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A FAST, STRONG, TOPOLOGICALLY MEANINGFUL, AND FUN KNOT
INVARIANT

DROR BAR-NATAN AND ROLAND VAN DER VEEN

ABSTRACT. In this paper we discuss a pair of polynomial knot invariants © = (A, #) which

is:

e Theoretically and practically fast: © can be computed in polynomial time. We can
compute it in full on random knots with over 300 crossings, and its evaluation at simple
rational numbers on random knots with over 600 crossings.

e Strong: Its separation power is much greater than the hyperbolic volume, the HOMFLY-
PT polynomial and Khovanov homology (taken together) on knots with up to 15 crossings
(while being computable on much larger knots).

e Topologically meaningful: It likely gives a genus bound, and there are reasons to hope
that it would do more.

e Fun: Scroll to Figures 1.1-1.4, 3.1, and 6.2.

A is merely the Alexander polynomial. @ is.almost certainly equal to an invariant that

was studied. extensively by Ohtsuki [Oh2], continuing Rozansky, Kricker, and Garoufalidis

[Rozl, Roz2, Roz3, Kr, GR]. Yet our formulas, proofs, and programs are much simpler and

enable its computation even on very large knots.
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1. FuN

The word “fun” rarely appears in the title of a math paper, so let us start with a brief
justification.

O is a pair of polynomials. The first, A, is old news, the Alexander polynomial [Al]. Tt is
a one-variable Laurent polynomial in a variable 7. For example, A(&) = T' -1+ T. We
turn such a polynomial into a list of coefficients (for &, it is (1, —1,1)), and then to a chain
of bars of varying colours: white for the zero coefficients, and red and blue for the positive
and negative coefficients (with intensity proportional to the magnitude of the coefficients).
The result is a “bar code”, and for the trefoil & it is M.

Similarly, 8 is a 2-variable Laurent polynomial, in variables 77 and 75.

We can turn such a polynomial into a 2D array of coefficients and then P =1 1
using the same rules, into a 2D array of colours, namely, into a picture. 1
To highlight a certain conjectured hexagonal symmetry of the resulting Ty K
pictures, we apply a shear transformation to the plane before printing. So L

Ti T, T2

a monomial ¢I7" Ty gets printed at position (n; —ny/2, v/3n,/2) instead
of the more straightforward (ni,ns). On the right is the 2D picture corresponding to the
polynomial 2 + T} — /Ty + Ty — Ty + T7 Tyt — Tyt

Thus © becomes a pair of pictures: a bar code, and a 2D picture that we call a “hexagonal
QR code”. For the knots in the Rolfsen table (with the unknot prepended at the start), they
are in Figure 1.1. For some alternating square weave knots, they are in Figure 1.2, and for a
random square weave, in Figure 1.3, In addition, the hexagonal QR codes of 15 knots with
> 300 crossings are in Figure 1.4, and © of a 132-crossing torus knot is in Figure 3.1. Some
further computations and figures, also highlighting the parity of coefficients rather than just
their signs, are at [Lal].

Clearly there are patterns in these figures.
There is a hexagonal symmetry and the QR
codes are nearly always hexagons (these are in-
dependent properties). Much more can be seen
in Figure 1.1. In Figure 1.4 there seem to be
large—sca'le patterns perhaps reminiscent of the left: (© Whipple Museum of the History of Science,
“Chladni figures” formed by powders atop vi- University of Cambridge; right: CC-BY-SA 4.0 /
brating plates (0n l"lght) We can’t prove any Wikimedia / Matemateca (IME USP) / Rodrigo Tetsuo
of these things, and the last one, we can’t even Argenton
formulate properly. Yet they are clearly there, too clear to be the result of chance alone.

We plan to have fun over the next few years observing and proving these patterns. We
hope that others will join us too.



https://www.whipplemuseum.cam.ac.uk/explore-whipple-collections/acoustics/ernst-chladni-physicist-musician-and-musical-instrument-maker
https://www.whipplemuseum.cam.ac.uk/explore-whipple-collections/acoustics/ernst-chladni-physicist-musician-and-musical-instrument-maker
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://en.wikipedia.org/wiki/Chladni%27s_law
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FIGURE 1.1. © as a bar code and a QR code, for all the knots in the Rolfsen table.
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FIGURE 1.2. O of some square weave knots, as computed by [BV3, WeaveKnots.nb].
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FIGURE 1.3. O of a randomized weave knot, as computed by [BV3, WeaveKnots.nb].
Crossings were chosen to be positive or negative with equal probabilities.
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FIGURE 1.4. 6 (hexagonal QR code only) of the 15 largest knots that we have com-
puted by September 16, 2024. They are all “generic” in as much as we know, and
they all have > 300 crossings. The knots come from [DHOEBL]. Warning: Some
screens/printers may introduce spurious Moiré interference patterns.
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2. THE MAIN THEOREM

We start with the definition of ©. Given an oriented n- Y D
crossing knot K, we draw it in the plane as a long knot di- 7IL
agram D in such a way that the two strands intersecting at X
each crossing are pointing up (that’s always possible because ‘?A\ 6

we can always rotate crossings as needed), and so that at its
beginning and at its end the knot is oriented upward. We call
such a diagram an upright knot diagram. An example of an ™

upright knot diagram is shown on the right. v

We then label each edge of the diagram with two labels: a
running index & which runs from 1 to 2n + 1, and a “rotation FIC_;URE 2.1. _A” example
number” oy, the geometric rotation number-of that edge’, In  UPright knot diagram.
Figure 2.1 the running index runs from 1 to 7, and the rotation numbers for all edges are 0
(and hence are omitted) except for ¢4, which is —1.

Let X be the set of all crossings in the diagram D, where we encode each crossing as a
triple (sign of the crossing, incoming over edge, incoming under edge). In our example we
have X = {(1,1,4),(1,5,2),(1,3,6)}.

We let A be the (2n+ 1) x (2n+ 1) matrix of Laurent polynomials in a variable T, defined
by

A=1- Z (T°Ei i1 + (1 =T°)Ei j11 + Ejjia),

c=(s,i,j)€X

where [ is the identity matrix and E,s denotes the elementary matrix with 1 in row a and
column S and zeros elsewhere.

Alternatively, A = I+, A., where A, is a matrix of zeros except for the blocks as follows:
J+1 AK )A J+1 _ .
A. |columni+1 column j+1
TOW i -T1° 75 —1 (1)
row j 0 —1
5= +1

We note that the determinant of A is equal up to a unit to the normalized Alexander
polynomial A of K. In fact, we have that

A = A(K) = TEAPI=wD)/2 qot( 4), 2)

where ¢(D) = )}, ¢ is the total rotation number of D and where w(D) = . s. is the
writhe of D, namely the sum of the signs s. of all the crossings ¢ in D.

We let G = (gag) = A™', and, thinking of it as a function g,s of a pair of edges « and
B, we call it the Green function of the diagram D. When inspired by physics (e.g. Fact 33
and [BNG]) we sometimes call it “the 2-point function”, and when thinking of car traffic (e.g.
Comment 3 and [BVI, BN7]) we sometimes call it “the traffic function”. As an example,

IThe signed number of times the tangent to the edge is horizontal and heading right, with cups counted
with +1 signs and caps with —1; this number is well defined because at their ends, all edges are headed up.

>The informed reader will note that A is a presentation matrix for the Alexander module of K, obtained
by using Fox calculus on the Wirtinger presentation of the fundamental group of the complement of K.
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here are A and G for the knot diagram D of Figure 2.1:

1-7T 0 0 T"-1 0 0 1T 1 T 1 T 1
01 -1 0 0 0 0 01 T2—1T+1 T2—TT+1 T2—TT+1 T?-T;H 1
00 L -7 0 0 T-1 00 T2—1T+1 T2—TT+1 T2—TT+1 TZT;-H 1
oo o 1 -1 0 0 5 00 o7y T271T3L1 TT=rF TrTT L
00 T-10 L =7 0 00 T21:TT+1 TZ:YTH T271T+1 T27TT+1 1
0 0 0 0 0 1 -1 00 0 0 0 1 1
0 0 0 0 0 0 1 00 0 0 0 0 1

Let 77 and T» be indeterminates and let T3 := T1T5. Let A, == Alr_7, and G, = (Gyap) ==
G|r_1, be A and G subject to the substitution 7" — T,,, where v = 1,2, 3.
Given crossings ¢ = (s,14,7), co = (So, %0, Jo), and ¢; = (s1,141,71) in X and an edge label £,
let
Fl(C) =S [1/2 — g3i; + TQSgliiQjS - T2893jjg2jz’ - (Tgs - 1)93ii92ji (3)
"‘(T?f - 1)92]‘@'93]‘1’ — 91ii92j5 + 293iig2jj + 91ii9355 — gQiiQSjj]
S
Ts 1
+ (T3 = D)gaji (1 = T5guii + gaij + (15 — 2)g2y5 — (17 — (T3 + 1) gu;4)]
Sl(Tls0 - 1)(T?f1 — 1>g1j1iog3j0i1
50 —1
F3(k) = (g3kx — 1/2) ¢y, (5)

These formulas are uninspiring, yet they are easy to compute (given (), and they work:

+

[(TF — 1)T5 (g3jjglji — §25i915i + Tésgljigm)

FQ(COa Cl) = (T;092i1i0 + 92j150 — T2sog2j1i0 - g2i1j0) (4)

Theorem 1 (The Main Theorem, proof in Section 4). The following are knot invariants:

0o(D) == Y Fi(c)+ > Fylco,c1)+ > Fi(k) and 6(D) = AiAyAs0o(D).  (6)

ceX co,c1€X edges k

Furthermore, 0 is a Laurent polynomial in T and T,, with integer coefficients.
Some comments are now in order:

Comment 2. The entries of GG, are rational functions with denominators A,, and so 6 is
valued in the ring of rational functions Q(7},73). The point of @ is to clear these denomi-
nators by multiplying by A;AsA3 so as to get an invariant valued in Laurent polynomials.
(There remains a potential denominator of the form (75 — 1)™' coming from the explicit
denominators in Equations (3) and (4). It will be shown to cancel in Section 4.2.)

Comment 3. We note following [BV1] that g, can be interpreted as measuring “car traf-
fic”, assuming a stream of traffic is injected near the start of edge o and a “traffic counter”
is placed near the end of edge 3, and where cars always obey the following traffic rules:

e Car travel on the edges of the knot, always in a direction consistent with the orientation
of these edges.

e When a car reaches a crossing on the under-strand, it travels through and continues on
the other side.

e When a car reaches a crossing of sign s = +1 on the over-strand, it continues right through
with probability 7%, yet with probability 1 — T it falls down and continues travelling on
the lower strand. (It matters not that 7" and T~! cannot be between 0 and 1 at the



DRAFT! See http://drorbn.net/Theta/

A FAST, STRONG, TOPOLOGICALLY MEANINGFUL, AND FUN KNOT INVARIANT 9

same time — we merely use the algebraic rules of probability without caring about the
inequalities that normally come with them).

e When cars reach the “end” of the knot, the abyss that follows edge 2n + 1, they fall off
the picture never to be seen again.

These rules can be summarized by the following pictures:

| NS 1-T T 77! 1-771
=1—- TS 5 / \ % 1magDeaﬁ{%1 S:
For further details, see [BV1].

Comment 4. We note without detail that there is an alternative formula for 6 in terms of
perturbed Gaussian integration [BNG]. In that language, and using also the traffic motifs of
Discussion 3, the three summands in (6) become Feynman diagrams for processes in which
cars 6, governed by parameter 7, = T, 75, or T3 interact:

4 @3 N\
D D
AN AN
K 3y K 2
20 ]OUZI J1 o~
3
(=)

- J

In particular, the middle diagram which resembles the Greek letter © gave the invariant
its name.

Comment 5. The computation of G is a bottleneck for the computation of ©. It requires
inverting a (2n + 1) x (2n + 1) matrix whose entries are (degree 1) Laurent polynomials in
T. It’s a daunting task yet it takes polynomial time. Even a naive inversion using Gaussian
elimination requires only ~ n3 operations in the ring Q(7"). So G can be computed in
practice even if n is in the hundreds, and everything which then follows is not worse.

The polynomials Fi(c), Fy(co,c1) and F3(k) are not unique, and we are not certain that
we have the cleanest possible formulas for them. They are ugly from a human perspective,
yet from a computational perspective, having 18 terms (as is the case for Fi(c)) isn’t really
a problem; computers don’t care.

Computationally, the worst term in (6) is the middle one, and even it takes merely ~ n?
operations in the ring Q(77,T5) to evaluate.


https://labs.openai.com/

DRAFT! See http://drorbn.net/Theta/
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3. IMPLEMENTATION AND EXAMPLES

3.1. Implementation. A concise yet reasonably efficient implementation is worth a thou-
sand formulas. It completely removes ambiguities, it tests the theories, and it allows for
experimentation. Hence our next task is to implement. The section that follows was gener-
ated from a Mathematica [Wo] notebook which is available at [BV3, Theta.nb]. A second
implementation of O, using Python and SageMath (https://www.sagemath.org/) is avail-
able at https://www.rolandvdv.nl/Theta/.

We start by loading the package KnotTheory‘ — it is only needed because it has many

specific knots pre-defined. In this Section and in the next, and % mean “human input”

while means “computer output”:

Once[<< KnotTheory" ] Loading KnotTheory™ version of October 29, 2024, 10:29:52.1301.
— Read more at http://katlas.org/wiki/KnotTheory.

Next we quietly define the modules Rot, used to compute rotation numbers, and PolyPlot,
used to plot polynomials as bar codes and as hexagonal QR codes. Neither is a part of the
core of the computation of O, so neither is shown; yet we do show one usage example for
each.

(x The definitions of Rot and PolyPlot are suppressed x)

Rot [MirroreKnot[3, 1]] {{{1, 1, 4}, {1, 3, 6}, {1, 5, 2}}, {0, 0, 0, -1, 0, O, O} }

We urge the reader to compare the above output with the knot diagram in Figure 2.1.

PolyPlot[{ZT—1+T'1, S14+Ty-2T,+ 4T 15, |

1
-
ImageSize - 100, Labeled - True] ‘

1 Tq

The definition of CF below is a technicality telling the computer how to best store poly-
nomials in the g,44’s such as F} and F5. The programs would run just the same without it,
albeit a bit more slowly:

@ CF[5 ] := ExpandeCollect[&, g , F] /. F » Factor;

Next, we decree that T3 = T1T, and define the three “Feynman Diagram” polynomials F7,
FQ, and F3:

°°) T3 =Tz Ty;


https://www.sagemath.org/
https://www.rolandvdv.nl/Theta/
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Fil{s_, i_, J_}] :=CF[
n s (1 /2-83ii +T5 81ii 8251 - 811 8257 - (Ti = 1) 825i 83ii + 2 8255 83ii - (1 = T;) 82ji 83ji —
B2ii 8355 - T2 82ji 83jj + B11i 8355 +
((T2-1) gaji (T2° 825i - T2 8255 + T2 8355) +
(T3-1) 83ji (1- T3 8101 + 8215+ (T3-2) 8aj5 - (T1-1) (T3+1) £151)) / (T2-1))]

FZ[{SQ_: i@_, j@_}, {51_1 7.-1_: jl_}] .=
n CF [sl (Tie = 1) (Til - 1)‘1 (T§1 - 1) 81,71,i0 83, 50,11
( (T§6 82,i1,10 - 82,i1,70) - (Ti" 82,51,i0 - 82,71,50) ) ]
°°)F3le , R_]1 =gk -0/2;

Next comes the main program computing O(K). Fortunately, it matches perfectly with
the mathematical description in Section 2. In line 1 below we use Rot to let X and ¢ be
the crossings and rotation numbers of K. In addition we let n be the length of X, namely,
the number of crossings in K, and we let the starting value of A be the (2n + 1) x (2n + 1)
identity matrix. Then in line 2, for each crossing in X we add to A a 2 x 2 block, in rows
i and j and columns i + 1 and j + 1, as explain in Equation (1). In line 3 we compute the
normalized Alexander polynomial A as in (2). In line 4 we let G be the inverse of A. In line
5 we declare what it means to evaluate, ev, a formula £ that may contain symbols of the
form g,45: each such symbol is to be replaced by the entry in position «, 8 of GG, but with
T replaced with T,,. In line 6 we start computing € by computing the first summand in (6),
which in itself, is a sum over the crossings of the knot. In line 7 we add to # the double sum
corresponding to the second term in (6), and in line 8, we add the third summand of (6).
Finally, line 9 outputs a pair: A, and the re-normalized version of 6.

O[K ] := ©[K] =Modu1e[{X, @, n, A, A, G, ev, 0, k, k1, k2},
(# 1 %) {X, ¢} =Rot[K]; n=Length[X]; A =IdentityMatrix[2n +1];

(x 2 %) Cases[X, {s_,i,3_}» (A[[{i, J}s {i+1, J+1}] += (‘;S TS_'ll))];
=y A = T(-Total[¢]-Total[X[All,1]])/2 Det[A];

(» 4 ) G=1Inverse[A];

(# 5 %) ev[& ] :=Factor[& /.8, o,z » (Gla, A1 /. T>T,)1;

(+ 6 ») @ =ev[Sum[Fy [X[k]]1, {k, n}11;

(# 7 %) 6 +=ev[Sum[F, [X[k1], X[k2Q11, {ki, n}, {k2, n}11;

(+ 8 x) @+=ev[Sum[F3[o[klD, k1, {k, Lengthe¢}]];

(+ 9 «) Factor@{A, (A/.T>Ty) (A/.T>T,) (A/.T>T;3) 6}

3.2. Examples. On to examples! Starting with the trefoil knot.

Expand[©[Knot[3, 1]]]

1 1 11 1 1 T,0T
{—1+—+T,———Ti——— + + +—1+—2+T§T27T§+T1T§7T§T§}
T T3 T3OTIT; T3 OTiT, T Ty
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() PolyPlot [@[Knot[3, 1]], ImageSize - Tiny] -

Next are the Conway knot 11,34 and the Kinoshita-Terasaka
knot 11,42. The two are mutants and famously hard to separate: /—\ r (—\
they both have A = 1 (as evidenced by their one-bar Alexan-
der bar codes below), and they have the same hyperbolic volume,
HOMFLY-PT polynomial, and Khovanov homology. Yet their 6
invariants are different. Note that the genus of the Conway knot is 3, Whlle the genus of the
Kinoshita-Terasaka knot is 2. This agrees with the apparent higher complexity of the QR
code of the Conway polynomial and with Conjecture 18 below.

g -

Torus knots have particularly nice-looking © invariants. Here are the torus knots T3/,
T17/37 T13/5> and T7/6¢

PolyPlot[©[Knot[#]], ImageSize -» 120] & /@
{"K11n34", "K11n42"} T

@ ImageCompose [PolyPlot[@[TorusKnot @@ #], ImageSize - 480],
n TubePlot [TorusKnot @@ #, ImageSize -» 240], {Right, Bottom}, {Right, Bottom}] & /@
{{13, 23}, {17, 3}, {13, 5}, {7, 6}} // GraphicsRow

: i : e
RHH sesens

O #Hete e O

L LNOWBD %

The next line shows the computation time in seconds for the 132-crossing torus knot. Thy /7
on a 2024 laptop, without actually showing the output. The output plot is in Figure 3.1.

AbsoluteTiming[@[TorusKnot[22, 7]11;] (1020.73, Null)

We note that if T} and 75 are assigned specific rational numbers and if the program for © is
slightly modified so as to compute each GG, separately (rather than computing G' symbolically
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ImageCompose [PolyPlot [@ [TorusKnot[22, 7]], ImageSize » 720],
TubePlot [TorusKnot[22, 7], ImageSize -» 360], {Right, Bottom}, {Right, Bottom}]

B m m m 88 58 %% E 8 th N E R NE EY EE Nk %E R mM m .
O O O 8 & % 4440200023000 W 0+ W O O O
LR B . R RI RS LRI ELE (I I
G OO & & H HMHIITIBII I H B S O 0 O
R EEFE IRy Y Y RNy
TR BOD@ANITIITEN D O DB S L
P EBEOTDRTTVVTW OBV OB LS
PO RNFRNFODWHNBDDBDDBBE RS %
PP ERERRNIRRDDDDBREDH ST Y
Y oa 8P EEOESHNNBDBBODDBBDLHS % %%
L& T REEDETIRROBDRDDDD BB

T & & EEEEEHESRTBDVD DD B BN W %
7RI DD H % % % s %

i ]
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FIGURE 3.1. The 132-crossing torus knot 75y/; and a plot of its © invariant

and then substituting 7' — T,,), then the program becomes significantly more efficient, for
inverting a numerical matrix is cheaper than inverting a symbolic matrix (but then one
obtains numerical answers and the beauty and the topological significance (Section 5) are
lost). The Mathematica notebook that accompanies this paper, [BV3, Theta.nb], contains
the required modified program as well as a few computational examples. One finds that with
Ty = 22/7 and Ty = 21/13, the invariant © can be computed for knots with 600 crossings,
and that for knots with up to 15 crossings, its separation power remains the same.

If T7 and T, are assigned approximate real values, say m and e computed to 100 decimal
digits, then © can be computed on knots with 1,000 crossings and, for knots with up to 15
crossings it remains very strong. But approximate real numbers are a bit thorny. It is hard
to know how far one needs to compute before deciding that two such numbers are equal,



DRAFT! See http://drorbn.net/Theta/

A FAST, STRONG, TOPOLOGICALLY MEANINGFUL, AND FUN KNOT INVARIANT 15

and when two such numbers appear unequal, it is hard to tell if that is merely because they
were computed differently and different roundings were applied. Thorns and snares are in
the way of the perverse; He who guards his soul will be far from them (Proverbs 22:5)".

3 .pn wen mw
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4. PROOF OF THE MAIN THEOREM, THEOREM 1

We divide the proof into to parts: the invariance of 6y (and therefore of 6) is in Section 4.1,
and the polynomiality of € is in Section 4.2.

4.1. Proof of Invariance. Our proof of the invariance of 6 (Theorem 1) is very similar,
and uses many of the same pieces, as the proof of the invariance of p; in [BV1]. Thus at
some places here we are briefer than at [BV1], and sadly, yet in the interest of saving space,
we understate here the interpretation of g.g as a “traffic function”.

Some Reidemeister moves create or lose an edge and to avoid the need for renumbering
it is beneficial to also allow labelling the edges with non-consecutive labels. Hence we allow
that, and write i for the successor of the label i along the knot, and ¢ for the successor of
it (these are i + 1 and i + 2 if the labelling is by consecutive integers). Also, by convention
“1” will always refer to the label of the first edge, and “2n + 1”7 will always refer to the label
of the last. With this in mind, we have that A = I + > A., with A, given by

J k i i )ﬁ . .
A, ‘ column ¢t column j*
— TOW 1% i T° —1 7
s=—1

row j 0 —1
s=+1

Like in [BV1, Lemma 3|, the equalities AG = [ and GA = I imply that for any crossing
¢ = (s,i,7) in a knot diagram D, the Green function G = (gn) of D satisfies the following
“g-rules”, with ¢ denoting the Kronecker delta:

Gig = 0ig + T°gi+ g+ (1 =T7)g;+ 3, gis = 0;8 + gj+ 3, Gon+1.8 = O2nt1.8,  (8)

Goit = ngozi + 5a,i+7 Jo,jt+ = Goj + (]- - Ts)goci + 5a,j+a Ja,1 = 504,1- (9)
Furthermore, the systems of equations (8) is equivalent to AG = I and so it fully determines
gap, and likewise for the system (9), which is equivalent to GA = 1.

Of course, the same g-rules also hold for G, = (g,ap) for v = 1,2, 3, except with 7" replaced
with T,.

We also need a variant g, of gos, defined whenever a and b are two distinct points on the
edges of a knot diagram D, away from the crossings. If « is the edge on which a lies and 3
is the edge on which b lies, g, is defined as follows:

Jop if a # 5,
Gab = 3 Yap if @« = 8 and a < b relative to the orientation of the edge o = 3, (10)
gop — 1 if o = 8 and a > b relative to the orientation of the edge o = 5.

Of course, we can define §,q, from g,s in a similar way.

It is clear that g and g contain the same information and are easily computable from each
other. The variant g is, strictly speaking, not a matrix and so g is a bit more suitable for
computations. Yet g is a bit better behaved when we try to track, as below, the changes in ¢
and ¢ under Reidemeister moves. Reidemeister moves sometimes merge two edges into one
or break an edge into two. In such cases the points a and b can be “pulled” along with the
move so as to retain their ordering along the overall parametrization of the knot, yet mere
edge labels lose this information. From the perspective of traffic functions, g is somewhat
more natural than ¢, as it makes sense to inject traffic and to count traffic anywhere along
an edge, provided the injection point and the counting point are distinct.
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The following discussion and lemma further exemplify the advantage of g of ¢:

Discussion 6. We introduce “null vertices” as on the right into knot dia- J k
grams, whose only function (as we shall see) is to cut edges into parts that
may carry different labels. When dealing with upright knot diagrams as in Figure 2.1, we
only allow null vertices where the tangent to the knot is pointing up, so that the rotation
numbers ¢, remain well defined on all edges. In the presence of null vertices the matrix
A becomes a bit larger (by as many null vertices as were added to a knot diagram). The
rule (7) for the creation of the matrix A gets an amendment for null vertices,

j k . A ‘ column k&
row j | -1

)

and the summation for A, A = I+ A.+>. . Ay, is extended to include summands for the
null vertices. The matrix G = A™! and the function g,z are defined as before. The g-rules
of (8) and (9) get additions,

9is = 0jp + Grs, (11) and ! csgak = Ok + Jajs (12)
and it remains true that the system of equations (8)U(11) (as well as (9)u(12)) fully deter-

mines g,3. The variant g, is also defined as before, except now a and b need to also be away
from the null vertices.

Lemma 7. Inserting a null vertex does not change gq, provided it is inserted away from the
points a and b.*

Proof.  Let D be an upright knot diagram having an edge labelled ¢ and let D’ be obtained
from it by adding a null vertex within edge 7, naming the two resulting half-edges 7 and &
(in order). Let gas be the Green function for D, and similarly, g,5 for D’. We claim that

ifg=j 8=k ifB¢{jk)

. Gii Gii 9ip lf a = ]
Gop = gii — 1 Gii 9ip }f o= k.
Gari Gori Gosp if ¢ {j, k}

Indeed, all we have to do is to verify that the above-defined g, satisfies all the g-rules
(8)u(11). and that is easy. The lemma now follows easily from the definition of ¢’ in Equa-
tion (10). OJ

Remark 8. The statement of our Main Theorem, Theorem 1, does not change in the pres-
ence of null vertices: There are no “F” terms for those, and their only effect on the definition
of © in Equation (6) is to change the edge labels that appear within ¢, ¢1, and ¢,, and within
the F5 sum.

The following theorem was not named in [BV1] yet it was stated there as the first part of
the first proof of [BV1, Theorem 1].

Theorem 9. The variant Green function §u is a “relative invariant”, meaning that once
points a and b are fived within a knot diagram D, the value of gu does not change if Rei-
demeister moves. are performed away from the points a and b (an illustration appears in
Figure J.1). It follows that the same is also true for Gyq for v =1,2,3.

4This statement does not make sense for Jag, as inserting a null vertex changes the dimensions of the
matrix G = (gag)-



DRAFT! See http://drorbn.net/Theta/

A FAST, STRONG, TOPOLOGICALLY MEANINGFUL, AND FUN KNOT INVARIANT 19

FIGURE 4.1. The modified Green function g, is invariant under Reidemeister moves
performed away from where it is measured.

R1-left and R1-right brald like RS

Y, Yy, Aside 2:
C D <> R3c Q“
N N |

counterclockwise and clockwise cyclic R2

FIGURE 4.2. A generating set of oriented Reidemeister moves as in [Po2, Figure 6].
Aside 1: the braid-like R2b is not needed. Aside 2: yet R2b cannot replace R2c*
because in the would-be proof, an unpostulated form of R3 is used (which in itself
follows from R2c*).

We note that g, is nearly the same as g.p, if a is on o and b is on . So Theorem 9
also says that g,s is invariant under Reidemeister moves away from a and f3, except for
edge-renumbering issues and +1 contributions that arise if @« and f correspond to edges that
get merged or broken by the Reidemeister moves.

The proof of Theorem 9 is perhaps best understood in terms of the traffic function of
Discussion 3: One simply needs to verify that for each of the Reidemeister moves, traffic
entering the tangle diagram for the left hand side of the move exits it in the same manner
as traffic entering the tangle diagram for the right hand side of the move, and each of
these verifications, as explained in [BV1, BN4, BN7], is very easy. Yet that proof is a bit
informal, so we opt here to give a fully formal proof along the lines of the first halves of [BV1,
Propositions 7-9).

Proof of Theorem 9. We need to know how the Green function g,z changes under the
orientation-sensitive Reidemeister moves of Figure 4.2 (note that the g,z do not see the
rotation numbers and don’t care if a knot diagram is upright in the sense of Figure 2.1.

We start with R3b. Below are the two sides of the move, along with the g-rules of
type (8) corresponding to the crossings within, written with the assumption that £ isn’t
in {i*, 57, k*}, so several of the Kronecker deltas can be ignored. We use g for the Green
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function at the left-hand side of R3b, and ¢’ for the right-hand side:

++ o g
9i+,6 = Tgirs g+ (1=T)gje 5 E 9iv.p = TG g+ (1=T) Gk
9i+.8 = Gj++.p Ik = ke 3

9i+p = TGiwr g+ (1=T)gp1 5

i+ g = 5i/3+Tgi+’g+(1—T)gk++’g
9k+.8 = Gktt,8

g9j8 = 5-|-ng+ /5—|—(1 T)gk+,5 gg,g = 5iB+Tg£+,5+(1_T)99+75
Wk Ikp = Okg+gr+ ' \f ko 9ip = 0is+d5 s
further further further further
crossings g-rules crossings g'-rules

Recall that along with the further g-rules and/or ¢’-rules corresponding to all the non-
moving knot crossings, these rules fully determine g.s and g5 for 8¢ {i*, 7, k*}.

A routine computation (eliminating g;+ 5, g;+ g, and gi+ 3) shows that the first system of
6 equations is equivalent to the following system of 6 equations:

gip = 0ip + T?gir g+ T(L = T)gjer g + (1 = T) gy 3,

(13)
gip = 0jp +Tgj+r g+ (1- T)Qkﬂﬁa k3 = Ok + Gi++ 3,

gitp = Tgirv g+ (1 =T)g;++ g, gi+.8 = gj++ 3, Ji+ 8 = Gi+t - (14)

In this system the indices i, j© and £ do not appear in (13) or in the further g-rules
corresponding to the further crossings. Hence for the purpose of determining g¢,s with
a,B ¢ {it,j7, k*}, Equations (14) can be ignored.

Similarly eliminating g§+7 5> 9+ g and g, 5 from the second set of equations, we find that
it is equivalent to

gzl',ﬁ = 52‘6 + T29£H75 + T(l — T)g;Hﬁ + (1 - T)gI;H,ﬁ7

/ / / / / (15)
9jp = 5Jﬂ + ng++,,6’ + (1 - T)gk++7ga Jrp = 519/3 + (/SRS

9£+,,3 = ngﬂ,,@"i_(l_T)gI/cH,,& g§‘+,5 = Tg;H,B—i_(l_T)glch,B? gllﬁ,ﬁ = gl;H,ﬁ' (16)

Using the same logic as before, for the purpose of determining g/, ; with o, 8 ¢ {i*,j*, k*},
Equations (16) can be ignored.

But now we compare the unignored equations, (13) and (15), and find that they are
exactly the same, except with g < ¢/, and the same is true for the further g-rules and/or
g'-rules commg frorn the further crossings. Hence so long as «, 8 ¢ {i*, 5%, k™ }, we have that
Jap = Jnp- In the case of the R3b move no edges merge or break up, and hence this implies
that g, = g,, so long as a and b are away from the move.

Next we deal with the case of R2¢*. We use the privileges afforded to us by Lemma 7 to
insert 4 null vertices into the right-hand-side of the move, and like in. the case of R3b, we
start with pictures annotated with the relevant type (8) and (11) g-rules, written with the
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assumption that 8 ¢ {i*, j*}:

++ ++

Ve giv g =Tgir+ g+ (1—T)gj+”3 J 9275 zéw—l—g}r’ﬁ
j+< o+ 95,8 = 95,8 T 9j* .8 i | 9+ = 9j+ 3
9ip=0ip+T g g+ (1 =T ")gjee Gir g = Gi++ g

i/ NG givs = givs i Yt G5 =08t G
further further further further
crossings g-rules crossings g'-rules

As in the case of R3b, we eliminate g;+ g and g;+ g from the equations for the left hand
side, and find that for the purpose of determining g,s with 5 ¢ {i*, 5%}, they are equivalent
to the equations

i = 5@3 + gi++ and 9i8 = 53"5 + gj++ 5.
Likewise, the right hand side is clearly equivalent to

gz,'ﬁ =0;5 + QQH,B and g;',g =05 + g}H,g,
and as in the case of R3b, this establishes the invariance of §,, under R2c moves.
For the remaining moves, R2c™, R1l, and Rlr, we merely display the g-rules and leave it
to the readers to verify that when the edges i* and/or j* are eliminated, the left hand sides
become equivalent to the right hand sides:

i+ 4+
) J ? Vi
4 9i =0+ Tgi+ g+ (1 —T)gj~p 9%,5 = 51',5/ + 90 5
j+< o+ gj+.8 = g+ .8 . n 9i+5 = 9j+
gi+ g = T_lgi'H',ﬁ + (1 — T_l)gj+’5 g;+,5 = g;H7B
ittt N\ 95,8 =0j8+ gj+8 it i 958 = %8t G g
A A i " "
gi+p =Tgiw p g..=d 9i+ g = 9i++ 8
i A =Thgirg  fit 0 i) 95 =70i5+Tg} g
i gz,ﬂ — 62“8 + gi*,ﬂ Z 0 1,8 it,B . +(1 — T)g;,**,ﬁ

[9]
We can now move on to the main part of the proof of our Main Theorem, Theorem 1. We
need to show the invariance of 6 under the “upright Reidemeister” moves of Figure 4.3.

Proposition 10. The moves in Figure J.3 are sufficient. If two upright knot diagrams (with
null vertices) represent the same knot, they can be connected by a sequence of moves as in
the figure.

Proof Sketch. There is an obvious well-defined map

upright knot diagrams oriented knot diagrams

relations as in Figure 4.3 7 Telations as in Figure 4.2

We merely have to construct an inverse to that map. To do that we have to choose how to
turn each crossing in an oriented knot diagram to be upright. The different ways of doing so
differ by instances of the Sw relation (if deeper spirals need to be swirled away, null vertices
may be inserted using NV and the spirals can be undone one rotation at a time). A more
detailed version of the proof is in [BVH]. O
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FI1GURE 4.3. The upright Reidemeister moves: The R1 and R3 moves are already
upright _and remain the same as in Figure 4.2. The crossings in the R2 moves of
Figure 4.2 are rotated to be upright. We also need two further moves: The null vertex
move NV for adding and removing null vertices, and the swirl move Sw which then
implies that any two ways of turning a crossing upright are the same. We sometimes
indicate rotation numbers symbolically rather than using complicated spirals.

\
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FIGURE 4.4. The two sides D' and D" of the R3b move. The left side D' consists of
3 distinguished crossings ¢} = (1,4, k), ¢4 = (1,i,k"), ¢4 = (1,i",57) and a collection
of further crossings ¢, = (s,m,n) € Y, where Y is the set of crossings not participating
in the R3b move. The right side D" consists of ¢| = (1,4,7), ¢4 = (1,i",k), ¢§ =
(1,77, k™) and the same set Y of further crossings c,.

Proposition 11. The quantity 0y is invariant under R3b.

Proof. Let D; and D, be two knot diagrams that differ only by an R3b move, and label
their relevant edges and crossings as in Figure 4.4. Let gf,aﬁ and g,,5 be their corresponding
Green functions. Let F{(c), Fj(co,c1) and Fj(p, k) be defined from g}, as in (3)-(5), and
similarly make FY, Fy and Fy using g;,4.

By Theorem 9, glmﬁ = Grap S0 long as o, B ¢ {17, 7, k7}. And so the only terms that may
differ in 0(D") between h = [ and h = r are the terms

AP =3P (e) + Y. F(co,c1), B" =) Fl(co.c,), and C" =) Fl(c,.c;). (17)
ce{ch,ch.ch}t  cocre{ch,ch,ch} coe{ch,ch ch}, cyeY cre{ch,ch ch}, cyeY
We claim that A' = A", B! = B", and C' = C".
To show that A' = A", we need to compare polynomials in gf/aB with polynomials in gy, 5 in
which o and 3 may belong to the set {i*, 77, k*} on which it may be that ¢' # ¢”. Fortunately
the g-rules of Equations (8) and (9) allow us to rewrite the offending ¢’s, namely the ones with
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subscripts in {i, 7%, k*}, in terms of other g’s whose subscripts are in {i, j, k, ™", 577 k*},
where g' = ¢". So it is enough to show that

under ¢' = ¢", Al /. (the g-rules for ¢, cb, c4) = A" /. (the g-rules for ¢}, ¢}, c3), (18)
where the symbol /. means “apply the rules”. This is a finite computation that can in-
principle be carried out by hand. But each A" is a sum of 3 + 9 = 12 polynomials in the
g'’s or the ¢"’s, these polynomials are rather unpleasant (see (3) and (4)), and applying the
relevant g-rules adds a bit further to the complexity. Luckily, we can delegate this pages-long
calculation to an entity that works accurately and doesn’t complain.

First, we implement the Kronecker d-function, the g-rules for a crossing (s,1,7j), and the
g-rules for a list of crossings X:

(0°) 84,5 1= If[a === 5, 1, 0] ;
n gRules[{s_, i_, j_}] := {gy_j/j_ D 8,its+06i5, 8y in P Ti Britp + (1 - Ti) 8vjtp +Oiss
gv_a_i+ g Ti 8rai + Saits gv_a_j+ P 8rajt (1 - Ti) Brai + 6aj+};
gRules[X  List] :=Unione@e Table[gRules[c], {c, {X}}]

We then let X1 be the three crossings in the left-hand-side of the R3b move, as in Figure 4.4,
we let A1l be the A’ term of (17), and we let 1hs be the result of applying the g-rules for the
crossings in X1 to A1. We print only a “Short” version of 1hs because the full thing would
cover about 2.5 pages:

x1= ({1, 3, k}, {1, i, k*}, {1, i*, 3°}};

Al = Sum[F;[c], {c, X1}] + Sum[F,[cO, c1], {cO, X1}, {ci1, X1}];
lhs = Simplify[Al //. gRules @@ X1];
Short[1lhs, 5]

1
- (3—3T2+ <«<129>> +
2(1-Ty)
2(1-Ta) (1+T2 (T28z,(1%)7,1 - (-1+T2) 82, (5%)7,1) = (-1+T2) B2, (k) ,1)
(T+(1-T1T2) 8, (k) *,5 * 83, (k") k) )

We do the same for A", except this time, without printing at all:

Xr= ({1, i, 33, {1, i*, k}, {1, 3%, k*}};

Ar =Sum[F;[c], {c, Xr}] + Sum[F,[cO, c1], {cO, Xr}, {cl, Xr}];
rhs = Simplify[Ar //. gRules @@ Xr] ;

We then compare 1hs with rhs. The output, True, tells us that we have proven (18):

Simplify[lhs == rhs] True

We show that B! = B" by following exactly the same procedure. Note that we ignore the
summation over ¢, and instead treat ¢, as a fixed crossing (s, m,n). If an equality is proven
for every fixed ¢,, it is of course also proven for the sum over ¢, € Y.

@ lhs = Sum[F,[c@, {s, m, n}], {c@, X1}] //. gRules @@ X1; True
n rhs = Sum[F,[c@, {s, m, n}], {cO, Xr}] //. gRules @@ Xr; o
Simplify[lhs == rhs]

Similarly we prove that C' = C", and this concludes the proof of Proposition 11.
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(2°) 1hs = Sum[F,[{s, m, n}, c1], {c1, X1}] //. gRules @@ X1; True

n rhs = Sum[F,[{s, m, n}, c1], {cl, Xr}] //. gRules @@ Xr; o
Simplify[1lhs == rhs]

Remark 12. The computations above were carried out for generic g,.g and for a generic
¢, = (s,m,n); namely, without specifying the knot diagrams in full, and hence without
assigning specific values to g,.g, and without specifying m and n. Under these conditions
the three parts of (17) cannot mix (namely, terms from, say, A" cannot cancel terms in B"
or C"), and so it would have been enough to show that E' = E”, where E" combines A" and
B" and C" (and a few harmless further terms) by adding ¢, to the summation corresponding
to AP
Eh= Y )+ > Fl'(co, ¢1).
ce{c’f,cg,cg,cy} co,cle{c?,cg,cg,cy}

But that’s a simpler computation:
(°°) ESum[X_] := (Sum[Fy[c], {c, X}] +Sum[F,[c@, c1], {c@, X}, {c1, X}]) //. gRules @@ X;

(o) X1 = {{1, 3, k}, {1, i, K"}, {1, i%, 3"}}; True
(@) Xr= ({1, i, 3}, {1, i*, k}, {1, 3", K*}};
Simplify [ESum[Append[X1, {s, m, n}]] == ESum[Append[Xr, {s, m, n}]]]

i7
Proposition 13. The quantity 6y is invariant under the upright R2ct and R2c™.

Proof. For R2¢™ we follow the same logic as in the proof of Proposition 11, as simplified by
Remark 12. We start with the figure that replaces Figure 4.4 (note the null vertices in D"
and their minimal effect as in Lemma 7 and Remark 8):

e l\ e N\
i D i nr
c ’
Nj j
. Ll
J ’ /j*‘* cy Y j CV
i 7N YN
i m n i m n
g J g J

As in Remark 12, we let E' and E" be the sums corresponding to the diagrams D! and
D" above:

B =Y P + Y Fencr) + PG oo B = F0) + Fi(cne) + Bl
ce{ch,chey}  co,c1€{c! ch,ey}

We need to show that E' = E" after all relevant g-rules are applied to both sides.
To compute these E' sums we first have to extend the ESum routine to accept also a list R
of pairs (p, k) of the form (rotation number, edge label):

@ ESum[X , R ] :=
n (Sum[F;[c], {c, X}] +Sum[F,[cO, c1], {cO, X}, {cl, X}] +Sum[F;eer, {r, R}]) //.
gRules ee X;
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We then compute E' (and apply the relevant g-rules) by calling ESum with crossings
(—1,4,57), (1,i*,7), and (s, m,n), and a rotation number of 1 on edge j:

E1 = SimpLify [ESun[{{-1, i, 3"}, {1, i", J}, {s, m, n}}, ({1, 3"}}11;
Short[El, 5]
& 1

oy ———————— (1+s+2s (T;Ty)* ot ,m+ <<1l>> +2 N
T LT ( 112)" 83,m*,m 83,(3%)*.3

T; (1 +S-2581,n",mB2,n*,m+ <<29>> + 258y nt m (1+83,n",n) +283, (j")*,j) )
The computation of E” is simpler, as it only involves the generic (s, m,n) and the rotation
(1,57). We implement the g-rules for null vertices as in Equations (11) and (12), compute
E", and then compare E' with E" to conclude the invariance under R2c*:

gRu:I'es [j—] °= {gv_,j,ﬂ_ g 6];5 + gV}j"‘)ﬂ’ gV_Ja’_)j+ (54 6a1j+ + gv,a,j}

Er = ESum[{{s, m, n}}, {{1, 3*}}] //. (Unionee gRules /@ {i, i*, j, j*});
Simplify[El == Er]

@
True
For R2¢~ we allow ourselves to be even more concise:

Z'H

(o) EL=ESum[{{1, i, 3*}, {-1, i, }, {s, m, n}}, {{-1, 3"}}1; il j
Er=ESum[{{s, m, n}}, {{-1, §*}}1 //. it j
(Unionee gRules /@ {i, i, j, % }); FARRN G
Simplify[Er == E1] ;

True

s i (ZH
Proposition 14. The quantity 0y is invariant under R1l and R1r.

i it it
Proof. We aim to use the same approach and conventions as in the ; ; ;

previous two proofs but hit a minor snag. The g-rules for R1l include
Gitg = 0irpg + T+ g+ (1 =T)gi+ 3 and  Gait = Gai + (1 = 1) Goi+ + dai+,

and if these are implemented as simple left to right replacement rules, they lead to infinite
recursion. Fortunately, these rules can be rewritten in the form

girg =T "6pg+ g and  Gogt =T 'gai + T 'S0,
which makes perfectly valid replacement rules. We thus redefine:

gRules[{1, i*, i}]1 = {8, 15 > Brits + biss By its > By (i%)*s + T, 6itss
n 8 a (i")+ T, 8rait + 5a(i*)*) 8y o it ¥ T:/l Brai t T;l 6ai+};

The same issue does not arise for R1r (1), and thus the following lines conclude the proof:
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Em = ESum[{{s, m, n}}];
Er = ESum[{{1, i, i"}, {s, m, n}}, {{-1, i*}}];
Simplify[EL == Em == Er]

El=ESum[{{1, i*, i}, {s, m, n}}, {{1, i*}}1; True

Proposition 15. The quantity 0y is invariant under Sw.

Proof. This one is routine:

E1=ESum[{{1, i, j}, {s, my n}}1;
n Er = ESum([{{1, i, j}, {s, m, n}}, {{-1, i}, {-1, 3}, {1, i%}, {1, 37}}1;
Simplify[El == Er]

True

Proposition 16. The quantity 0y is invariant under NV.
Proof. Indeed, F3 is linear in ¢. ]
We are now ready to complete the proof of the first part of the Main Theorem.

Proof of Invariance. The invariance statement in the Main Theorem, Theorem 1. now follows
from the invariance of the Alexander polynomial and from Propositions 10, 11, 13, 14, 15,
and 16. O
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4.2. Proof of Polynomiality. We already know (see Comment 2) that the only obstruction
to the polynomiality of 6 comes from the explicit denominators in Equations (3) and (4).
These denominators are (T,—1)7! (if 5,51 = 1) or (T ' —1)"t = —T(To—1)7! (if 5,8, = —1).
So it is enough that we show that the residue R of § at 75 = 1 vanishes, and this residue
comes solely from the residues of F; and F, at T, = 1. Thus R is the knot invariant coming
from the same procedure as 6, only replacing Fy, Fy, and F3 by their residues Ry, Ry and
R3 at Th = 1. These residues are easily seen to be

Ri(c) = (T° — 1)gji (g + 2(T° — 1)gji — g55) ,

Ra(co,c1) = (T* = D)(T™ = 1)gjoir Gjnio (Xir<io — Xir<io — Xji<io T Xii<jo) »

and R3 = 0, where we have simplified these formulas by making the following observations:

e R depends only on 7T} which we rename to be T

o At T, = 17 9308 = J1lap = YJap-

e At Ty = 1, by a simple calculation of the matrices A and G and/or using the traffic
interpretation of Comment 3, ga24p is the indicator function y,<s of the inequality o < f3,
which is 1 if the inequality holds and 0 otherwise.

An explicit calculation for some specific knots shows that the sums corresponding to R;
and to Ry do not vanish individually; instead, they cancel each other. So we’d better find
a technique that relates a double sum to a single sum. That’s the content of the following
lemma:

Lemma 17. If there is a function f(co,7) that depends on a crossing ¢y and an additional
edge label v such that (Bf)(co) == f(co,2n+1)— f(co, 1) = 0 and such that for any additional
crossing ¢; = (81,11, 1) we have that

(ac1f)(007cl) = f(CO7Z.Ir) + f(COLjf_) - f(C(),i1> - f(CU7j1) = RZ(COa cl) + 560,61R1(CO>7 (19)

then the invariant R vanishes.

Proof.  Indeed, using the above equation and then telescopic summation over ¢; and the
vanishing of Bf,

R= ) Rolco,cr) + ) Ri(e) = D1 (0 f)(co 1) = D (BSf)(eo) = 0.

€0,C1 c €0,C1 [€4]

We can now complete the proof of the second part of the Main Theorem.

Proof of Polynomiality. Take f(co,7y) = (T% — 1)gw40gj0+7 (X~y<io — Xv<jo)- Use the easily
proven facts that gopi14, = 0 = 9j1 to show that Bf = 0 and then use g-rules to verify
Equation (19). Now using Lemma 17 we have that R = 0 and therefore 0 is a Laurent
polynomial. The only non-integrality for the coefficients of § may arise from the s/2 term in
Equation (3) and from the —p;/2 terms in Equation (5). These add up to (w(D) — ¢(D)/2,
using the notation of Equation (2). But w(D) — ¢(D) is always an even number as it is 0
for the long unknot 1 and its parity is unchanged by crossing changes and by the moves of
Figure 4.3. []

An implementation and a verification of the assertions made in this section is at [BV3,
Polynomiality.nb).
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1 n <10 <11 <12 | <13 <14 <15

2 knots 249 | 801 | 2,077 | 12,965 | 59,937 | 313,230
3 A (38) | (250) | (1,204) | (7,326) | (39,741) | (236,326)
1 oLt (108) | (356) | (1,525) | (7,736) | (40,101) | (230,592)
5 J (7) | (70) | (482) | (3,434) | (21,250) | (138,591)
6 Kh (6) | (65) | (452) | (3,226) | (19,754) | (127,261)
7 H ) | 31) | (222) | (1,839) | (11,251) | (73,892)
8 Vol (~6) | (~25) | (~113) | (~1,012) | (~6,353) | (~43,607)
O (Kh H,Vol) | (~0) | (~14) | (~84) | (~911) | (~5,917) | (~41,434)
10 (A, p1) 0) | (14) | (95) | (959) | (6,253) | (42,914)
11 (A, p1, pa) 0 | (14) | (84) | (911) | (5,926) | (41,469)
12 [ (p1, pa, Kh, H, Vol) | (0) | (~14) | (~84) | (~911) | (~5,916) | (~41,432)
13 © ©) | 3) | (19) | (194) | (1,118) | (6,758)
14 (©, p2) ©0) | (3) | (10) | (169) (982) | (6,341)
15 (O, 017) ©) | (3) | (19) | (194) | (L118) | (6,758)
16 (©, Kh) ©0) | (3) | (18) | (185) | (1,062) | (6,555)
17 (©,H) 0) | (3) | (18) | (185) | (1,064) | (6,563)
13 (O, Vol) 0) | (~3) | (~10) | (~169) | (~973) | (~6,308)
19| (©, po, Kh, H, Vol) | (0) | (~3) | (~10) | (~169) | (~972) | (~6,304)

TABLE 5.1. The separation powers of some knot invariants and combinations of knot
invariants (in lines 3-19, smaller numbers are better). The data in this table was
assembled by [BV3, Stats.nb].

5. STRONG AND MEANINGFUL

5.1. Strong. To illustrate the strength of ©, Table 5.1 summarizes the separation powers of
© and of some common knot invariants and combinations of those knot invariants on prime
knots with up to 15 crossings (up to reflections and reversals).

In line 2 of the table we list the total number of tabulated knots with up to n crossings.
For example, there are 313,230 prime knots up to reflections and reversals with at most 15
crossings. In the following lines we list the separation deficits on these knots, for different
invariants or combinations of invariants. For example, in line 3 we can see that on knots
with up to 10 crossings, the Alexander polynomial A has a separation deficit of 38: meaning,
that it attains 249 — 38 = 211 distinct values on the 249 knots with up to 10 crossings. For
deficits, the smaller the better!” Thus the deficit of 236,326 for A at n < 15 means that
the Alexander polynomial is a rather weak invariant, in as much as separation power is
concerned,

In line 4 we shows the deficits for the Levine-Tristram signature opr [Le, Tr, Co| as
computed by the program in [BN5]. We were surprised to find that for knots with up to 15
crossings these deficits are smaller than those of A.

Line 5 shows the deficits for the Jones polynomial J. It is better than A, and better
than A and opr taken together (deficits not shown) but still rather weak. Line 6 shows the

5This is not a political statement.
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FIGURE. 5.1. The three pairs responsible for the deficit of 3 in the column n < 11 of
line 13 of Table 5.1. They are (11444, 11447), (11457, 114231), and (11,73, 11,74), and
each pair is a pair of mutant Montesinos knots (though © sometimes does separate
mutant pairs, as was shown in Section 3.2).

deficits for Khovanov homology Kh. They are only a bit lower than those of J. On line 7,
the HOMFLY-PT polynomial H is noticeably better.

On line 8 we consider the hyperbolic volume Vol of the knot complement, as computed
by SnapPy [CDGW]. We computed volumes using SnapPy’s high_precision flag, which
makes SnapPy compute to roughly 63 decimal digits, and then truncated the results to 58
decimal digits to account for possible round-off errors within the last few digits. But then we
are unsure if we computed enough. ... Hence the uncertainty symbols “~” on some of the
results here and in the other lines that contain Vol. This said, Vol seems to be the champion
so far.

Line 9 is “everything so far, taken together”. Note that Kh dominates J and H dominates
both A and J, so there’s no point adding A and/or J into the mix. We note that adding
orr to the triple (Kh, H, Vol), or even to the pair (Kh, Vol), does not improve the results;
namely, for knots with up to 15 crossings the pair (Kh, Vol) dominates o1, even though each
of Kh and Vol does not dominate o, and the discrepancies start already at 11 crossings.
We don’t know if this means anything.

On line 10, the Rozansky-Overbay invariant p; [Rozl, Roz2, Roz3, Ov], also discussed
by us in [BV1], does somewhat better. Note that the computation of A is a part of the
computation of p;, so we always take them together. In line 11 we add py [BN4] to make
the results yet a bit better.

Line 12 is “everything before ©”.

Line 13 makes our case that © is strong — the deficit here, for knots with up to 15
crossings, is about a sixth of the deficit in line 12! For the interested, Figure 5.1 shows the
3 pairs that, create the deficit in the column n < 11 of this line.

Line 14 reinforces our case by just a bit: note that it makes sense to bundle ps along with
O, for their computations are very similar. Note also that Conjecture 24 below means that
it is pointless to consider (O, p).

Line 15 shows that for knots with up to 15 crossings, © dominates op7. We don’t know if
this persists.
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FIGURE 5.2. The 48-crossing Gompf-Scharlemann-Thompson GST s knot [GST].

Lines 16 through 18 show that at crossing number < 15 and in the presence of ©, and
especially in the presence of both © and p», it is pointless to also consider H or Kh, and
only mildly useful to also consider Vol. Line 19 shows that once Vol has been added to ©,
the other invariants contribute almost nothing.

We note that of all the invariants considered above, the only one known to (sometimes)
detect knot mutation is © (see Section 3.2).

We also note that the V,, polynomials of Garoufalidis and Kashaev [GK], and in particular
V, [GL] share many properties with © and are stronger than © on knots with up to 15
crossings. But they are not nearly as computable on large knots. It would be very interesting
to explore the relationship between the V,,’s and ©.

5.2. Meaningful. Many knot polynomials have some separation power, some more and
some less, yet they seem to “see” almost no other topological properties of knots. The
greatest exception is the Alexander polynomial, which despite having rather weak separation
powers, gives a genus bound, a fiberedness condition, and a ribbon condition. The definition
of # is in some sense “near” the definition of A, and one may hope that 6 will share some of
the good topological properties of A.

5.2.1. The Knot Genus. With significant computational and theoretical evidence (see also
Discussion 26 and Comment 29 below) we believe the following to be true:

Conjecture 18. Let K be a knot and g(K) the genus of K. Then degy, 0(K) < 2g(K).

Using the available genus data in KnotInfo [LM] we have verified this conjecture for all
knots with up to 13 crossings (see [BV3, KnotGenns.nb]). The example of the Conway knot
and the Kinoshita-Terasaka knot in Section 3.2 shows that the bound in Conjecture 18 can
be stronger than the bound deg, A(K) < ¢g(K) coming from the Alexander polynomial.
Another such example is the 48-crossing Gompf-Scharlemann-Thompson GST s knot [GST]
of Figure 5.2. Here’s the relevant computation, with X4, (say) meaning “the crossing
(1,14,1)” and Xy 49 (say) meaning “(—1,2,29)":
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GSTag = EPD[X14,15 X2,205 X3,205 Xa3,45 X26,55

Xe,955 Xo6,75> X13,85 Xo,28> X1e,41> Xa2,11> X27,125
X30,155 X16,615 X17,725> X18,83> X19,345 Xs9,205
i21,923 779,22.v Y68,23: Y57,24J ¥25,56: X62,31J
X73,325 Xsa,33> Xs0,355 X36,815 X37,705> Xas,595
X30,545 Xaa,s55 Xsg,a55 Xeo,a65 Xse,a7> Xas,o01» {14'58231

Xoe,495 Xs1,82> Xs2,715 Xs3,605 Xe3,745> Xea,s85>

X76,655 X87,665 X67,945 X75,865 Xss,775 778,93]3
AbsoluteTiminge

PolyPlot[{Asg, 648} = ©[GSTas],
ImageSize » Small]

{Exponent [Az5, T], [Exponent[64s, T1] / 27} (8, 10}

Thus 6 gives a better lower bound on the genus of GST4s, 10, then the lower bound
coming from A, which is 8. Seeing that GST4s may be a counter-example to the ribbon-slice
conjecture [GST], we are happy to have learned more about it. Also see Dream 38 helow.

The hexagonal QR code of large knots is often a clear hexagon (e.g. Figure 1.4), but the
hexagonal QR code of GST s, displayed above, is rounded at the corners. We don’t know if
this is telling us anything about topological properties of GST 5.

5.2.2. Fibered Knots. Upon inspecting the values of © on the Rolfsen table, Figure 1.1, we
noticed that often (but not always) the bar code shows the exact same colour sequence as
the top row of the QR code, or exactly its opposite. This and some experimentation lead
us to the following conjecture, for which we do not have theoretical support. See a similar
result on the ADO invariant at [LV].

Conjecture 19. If K is a fibered knot and d is the degree of A(K) (the highest power of
T), then the coefficient of T3¢ in O(K), which is a polynomial in T, is an integer multiple
of TEA(K)|p_r,. See examples in Figure 5.3, where the integer factor is denoted s(K).

Using the available fiberedness data in KnotInfo [LM] we found that the condition in this
conjecture holds for all 5,397 fibered knots with up to 13 crossings, while it fails on all but
48 of the 7,568 non-fibered knots with up to 13 crossings. See [BV3, FiberedKnots.nb.

We note that if K is fibered then degree d of A(K) is the genus of K, and A(K) is
monic, meaning that the coefficient of 7% in A(K) is =1 (see [Rol, Section 10H]). The latter
condition is an often-used fast-to-compute criterion for a knot to be fibered.

If Conjecture 19 is true then the condition in it is another fast-to-compute criterion for a
knot to be fibered, and this criterion is sometimes stronger than the Alexander condition.
For example, both the Conway and the Kinoshita-Terasaka knots are not fibered yet their
Alexander polynomial is 1, which is monic. In both cases the coefficient of T% in 6 is not an
integer multiple of 1 (see Section 3.2), so the condition in Conjecture 19 would detect that
these two knots are not fibered.
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FIiGURE 5.3. The invariant © of the
fibered knot 12,549, also known as the
(—2,3,7) pretzel knot, and of the fibered
knot 7;. For the first, s(K) > 0 and the
bar code visibly matches with the top row
of the QR code (though our screens and
printers and eyes may not be good enough
to detect minor shading differences, so a
visual inspection may not be enough). For
the second, twice the degree of A is visibly
greater than the degree of 6, so s(K) = 0.
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FicURE 6.1. A long version of the rotational
virtual knot KS from [Kau3]. It has X =
{(~1,1,6), (—1,2,4),(1,9,3), (~1,7,5), (1, 10, 8)}
and ¢ = (—1,0,0,1,0,—1,0,0,1,0,0).

6. STORIES, CONJECTURES, AND DREAMS

There is a storyteller in each of us, who wants to tell a coherent story, with a beginning,
a middle, and an end. Unfortunately of us, the © story isn’t that neat. Calling the content
of the first few sections of this paper “the middle”, we are quite unsure about the beginning
and the end. The “beginning” can be construed to mean “the thought process that lead us
here”. But that process was too long and roundabout to be given in full here (though much
of it can be gleaned by reading this section). What’s worse, we believe that ultimately, our
peculiar thought process will be replaced by much more solid foundations and motivations,
perhaps along the lines of Dreams 35 and 36. But this solid foundation is not available yet,
even if we are working hard to expose it. As for the end of the story, it is clearly in the
future.

Hence this section is a bit sketchy and disorganized. Those facts that we already know,
those conjectures we believe in, and the dreams we dream, are here in some random order.
But the narrative is lacking.

Many of the statements below continue a theme from Section 5.2, that § shares many of
the properties of A, and sometimes sharpens them.

Conjecture 20. 0 has hexagonal symmetry. That is, for any knot K, 0(K) is invariant
under the substitutions (Ty — T1, Ty — T, Ty ') (“the QR code is invariant under reflection
about a horizontal line”), and (T, — Ty\Tp, Ty — Ty ') (“the QR code is invariant under
reflection about the line of slope 30°7).

The Alexander polynomial A is invariant under a simpler symmetry, T — 71 It is
rather difficult to deduce the symmetry of A from the formula in this paper, Equation (2)
(though it is possible; once notational differences are overcome, the proof is e.g. in [CF,
Chapter IX]). Instead, the standard proof of the symmetry of A uses the Seifert surface
formula for A (e.g. [Li, Chapter 6]). We expect, that.Conjecture 20 will be proven as soon
as a Seifert formula is found for 8. See Dream 35 below.

A rotational virtual knot is a virtual knot diagram [Kau2] whose edges’ are marked with
“rotation numbers” ¢y, modulo the same moves as in Figure 4.3.7 Clearly, © extends to long
rotational virtual knots, and the proof of the Main Theorem, Theorem 1, extends nearly
verbatim®. Yet as shown below, on the long rotational virtual knot KS of Figure 6.1 (and
indeed, on almost any other long rotational virtual knot which is not a classical knot), the

6Tgnoring “virtual crossings”. See [BDV, Section 4].

"This definition is slightly different than the original in [Kau3] but the equivalence is easy to show.

8The only exception is that some of the coefficients of # may be half integers, as w(D) — ¢(D) may be
odd for a rotational virtual knot diagram.
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hexagonal symmetry of # fails. So something non-local must happen within any proof of
Conjecture 20.

(29) KS = {{{-1, 1, 6}, {-1, 2, 4}, {1, 9, 3}, {-1, 7, 5}, {1, 10, 8}}, I
(@) {0,0,0,1,0,-1,0,0,1,0,0});
PolyPlot[©[KS], ImageSize - Tiny] ‘

Conjecture 21. If K denotes the mirror image of a knot K, then 0(K) = —0(K).

Conjecture 22. If —K denotes the reverse of a knot K (namely, K taken with the opposite
orientation), then 0(—K) = 0(K).

Fact 23. 0y(K) is additive under the connected sum operation of knots: Oo(K#K,) =
0o(K;) + 0o(K,.). Equivalently, using the known multiplicativity of A,

O(KH#K,) = 00K ALK Ao K Ag(K,) + 00K ) Ay () Ao (K Ag(KD).

Oddly, Fact 23 is easier to prove than Conjectures 21 and 22:
Proof Sketch. The Fy and Fj summations in Equation (6) are clearly additive, and so is the
part of the Fy summation in which ¢y and ¢; fall within the same component. It remains
to consider the case where ¢y and ¢; fall within different components. But in that case, the
factor ¢1j,4,934,i, Within the definition of F, in (4) vanishes because cars only drive forward,
and either gy, or gsj,;, measures traffic going backwards. O

Conjecture 24. 0 dominates the Rozansky-Overbay invariant py [Rozl, Roz2, Roz3, Ov],
also discussed by us in [BV1]. In fact, pr = —0|r,~1r1—1-

Conjecture 25. 0 is equal to the “two-loop polynomial” studied extensively by Ohtsuk:
[Oh2], continuing Rozansky, Garoufalidis, and Kricker [GR, Rozl, Roz2, Roz3, Kr].

Discussion 26. People who are already familiar with “the loop expansion” may consider
the above conjecture an “explanation” of #. We differ. An elementary construction ought to
have a simple explanation, and the loop expansion is too complicated to be that.

Be it as it _may, Ohtsuki [Oh2] shows that Conjecture 25 implies Conjectures 18, 20,
21, and 22 as well as Fact 23. Conjecture 25 would also predict the behaviour of § under
Whitehead doubles as in [Gar] and under cabling operations as in [Oh3].

Next, let us briefly sketch some key points from [BN2, BV2], where we explain how to
obtain poly-time computable knot invariants from certain Lie algebraic constructions.

Discussion 27. Let g be a semi-simple Lie algebra, let b be its upper Borel subalgebra, and
let h be its Cartan subalgebra. Then b has a Lie bracket § and, as the dual of the lower Borel
subalgebra, it also has a cobracket . It turns out that g can be recovered from the triple
(b,3,0); in fact, g* :== g@®bh ~ D(b, 3,), where D denotes the Manin double construction’.
We now set g := D(b, 3,€d), where € is a formal “small” parameter. The family g} is a
1-parameter family of Lie algebras all defined on the same underlying vector space b @ b*. If
¢ is invertible then g} is independent of € and is always isomorphic to g* = g". Yet at e = 0,
g¢ is solvable, and as the name “solvable” suggests, computations in g4 can be “solved”,
meaning, can be carried out efficiently in closed form.

9We are unsure about naming. D is also known as “the Drinfeld double” construction for Lie bialgebras
(as opposed to Hopf algebras). Yet when Drinfeld first refers to this construction in [Dr], in reference to
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Hence in [BN2, BV2], mostly in the case where g = sly, we use standard techniques to
quantize the universal enveloping algebra U(g') and use it to define a “universal quantum
invariant” Z9 (in the sense of [Law, Ohl]). We then expand Z9 near where it’s easy; namely,
as a power series around € = (. In the case of g = sly, and almost certainly in general, we
write Z8 = pdexp (Zdzl pged) and find that we can interpret the p% as polynomials in as
many variables as the rank of g. It turns out that pf is always determined by the Alexander
polynomial and the p§ are always computable in polynomial time (with polynomials whose
exponents and coefficients get worse as d grows bigger and g gets more complicated).

Our papers and talks [BV1, BV2 BN4| carry out the above procedure in the case where
g = sly, calling the resulting invariants pg, for d > 1. They are the same as p; and py of
Section 5.1.

Following some preliminary work by Schaveling [Sch], in the summer of 2024 we’ve set out
to find good formulas for pil:". Tracing Discussion 27 seemed technically hard, so instead, we
extracted from the procedure the “shape” of the formulas we could expect to get and, and
then we found the invariant 6 by the method of undetermined coefficients assisted by some
difficult-to-formulate intuition (more in Comment 34 below). Thus our formulas for 6 arose

from our expectations for pil:”, and yet we have not proved that they are equal!

Conjecture 28. Up to conventions and normalizations, 0 = p‘;l?’.

Comment 29. Using the techniques of [BN3, BV2| we expect to be able to prove a genus
bound for pil“, similar to the bound in Conjecture 18. Thus we expect that Conjecture 28

will imply Conjecture 18.

Discussion 30. People who are versed with Lie algebras and their quantizations may con-
sider the above an “explanation” of #, and may be looking forward to a more detailed
exposition of pj. We differ, for the same reasons as in Discussion 26. We expect the eventual
“origin story” of # to be simpler and more natural.

Discussion 31. Seeing that the coproduct of the quantized algebras of Discussion 27 corre-
spond to strand doubling, and also noting Ohtsuki’s [Oh3], we expect that there should be
cabling and satellite formulas for all the invariants of the type pj, and in particular for ©. In
particular, it should not be possible to increase the separation power of © by pre-composing
it with cabling or satellite operations.

Discussion 32. It is the basis of the theory of “Feynman diagrams”, and hence it is ex-
tremely well known in the physics community, that perturbed Gaussian integrals, when
convergent. can be computed (as asymptotic series) efficiently using “Feynman diagrams”
(see e.g. [Pol]). Physicists use this routinely in infinite dimensions; yet the finite dimensional
formulation can be sketched as follows:

J el Y Y00) (20)
Rd n=0 F

where @ is a non-degenerate quadratic on R?, P is a “smaller” perturbation, C is some
constant involving 7’s and the determinant of (), the summation ). is over “Feynman

Lie bialgebras, he repeatedly names it after Manin (under the less clear name “Manin triples”), yet without
providing a reference. Our choice is to use “Manin double” when doubling Lie bialgebras and “Drinfeld
double” when doubling a Hopf algebra, as we found no indication that Manin knew about the latter process.
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diagrams” of complexity n, and F' — E(F’) is some procedure, which can be specified in full
but we will not do it here, which assigns to every Feynman diagram F' an algebraic sum
which in itself depends only on the coefficients of P and the entries of the inverse of ().

In fact, one may take the right-hand-side of Equation (20) to be the definition of the
left-hand-side, especially if the left-hand-side is not convergent, or does not make sense for
some other reason. Namely, one may set

fﬁ W= O Y Y E(F). (21)
R9 n=0 F

The result is an integration theory defined on perturbed Gaussians in fully algebraic terms,
and which shares some of the properties of “ordinary” integration, such as having a version
of Fubini’s theorem. In a sense, that’s what physicists do: path integrals don’t quite make
sense, so instead they are defined using Feynman diagrams and the right-hand-side of Equa-
tion (21). Another example is the “Arhus integral” of [BGRT], where the integral in itself
is diagrammatic, as is the output of the integration procedure.

Fact 33. There is a perturbed Gaussian formula for ©. More precisely, one can assign a
6-dimensional Euclidean space RS with coordinates pie, Pac, P3e, T1e, Tae, T3e to each edge e of
a knot diagram D and then form Rep = [[ RS, a space whose dimension is 6 times the
number of edges in . One can then form a “Lagrangian” Lp = Qp + €Pp by summing over
all the crossings of D local contributions that involve only the variables associated with the
four edges around each crossings, and adding a “correction” which is a sum over the edges e
of D of terms that depend only on the rotation number of e and on the variables in RS, such

e’
that

JANPAVYAWS
and such that the Feynman diagram expansion of the left-hand-side of the above equation
becomes precisely formula (6) for 6. See more about all this in [BNG].

9 3|E|
% el :gg eQrtePp — (27) exp(efy) + O(e?),
ReE Reg

Comment 34. In fact, Fact 33 is what we initially predicted based on Discussion 27, along
with some further information about the “shape” of Pp. We used the method of unde-
termined coefficients to find precise formulas for Pp, and then the technique of Feynman
diagrams to derive our main formula, Equation 6.

Dream 35. There is a “Seifert formula” for ©. More precisely, let K be a knot, let ¥ be
a Seifert surface for K, let H == H{(3;R), and let 6H denote H® H® H® H® H @ H.
Let Qx, denote 3 copies of the standard Seifert form on H @ H, taken with parameters Ti,
Ty, and T3; so Qs is a quadratic on 6H. We dream that there a “perturbation term” Ps,
a polynomial function on 6H defined in terms of some low degree finite type invariants of
various knotted graphs formed by representatives of classes in H (also taking account of their
intersections), such that

3dim(H)
Ly, _ Qs+ePs _ (27) 2
e = e = —————exp(eby) + O(e).

§ - A ep(edo) + O

If this dream is true, it will probably prove Conjectures 18, 20, 21, and 22 much as the
Seifert formula for A can be used to prove the genus bound provided by A and its basic
symmetry properties.

We note the relationship between this dream and [Oh2, Theorem 4.4].
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Dream 36. All the invariants from Discussion 27 have Seifert formulas in the style of
Dream 35. In fact, there ought to be a characterization of those Lagrangians Ly, for which
§el= is a knot invariant, and there may be a construction of all those Lagrangians which is
intrinsic to topology and does not rely on the theory of Lie algebras.

If a knot K is ribbon then for some g it has a Seifert
surface X of genus g such that g of the generators of H;()
can be represented by a g-component unlink (see the hint
on the right, and see further details in [Kaul, Chapter VIII]
or in [Ba, Section 3.4]). This implies that the Seifert matrix

M of ¥ has the form

12* g , which implies that the determinant of M, the Alexander
polynomial A, satisfies the Fox-Milnor condition:

Theorem 37 (Fox and Milnor, [FM]). If K is a ribbon knot, then there exists some polyno-
mial f(T) such that A = f(T)f(T™).

Dream 38. Dream 35, along with the fact that half the homology of a Seifert surface of a
ribbon knot can be represented by an unlink, will imply that 6 takes a special form on ribbon
knots, giving us stronger powers to detect knots that are not ribbon.

Discussion 39. In this paper we concentrated on knots, vet at least partially, ©® can be
generalized also to links. Indeed, the definitions in Section 2 and the proof in Section 4 go
through provided the matrix A is invertible; namely, provided the Alexander polynomial A
is non-zero (for knots, this is always the case), and provided we choose one component of
the link to cut open.

The programs of Section 3 fail for minor reasons, and a fix is in [BV3, Theta4Links.nb].
Some results are in Figure 6.2. Preliminary testing using these programs suggests that the
resulting invariant is independent of the choice of the cut component, but we did not prove
that.

If A = 0, one may contemplate replacing G = A~! by the adjugate matrix adj(A) of A (the
matrix of codimension 1 minors, which satisfies A - adj(A) = det(A)I)."” Some preliminary
testing is also in [BV3, ThetadLinks.nb]. Yet if G is replaced with adj(A), its equivalence
with the g-rules (Equations (8) and (9)) breaks, and so we have no proof of invariance. We
may attempt to fix that in a future work, but it is not done yet.

We note that the loop expansion of Conjecture 25 does not predict that © should extend
to links. We also note that the solvable approximation technique of Discussion 27 does
predict such an extension, and in fact, it predicts more: that much like the Gassner repre-
sentation [Gas| and the multi-variable Alexander polynomial (e.g. [Kaw, Chapter 7]), there
should be a multi-variable version of © which would be a polynomial in 2m variables when
evaluated on an m-component link. We did not attempt to find explicit formulas for the

multi-variable ©.

Ever since Khovanov homology [Kh, BN1] it is almost mandatory to ask about anything,
“does it categorify?”. © is not exempt:

Question 40. Is there a categorification of 87 Is there a finite triply-graded chain complex
whose Euler characteristic is # and whose homology is invariant?

10Gimilar “adjugate” reasoning shows that 6 is always divisible by A®)(T))A®)(Ty)AR)(Ty), where
AP)(T) is the second Alexander polynomial (e.g. [BZ, Definition 8.10]).
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FIGURE 6.2. O for all the prime links with up to 9 crossings, up to reflections and

with arbitrary choices of strand orientations. Empty boxes correspond to links for which
A = 0.

We note that 6 is a neighbor of A (indeed they live together within ©), and that A is
categorified by knot Floer homology [OS, Ma, Ju]. Thus one may wonder if a categorification
of  will end up a neighbor of Floer knot homology. This applies even more to a possible
categorication of g,s:

Question 41. Is there a categorification of A - g,,? Is there a finite doubly-graded chain
complex whose Euler characteristic is A - g, and whose homology is a relative invariant in
the sense of Theorem 97

The latter seems likely: A - g, is, after all, a minor of a matrix whose determinant is A.
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