
Warning. The second formula on page (−2) “Conclusion” is
silly-wrong. A fix will be posted here soon: some of the numbers
written in this handout are a bit off, yet the qualitative results remain
exactly the same (namely, for finite type, 3D seems to beat 2D, with
the same algorithms).

Yarn-Ball Knots
[K-OS] on October 21, 2021

Dror Bar-Natan with Itai Bar-Natan, Iva Halacheva, and Nancy Scherich

Agenda. A modest light conversation on how knots should be measured.

Abstract. Let there be scones! Our view of knot theory is biased in favour of
pancakes.
Technically, if K is a 3D knot that fits in volume V (assuming fixed-width yarn),
then its projection to 2D will have about V 4/3 crossings. You’d expect genuinely
3D quantities associated with K to be computable straight from a 3D presentation
of K . Yet we can hardly ever circumvent this V 4/3 ≫ V “projection fee”.
Exceptions include linking numbers (as we shall prove), the hyperbolic volume, and
likely finite type invariants (as we shall discuss in detail). But knot polynomials and
knot homologies seem to always pay the fee. Can we exempt them?

More at http://drorbn.net/kos21

Thanks for inviting me to speak at [K-OS]!

Most important: http://drorbn.net/kos21

See also arXiv:2108.10923.

If you can, please turn your video on! (And mic, whenever needed).

A recurring question in knot theory is “do we have a 3D understanding of our
invariant?”

▶ See Witten and the Jones polynomial.

▶ See Khovanov homology.

I’ll talk about my perspective on the matter. . .

We often think of knots as planar dia-
grams. 3-dimensionally, they are embed-
ded in “pancakes”. Knot by Lisa Piccirillo, pancake by DBN

But real life knots are 3D! A Yarn Ball

‘Connector’ by Alexandra Griess and Jorel Heid (Hamburg, Germany). Image from
www.waterfrontbia.com/ice-breakers-2019-presented-by-ports/.

The difference matters when

▶ We make statements about “random knots”.

▶ We figure out computational complexity.

Let’s try to make it quantitative. . .

https://lrobert.perso.math.cnrs.fr/kos.html
http://drorbn.net/kos21
https://lrobert.perso.math.cnrs.fr/kos.html
http://drorbn.net/kos21
http://arxiv.org/abs/2108.10923
http://www.waterfrontbia.com/ice-breakers-2019-presented-by-ports/


V ∼ L3

n = xing number ∼ L2L2 = L4 = V 4/3

(“∼” means “equal up to constant terms
and log terms”)
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Conversation Starter 1. A knot invariant ζ is said to be Computationally 3D, or
C3D, if

Cζ(3D,V ) ≪ Cζ(2D,V 4/3).

This isn’t a rigorous definition! It is time- and näıveté-dependent! But there’s
room for less-stringent rigour in mathematics, and on a philosophical level, our
definition means something.

Theorem 1. Let lk denote the linking number of a 2-component link. Then
Clk(2D, n) ∼ n while Clk(3D,V ) ∼ V , so lk is C3D!
Proof. WLOG, we are looking at a link in a grid, which we project as on the right:

\red /green –blue

Here’s what it look like, in the case of a knot:

And here’s a bigger knot.

This may look like a lot of in-
formation, but if V is big, it’s
less than the information in a pla-
nar diagram, and it is easily com-
putable.

There are 2L2 triangular “cross-
ings fields” Fk in such a projec-
tion.

WLOG, in each Fk all over
strands and all under strands are
oriented in the same way and all
green edges belong to one com-
ponent and all red edges to the
other.

F1

F2

F4

F32

F3

So 2L2 times we have to solve the problem “given two sets R and G of integers in
[0, L], how many pairs {(r , g) ∈ R × G : r < g} are there?”. This takes time ∼ L
(see below), so the overall computation takes time ∼ L3.

Below. Start with rb = cf = 0 (“reds before” and “cases found”) and slide ▽ from
left to right, incrementing rb by one each time you cross a • and incrementing cf
by rb each time you cross a •:

In general, with our limited tools,
speedup arises because appropri-
ately projected 3D knots have
many uniform “red over green”
regions:



Great Embarrassment 1. I don’t know if any of the Alexander, Jones,
HOMFLY-PT, and Kauffman polynomials is C3D. I don’t know if any
Reshetikhin-Turaev invariant is C3D. I don’t know if any knot homology is C3D.

Or maybe it’s a cause for optimism — there’s still something very basic we don’t
know about (say) the Jones polynomial. Can we understand it well enough
3-dimensionally to compute it well? If not, why not?

Conversation Starter 2. Similarly, if η is a stingy quantity (a quantity we expect
to be small for small knots), we will say that η has Savings in 3D, or “has S3D” if
Mη(3D,V ) ≪ Mη(2D,V 4/3).

Example (R. van der Veen, D. Thurston, private communications). The hyperbolic
volume has S3D.

Great Embarrassment 2. I don’t know if the genus of a knot has S3D! In other
words, even if a knot is given in a 3-dimensional, the best way I know to find a
Seifert surface for it is to first project it to 2D, at a great cost.

Next we argue that most finite type invariants are probably C3D. . .

(What a weak statement!)

All pre-categorification knot polynomials are power series whose coefficients are
finite type invariants. (This is sometimes helpful for the computation of finite type
invariants, but rarely helpful for the computation of knot polynomials).

Theorem FT2D. If ζ is a finite type invariant of type d then Cζ(2D, n) is at most

∼ n⌊3d/4⌋. With more effort, Cζ(2D, n) ≲ n(
2
3
+ϵ)d .

Note that there are some exceptional finite type invariants, e.g. high coefficients of
the Alexander polynomial and other poly-time knot polynomials, which can be
computed much faster!

Theorem FT3D. If ζ is a finite type invariant of type d then Cζ(3D,V ) is at most

∼ V 6d/7+1/7. With more effort, Cζ(2D,V ) ≲ V ( 4
5
+ϵ)d .

Tentative Conclusion. As
n3d/4 ∼ (V 4/3)3d/4 = V ≫ V 6d/7+1/7 n2d/3 ∼ (V 4/3)2d/3 = V 8d/9 ≫ V 4d/5

these theorems say “most finite type invariants are probably C3D; the ones in
greater doubt are the lucky few that can be computed unusually quickly”.

Gauss diagrams and sub-Gauss-diagrams:

1

2

3

4

5

6

7

8

+

−

+

−

1 2 3 4 5 6 7 8

−

+

Let φd : {knot diagrams} → ⟨Gauss diagrams⟩ map every knot diagram to the sum
of all the sub-diagrams of its Gauss diagram which have at most d arrows.

Under-Explained Theorem (Goussarov-Polyak-Viro). A knot invariant ζ is of type
d iff there is a linear functional ω on ⟨Gauss diagrams⟩ such that ζ = ω ◦ φd .

Theorem FT2D. If ζ is a finite type invariant of type d then Cζ(2D, n) is at most

∼ n⌊3d/4⌋. With more effort, Cζ(2D, n) ≲ n(
2
3
+ϵ)d .

Proof of Theorem FT2D.

We need to count how many times a diagram such as the red appears within a
bigger diagram, having n arrows. Clearly this can be done in time ∼ n3, and in
general, in time ∼ nd .

With an appropriate look-up table, it can also be done in time ∼ n2 (in general,
∼ nd−1). That look-up table (T p1,p2

q1,q2 ) is of size (and production cost) ∼ n4 if you
are naive, and ∼ n2 if you are just a bit smarter. Indeed

T p1,p2
q1,q2 = T 0,p2

0,q2
− T 0,p1

0,q2
− T 0,p2

0,q1
+ T 0,p1

0,q1
,

and (T 0,p
0,q ) is easy to compute.



With multiple uses of the same lookup table, what naively takes ∼ n5 can be
reduced to ∼ n3.

In general within a big d-arrow diagram we need to find an as-large-as possible
collection of arrows to delay. These must be non-adjacent to each other. As the
adjacency graph for the arrows is at worst quadrivalent, we can always find ⌈d4 ⌉
non-adjacent arrows, and hence solve the counting problem in time

∼ nd−⌈ d
4
⌉ = n⌊3d/4⌋.

Note that this counting argument works equally well if each of the d arrows is
pulled from a different set!

It follows that we can compute φd in time ∼ n⌊3d/4⌋.
□

With bigger look-up tables that allow looking up “clusters” of G arrows, we can

reduce this to ∼ n(
2
3
+ϵ)d .

□

On to

Theorem FT3D. If ζ is a finite type invariant of type d then Cζ(3D,V ) is at most

∼ V 6d/7+1/7. With more effort, Cζ(2D,V ) ≲ V ( 4
5
+ϵ)d .

An image editing problem:

(Yarn ball and background coutesy of Heather Young)

The line/feather method:

Accurate but takes forever.

The rectangle/shark method:

Coarse but fast.

In reality, you take a few shark bites and feather the rest . . .

. . . and then there’s an optimization problem to solve: when to stop biting and
start feathering.

The structure of a crossing field.

Granpa Shark 

Baby Shark

Mommy Shark

2

g = 0

g = 1
2 2

g = 1

2

There are about log2 L “generations”. There are 2g bites in generation g , and the
total number of crossings in them is ∼ L2/2g . Let’s go hunt!



Multi-feathers and multi-sharks.

For a type d invariant we need to count d-
tuples of crossings, and each has its own
“generation” gi . So we have the “multi-
generation”

ḡ = (g1, . . . , gd).

Let G :=
∑

gi be the “overall gen-
eration”. We will choose between a
“multi-feather” method and a “multi-
shark” method based on the size of G .

g1
g2

g3

g4

The effort to take a single multi-bite is tiny. Indeed,

Lemma Given 2d finite sets Bi = {ti1, ti2, . . .} ⊂ [1..L3] and a
permutation π ∈ S2n the quantity

N =

∣∣∣∣∣
{
(bi ) ∈

2d∏
i=1

Bi : the bi ’s are ordered as π

}∣∣∣∣∣
can be computed in time ∼

∑
|Bi | ∼ max |Bi |.

Proof. WLOG π = Id . For ι ∈ [1..2d ] and β ∈ B := ∪Bi let

Nι,β =

∣∣∣∣∣
{
(bi ) ∈

ι∏
i=1

Bi : b1 < b2 < . . . < bι ≤ β

}∣∣∣∣∣ .
We need to know N2d ,maxB ; compute it inductively using Nι,β =
Nι,β′ + Nι−1,β′ , where β′ is the predecessor of β in B. □
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Conclusion. We wish to compute the contribution to φd coming from d-tuples of
crossings of multi-generation ḡ .

▶ The multi-shark method does it in time

∼ (no. of bites) · (time per bite) = L2d2G · L

2min ḡ
< L2d+12G

(increases with G ).

▶ The multi-feather method (project and use the 2D algorithm) does it in time

∼ (no. of crossings)⌊
3
4
d⌋ =

(
d∏

i=1

L2
L2

2gi

)⌊ 3
4
d⌋

<
L3d

(2G )3/4

(decreases with G ).

Of course, for any specific G we are free to choose whichever is better, shark or
feather.

The two methods agree (and therefore are at their worst) if 2G = L
4
7
(d−1), and in

that case, they both take time ∼ L
18
7
d+ 3

7 = V
6
7
d+ 1

7 .

The same reasoning, with the n(
2
3
+ϵ)d feather, gives V ( 4

5
+ϵ)d .

□

If time — a word about braids.

Thank You!


