 or g3j0i1 measures traffic going backwards. l

Conjecture 24. θ dominates the Rozansky-Overbay invariant ρ1 [Roz1, Roz2, Roz3, Ov],
also discussed by us in [BV1]. In fact, ρ1 “ ´θ|T1ÑT,T2Ñ1.

Conjecture 25. θ is equal to the “two-loop polynomial” studied extensively by Ohtsuki [Oh2],
continuing Rozansky, Garoufalidis, and Kricker [GR, Roz1, Roz2, Roz3, Kr].

Discussion 26. People who are already familiar with “the loop expansion” may consider
the above conjecture an “explanation” of θ. We differ. An elementary construction ought to
have a simple explanation, and the loop expansion is too complicated to be that.

Be it as it may, Ohtsuki [Oh2] shows that Conjecture 25 implies Conjectures 18, 20,
21, and 22 as well as Fact 23. Conjecture 25 would also predict the behaviour of θ under
Whitehead doubles as in [Gar] and under cabling operations as in [Oh3]. 26

Next, let us briefly sketch some key points from [BN2, BV2], where we explain how to
obtain poly-time computable knot invariants from certain Lie algebraic constructions.

6Ignoring “virtual crossings”. See [BDV, Section 4].
7This definition is slightly different than the original in [Kau3] but the equivalence is easy to show.
8The only exception is that some of the coefficients of θ may be half integers, as wpDq ´ φpDq may be

odd for a rotational virtual knot diagram.
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Discussion 27. Let g be a semi-simple Lie algebra, let b be its upper Borel subalgebra, and
let h be its Cartan subalgebra. Then b has a Lie bracket β and, as the dual of the lower Borel
subalgebra, it also has a cobracket δ. It turns out that g can be recovered from the triple
pb, β, δq; in fact, g` :“ g ‘ h » Dpb, β, δq, where D denotes the Manin double construction9.
We now set gϵ̀ :“ Dpb, β, ϵδq, where ϵ is a formal “small” parameter. The family gϵ̀ is a
1-parameter family of Lie algebras all defined on the same underlying vector space b‘b˚. If
ϵ is invertible then gϵ̀ is independent of ϵ and is always isomorphic to g` “ g`

1 . Yet at ϵ “ 0,
g`
0 is solvable, and as the name “solvable” suggests, computations in g`

0 can be “solved”,
meaning, can be carried out efficiently in closed form.

Hence in [BN2, BV2], mostly in the case where g “ sl2, we use standard techniques to
quantize the universal enveloping algebra Upgϵ̀ q and use it to define a “universal quantum
invariant” Zg

ϵ (in the sense of [Law, Oh1]). We then expand Zg
ϵ near where it’s easy; namely,

as a power series around ϵ “ 0. In the case of g “ sl2, and almost certainly in general, we
write Zg

ϵ “ ρg0 exp
`ř

dě1 ρ
g
dϵ

d
˘
and find that we can interpret the ρgd as polynomials in as

many variables as the rank of g. It turns out that ρg0 is always determined by the Alexander
polynomial and the ρgd are always computable in polynomial time (with polynomials whose
exponents and coefficients get worse as d grows bigger and g gets more complicated).

Our papers and talks [BV1, BV2, BN4] carry out the above procedure in the case where
g “ sl2, calling the resulting invariants ρd, for d ě 1. They are the same as ρ1 and ρ2 of
Section 5.1. 27

Following some preliminary work by Schaveling [Sch], in the summer of 2024 we’ve set out
to find good formulas for ρsl31 . Tracing Discussion 27 seemed technically hard, so instead, we
extracted from the procedure the “shape” of the formulas we could expect to get and, and
then we found the invariant θ by the method of undetermined coefficients assisted by some
difficult-to-formulate intuition (more in Comment 34 below). Thus our formulas for θ arose
from our expectations for ρsl31 , and yet we have not proved that they are equal!

Conjecture 28. Up to conventions and normalizations, θ “ ρsl31 .

Comment 29. Using the techniques of [BN3, BV2] we expect to be able to prove a genus
bound for ρsl31 , similar to the bound in Conjecture 18. Thus we expect that Conjecture 28
will imply Conjecture 18.

Discussion 30. People who are versed with Lie algebras and their quantizations may con-
sider the above an “explanation” of θ, and may be looking forward to a more detailed
exposition of ρgd. We differ, for the same reasons as in Discussion 26. We expect the eventual
“origin story” of θ to be simpler and more natural. 30

Discussion 31. Seeing that the coproduct of the quantized algebras of Discussion 27 corre-
spond to strand doubling, and also noting Ohtsuki’s [Oh3], we expect that there should be
cabling and satellite formulas for all the invariants of the type ρgd, and in particular for Θ. In
particular, it should not be possible to increase the separation power of Θ by pre-composing
it with cabling or satellite operations. 31

9We are unsure about naming. D is also known as “the Drinfeld double” construction for Lie bialgebras
(as opposed to Hopf algebras). Yet when Drinfeld first refers to this construction in [Dr], in reference to
Lie bialgebras, he repeatedly names it after Manin (under the less clear name “Manin triples”), yet without
providing a reference. Our choice is to use “Manin double” when doubling Lie bialgebras and “Drinfeld
double” when doubling a Hopf algebra, as we found no indication that Manin knew about the latter process.

See http://drorbn.net/Theta/

30 DROR BAR-NATAN AND ROLAND VAN DER VEEN

Discussion 32. It is the basis of the theory of “Feynman diagrams”, and hence it is ex-
tremely well known in the physics community, that perturbed Gaussian integrals, when
convergent, can be computed (as asymptotic series) efficiently using “Feynman diagrams”
(see e.g. [Po1]). Physicists use this routinely in infinite dimensions; yet the finite dimensional
formulation can be sketched as follows:ż

Rd

eQ`ϵP „ C
ÿ

ně0

ϵn
ÿ

F

EpF q, (20)

where Q is a non-degenerate quadratic on Rd, P is a “smaller” perturbation, C is some
constant involving π’s and the determinant of Q, the summation

ř
F is over “Feynman

diagrams” of complexity n, and F ÞÑ EpF q is some procedure, which can be specified in full
but we will not do it here, which assigns to every Feynman diagram F an algebraic sum
which in itself depends only on the coefficients of P and the entries of the inverse of Q.

In fact, one may take the right-hand-side of Equation (20) to be the definition of the
left-hand-side, especially if the left-hand-side is not convergent, or does not make sense for
some other reason. Namely, one may set

G

ż

Rd

eQ`ϵP :“ C
ÿ

ně0

ϵn
ÿ

F

EpF q. (21)

The result is an integration theory defined on perturbed Gaussians in fully algebraic terms,
and which shares some of the properties of “ordinary” integration, such as having a version
of Fubini’s theorem. In a sense, that’s what physicists do: path integrals don’t quite make
sense, so instead they are defined using Feynman diagrams and the right-hand-side of Equa-
tion (21). Another example is the “Århus integral” of [BGRT], where the integral in itself
is diagrammatic, as is the output of the integration procedure. 32

Fact 33. There is a perturbed Gaussian formula for Θ. More precisely, one can assign a
6-dimensional Euclidean space R6

e with coordinates p1e, p2e, p3e, x1e, x2e, x3e to each edge e of
a knot diagram D and then form R6E :“ ś

eR6
e, a space whose dimension is 6 times the

number of edges in E. One can then form a “Lagrangian” LD “ QD ` ϵPD by summing over
all the crossings of D local contributions that involve only the variables associated with the
four edges around each crossings, and adding a “correction” which is a sum over the edges e
of D of terms that depend only on the rotation number of e and on the variables in R6

e, such
that

G

ż

R6E

eLD “ G

ż

R6E

eQD`ϵPD “ p2πq3|E|

∆1∆2∆3

exppϵθ0q ` Opϵ2q,
and such that the Feynman diagram expansion of the left-hand-side of the above equation
becomes precisely formula (6) for θ. See more about all this in [BN6].

Comment 34. In fact, Fact 33 is what we initially predicted based on Discussion 27, along
with some further information about the “shape” of PD. We used the method of unde-
termined coefficients to find precise formulas for PD, and then the technique of Feynman
diagrams to derive our main formula, Equation 6.

Dream 35. There is a “Seifert formula” for Θ. More precisely, let K be a knot, let Σ be
a Seifert surface for K, let H – H1pΣ;Rq, and let 6H denote H ‘ H ‘ H ‘ H ‘ H ‘ H.
Let QΣ denote 3 copies of the standard Seifert form on H ‘ H, taken with parameters T1,
T2, and T3; so QΣ is a quadratic on 6H. We dream that there a “perturbation term” PΣ,

See http://drorbn.net/Theta/
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a polynomial function on 6H defined in terms of some low degree finite type invariants of
various knotted graphs formed by representatives of classes in H (also taking account of their
intersections), such that

G

ż

6H

eLΣ “ G

ż

6H

eQΣ`ϵPΣ “ p2πq3 dimpHq

∆1∆2∆3

exppϵθ0q ` Opϵ2q.

If this dream is true, it will probably prove Conjectures 18, 20, 21, and 22 much as the
Seifert formula for ∆ can be used to prove the genus bound provided by ∆ and its basic
symmetry properties.

We note the relationship between this dream and [Oh2, Theorem 4.4].

Dream 36. All the invariants from Discussion 27 have Seifert formulas in the style of
Dream 35. In fact, there ought to be a characterization of those Lagrangians LΣ for which
G

ş
eLΣ is a knot invariant, and there may be a construction of all those Lagrangians which is

intrinsic to topology and does not rely on the theory of Lie algebras.

Ñ
If a knot K is ribbon then for some g it has a Seifert

surface Σ of genus g such that g of the generators of H1pΣq
can be represented by a g-component unlink (see the hint
on the right, and see further details in [Kau1, Chapter VIII]
or in [Ba, Section 3.4]). This implies that the Seifert matrix

M of Σ has the form

ˆ
0 A
A˚ B

˙
, which implies that the determinant of M , the Alexander

polynomial ∆, satisfies the Fox-Milnor condition:

Theorem 37 (Fox and Milnor, [FM]). If K is a ribbon knot, then there exists some polyno-
mial fpT q such that ∆ “ fpT qfpT´1q.
Dream 38. Dream 35, along with the fact that half the homology of a Seifert surface of a
ribbon knot can be represented by an unlink, will imply that θ takes a special form on ribbon
knots, giving us stronger powers to detect knots that are not ribbon.

Discussion 39. In this paper we concentrated on knots, yet at least partially, Θ can be
generalized also to links. Indeed, the definitions in Section 2 and the proof in Section 4 go
through provided the matrix A is invertible; namely, provided the Alexander polynomial ∆
is non-zero (for knots, this is always the case), and provided we choose one component of
the link to cut open.

The programs of Section 3 fail for minor reasons, and a fix is in [BV3, Theta4Links.nb].
Some results are in Figure 6.2. Preliminary testing using these programs suggests that the
resulting invariant is independent of the choice of the cut component, but we did not prove
that.

If ∆ “ 0, one may contemplate replacing G “ A´1 by the adjugate matrix adjpAq of A (the
matrix of codimension 1 minors, which satisfies A ¨ adjpAq “ detpAqI).10 Some preliminary
testing is also in [BV3, Theta4Links.nb]. Yet if G is replaced with adjpAq, its equivalence
with the g-rules (Equations (8) and (9)) breaks, and so we have no proof of invariance. We
may attempt to fix that in a future work, but it is not done yet.

10Similar “adjugate” reasoning shows that θ is always divisible by ∆p2qpT1q∆p2qpT2q∆p2qpT3q, where
∆p2qpT q is the second Alexander polynomial (e.g. [BZ, Definition 8.10]).

See http://drorbn.net/Theta/
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L2a 1 L4a 1 L5a 1 L6a 1 L6a 2 L6a 3 L6a 4 L6a 5 L6n 1 L7a 1

L7a 2 L7a 3 L7a 4 L7a 5 L7a 6 L7a 7 L7n 1 L7n 2 L8a 1 L8a 2

L8a 3 L8a 4 L8a 5 L8a 6 L8a 7 L8a 8 L8a 9 L8a 10 L8a 11 L8a 12

L8a 13 L8a 14 L8a 15 L8a 16 L8a 17 L8a 18 L8a 19 L8a 20 L8a 21 L8n 1

L8n 2 L8n 3 L8n 4 L8n 5 L8n 6 L8n 7 L8n 8 L9a 1 L9a 2 L9a 3

L9a 4 L9a 5 L9a 6 L9a 7 L9a 8 L9a 9 L9a 10 L9a 11 L9a 12 L9a 13

L9a 14 L9a 15 L9a 16 L9a 17 L9a 18 L9a 19 L9a 20 L9a 21 L9a 22 L9a 23

L9a 24 L9a 25 L9a 26 L9a 27 L9a 28 L9a 29 L9a 30 L9a 31 L9a 32 L9a 33

L9a 34 L9a 35 L9a 36 L9a 37 L9a 38 L9a 39 L9a 40 L9a 41 L9a 42 L9a 43

L9a 44 L9a 45 L9a 46 L9a 47 L9a 48 L9a 49 L9a 50 L9a 51 L9a 52 L9a 53

L9a 54 L9a 55 L9n 1 L9n 2 L9n 3 L9n 4 L9n 5 L9n 6 L9n 7 L9n 8

L9n 9 L9n 10 L9n 11 L9n 12 L9n 13 L9n 14 L9n 15 L9n 16 L9n 17 L9n 18

L9n 19 L9n 20 L9n 21 L9n 22 L9n 23 L9n 24 L9n 25 L9n 26 L9n 27 L9n 28

Ñ
Θ

Figure 6.2. Θ for all the prime links with up to 9 crossings, up to reflections and
with arbitrary choices of strand orientations. Empty boxes correspond to links for which
∆ “ 0.

We note that the loop expansion of Conjecture 25 does not predict that Θ should extend
to links. We also note that the solvable approximation technique of Discussion 27 does
predict such an extension, and in fact, it predicts more: that much like the Gassner repre-
sentation [Gas] and the multi-variable Alexander polynomial (e.g. [Kaw, Chapter 7]), there
should be a multi-variable version of Θ which would be a polynomial in 2m variables when
evaluated on an m-component link. We did not attempt to find explicit formulas for the
multi-variable Θ. 39

Ever since Khovanov homology [Kh, BN1] it is almost mandatory to ask about anything,
“does it categorify?”. Θ is not exempt:

Question 40. Is there a categorification of θ? Is there a finite triply-graded chain complex
whose Euler characteristic is θ and whose homology is invariant?

We note that θ is a neighbor of ∆ (indeed they live together within Θ), and that ∆ is
categorified by knot Floer homology [OS, Ma, Ju]. Thus one may wonder if a categorification
of θ will end up a neighbor of Floer knot homology. This applies even more to a possible
categorication of gαβ:

See http://drorbn.net/Theta/
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Question 41. Is there a categorification of ∆ ¨ g̃ab? Is there a finite doubly-graded chain
complex whose Euler characteristic is ∆ ¨ g̃ab and whose homology is a relative invariant in
the sense of Theorem 9?

The latter seems likely: ∆ ¨ g̃ab is, after all, a minor of a matrix whose determinant is ∆.
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