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Abstract. This is a research announcement introducing $\theta$, a 2-variable polynomial knot invariant which is:
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crossings, and evaluated on simple rational numbers on knots with up to 1000 crossings.
(b) Strong: It's separation power is much greater than, say, the HOMFLY-PT polynomial and Khovanov homology on knots
with up to 15 crossings (while computing much faster).
(c) Topologically meaningful: It gives a genus bound, and there are reasons to hope that it would do more.
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ABSTRACT. iSa Tesee g © = (A, 0), a pair of polynomial

knot invariants which is: Q cm L_,t ,L«J I

o Theoretically and practically fast: Hwxnafdwin pol¥nomial time and we computed it in
full on random knots with over 300 crossings, and its evaluation on on simple rational
numbers on random knots with over 700 crossings.

e Strong: Its separation power is much greater than, say, the HOMFLY-PT polynomial and
Khovanov homology (taken together) on knots with up to 15 crossings (while computing
much faster).

e Topologically meaningful: It gives a genus bound, and there are reasons to hope that it
would do more.

e Fun: Scroll to Figures 1.1 and 1.2.

A is merely the Alexander polynomial. 6 is almost certainly equal to an invariant that

was studied extensively by Ohtsuki [Oh]. Yet our formulas are much simpler and enable its

computation even on very large knots. //J,-. - ‘)FS A W /-U?"h 72 !
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The word “fun” rarely appears in the title of a math paper, so let us start with a brief
justification.
O is a pair of polynomials. The first, A, is a one-variable Laurent polynomial in a variable
T. For example, A(&) = T-' — 1+ T. We turn such a polynomial to a list of coefficients
(for &, it is (1 — 1 1)), and then to a chain of bars of varying colours: white for the
Z€ero coefﬁClents and red and blue for the positive and negative coefficients (with bﬂg—h’&ﬁes&lnhq%
proportional to the magnitude of the coefficients). The result is a “bar code”, and for the
trefoil & is it .
Similiarly, 6 is a 2-variable Laurent polynomial, in variables 77 and 75. We can turn such
a polynomial into a 2D array of coefficients and then using the same rules, into a 2D array
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of colours, namely into a picture! To highlight a certain conjectured hexagonal symmetry of
the resulting pictures, we apply a certain sheer transformation to the plane before printing.

: " 1 —1/2\ (n1) .
ning
So the colour of a monomial ¢717"7,? gets drawn at position (0 V3 /2) (ng) instead of

the more traditional Zl)
2

Thus © becomes a pair of pictures: a bar code, and a 2D picture that we call a “hexagonal
QR code”. For the knots in the Rolfsen table (with the unknot prepended at the start), they
are in Figure 1.1. In addition, the hexagonal QR codes of some 15 knots with > 300 crossings
are in Figure 1.2.
Clearly there are patterns in Figures 1.1 and 1.2. There is a hexaginal symmetry and
—=jthe QR codes are hexagons (these ar{independent properties). Much mowl be seen in O/
Figure 1.1. In Figure 1.2 there seem to be large-scale “sand table patterns”’” We can’t prove “A@Wéq
any of these things, and the last one, we can’t even formulate properly. Yet itf clearly there, (It /¢
too clear to be the result of chance alone. gk
We plan to have fun over the next few years observing and proving these patterns. We
hope that others will join us too.

2. THE FORMULAS
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FIGURE 1.1. © as a bar code and a hexagonal QR code, for all the knots in the Rolfsen

table.
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FIGURE 1.2. 6 (hexagonal QR code only) of the 15 largest knots that we have com-
puted by September 16, 2024. They are all “generic” in as much as we know, and they

all have > 300 crossings. (L, |¢n-te ot Frags . . _
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A VERY FAST, VERY STRONG, TOPOLOGICALLY MEANINGFUL
AND FUN KNOT INVARIANT

DROR BAR-NATAN AND ROLAND VAN DER VEEN

ABSTRACT. In this paper we introduce ® = (A, ), a pair of polynomial knot invariants

which is:

e Theoretically and practically fast: © can be computed in polynomial time and we com-
puted it in full on random knots with over 300 crossings, and its evaluation on on simple
rational numbers on random knots with over 700 crossings.

e Strong: Its separation power is much greater than, say, the HOMFLY-PT polynomial and
Khovanov homology (taken together) on knots with up to 15 crossings (while computing
much faster).

e Topologically meaningful: It gives a genus bound, and there are reasons to hope that it
would do more.

e Fun: Scroll to Figures 1.1 and 1.2.

A is merely the Alexander polynomial. 6 is almost certainly equal to an invariant that

was studied extensively by Ohtsuki [Oh], continuing Rozansky, Garoufalidis, and Kricker

[GR, Rol, Ro2, Ro3, Kr]. Yet our formulas, proofs, and programs are much simpler and

enable its computation even on very large knots.
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1. Fun

The word “fun” rarely appears in the title of a math paper, so let us start with a brief
justification.
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L
O is a pair of polynomials. The first, A Yis*& one-variable Laurent polynomial in a variable
T. For example, A(&) = T-' — 1+ T. We turn such a polynomial to a list of coefficients
(for &, it is (1 — 1 1)), and then to a chain of bars of varying colours: white for the
zero coefficients, and red and blue for the positive and negative coefficients (with intensity
proportional to the magnitude of the coefficients). The result is a “bar code”, and for the

trefoil & is it . .
Similiarly, 6 is a 2-variable Laurent polynomial, in variables T} and T5. \M'e c'ﬁu%“'m

a polynomial into a 2D array of coefficients and then using the same rules, l'into(@oZ—E axx v

of colours, namely into a picture! To highlight a certain conjectured hexagofnal symmetry of

the resulting pictures, we apply a certain shear transformation to the plang before printing.
. L (1 —1/2
So the colour of a monomial ¢T17*T,? gets drawn-at position
\%’{ 1 127 8 dﬂifg ?’ ; p (0 V3 /2)

instead of

the more traditional Zl>
2

Thus © becomes a pair of pictures: a bar code, and a 2D picture that we call a “hexagonal
QR code”. For the knots in the Rolfsen table (with the unknot prepended at the start), they
are in Figure 1.1. In addition, the hexagonal QR codes of some 15 knots with > 300 crossings

Z?are in Figure 1.2. HW/!ﬂ p\/m/-?

Clearly therétherns in Figures 1.1 and 1.2. There is a hexaginal symmetry and
the QR codes are’hexagons (these are independent properties). Much more can be seen in
Figure 1.1. In Figure 1.2 there seem to be large-scale “sand table patterns” or “diffraction
patterns”. We can’t prove any of these things, and the last one, we can’t even formulate
properly. Yet they are clearly there, too clear to be the result of chance alone.

We plan to have fun over the next few years observing and proving these patterns. We
hope that others will join us too.

—v

|
2.1. Old Formulas. The setup leading to the definition of © is the same as the setup leading
to the definition of the invariant p; of [BV1], and hence we copy a few relevant paragraphs
from [BV1] nearly varbatim, with only a few examples removed.

2. FORMULAS

Given an oriented n-crossing knot K, we draw it in the plane as a long D
knot diagram D, in such a way that the two strands intersecting at each
VL‘) . ¢ TR : .
crossing are ﬁm.nlej‘_fﬁp (that’s always possible because we can always rotate 7| q

crossings as needed), and so that at its beginning and at its end the knot
is oriented upward. We call such a diagram an upright knot diagram. An
example of an upright knot diagram is shown on the right. sl ¢
We then label each edge of the diagram with two integer labels: a running &
index k£ which runs from 1 to 2n + 1, and a “rotation number” ¢y, the
geometric rotation number of that edge (the signed number of times the

4
i)
tangent to the edge is horizontal and heading right, with cups counted with &
+1 signs and caps with —1; this number is well defined because at their \
1A

ps=—1

ends, all edges are headed up). On the right the running index runs from 1
to 7, and the rotation numbers for all edges are 0 (and hence are omitted)
except for ¢4, which is —1.

A Technicality. Some Reidemeister moves create or lose an edge and to avoid the need
for renumbering it is beneficial to also allow labelling the edges with non-consecutive labels.

LT bl mns Fast Mrnda M apend Oy Sap
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FIGURE 1.1. © as a bar code and a hexagonal QR code, for all the knots in the Rolfsen

table.
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FIGURE 1.2. 6 (hexagonal QR code only) of the 15 largest knots that we have com-

puted by September 16, 2024. They are all “generic” in as much as we know, and they
all have > 300 crossings. The knots come from [DHOEBL].

Hence we allow that, and write ¢* for the successor of the label ¢ along the knot, and %"
for the successor of i* (these are i + 1 and i + 2 if the labelling is by consecutive integers).
Also, “1” will always refer to the label of the first edge, and “2n + 1”7 will always refer to the
label of the last.

We let A be the (2n + 1) x (2n + 1) matrix of Laurent polynomials in the formal variable
T defined by

A=T=Y (T*Ejgs + (1= T*)E;ju + i),

where I is the identity matrix and E,s denotes the elementary matrix with 1 in row a and
column /3 and zeros elsewhere. The summation is over the crossings ¢ = (s,i,7) of the
diagram D, and once c is chosen, s denotes its sign and ¢ and j denote the labels below the
crossing where the label ¢ belongs to the over-strand and j to the under-strand.
Alternatively, A = I+ A., where A, is a matrix of zeros except for the blocks as follows:

j+ki+

h

s=+1

| column it column j*
— row 1% —Ts 5 —1 (1)
row j 0 -1

1

We note (as we did in [BV1]) that the determinant of A is equal up to a unit to the
normalized Alexander polynomial A of K. In fact, we have that

A = ToP)—0(D)/2 et ( A), (2)

where ¢(D) = Y}, ¢, is the total rotation number of D and where w(D) = > s. is the
writhe of D, namely the sum of the signs s, of all the crossings ¢ in D.
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We let G = (gop) = A™' and, thinking of it as a function g5 of a pair of edges « and
B, we call it the Green function of the diagram D. When inspired by physics (e.g. [BN1])
we sometimes call it “the 2-point function”, and when thinking of car traffic (e.g. [BN2]) we
sometimes call it “the traffic function”.

We note that the computation of GG is the bottleneck in the computation of ©. It requires
inverting a (2n+ 1) x (2n + 1) matrix whose entries that are (degree 1) Laurent polynomials
in T. It’s a daunting task yet it takes polynomial time, it can be performed in practice even
if n is in the hundreds, and everything Which_f@s is easier.

)
2.2. New Formulas. Let 77 and 75 be indeteminates and let T3 := T1T,. Let A, =
A/(T - T,)) and Gy, = (guap) == G /(T — T,) be A and G affected by the substitution
T — T,, where v = 1,2,3 (these are easy to compute once A and G have been computed).
The formulas for # depend on three fixed polynomials Rj;(c), Ria(co,c1) and T'y(p, k)
in the g,qp’s, which we admit, are rather ugly. So we prefer to assert their existance and
postpone displaying them to a few paragraphs later.

Theorem 1 (Proof in Section 4). With ¢ = (s,1,7), co = (So,%0,J0), and ¢; = (s1,141,71)
denoting crossings, there is a quadratic polynomial Ry1(c) € Q(T1, Ta)[gvas : @, B € {i,7}] in
the guap’s with coefficients in the ring of rational functions in Ty and Ty and with o, 5 € {i, j},
and similarly a cubic Rya(co, 1) € Q(Th,T2)[guap © @, B € {i0, Jo, 11, J1}], and a linear T'1(p, k)
such that the following is a knot invariant:

Q(D) = AlAgAg (Z RH(C) + Z R12(Co, Cl) + Zrl(g@k, k‘)) E (3)

€0,C1 k

We note without detail that there is an alternative formula for 6 in terms of perturbed
Gaussian integration [BN1]. In that language, and using also the traffic motifs of [BV1, BN2],
the three summands in (3) become Feynman diagrams for processes in which cars governed
by parameter T' = 17, T5, or T3 interact:

v @3 7
D m D
N y
5= 00 1970
0 Jo 1

\_/ k 5
\ 55, J

In particular, the middle diagram which resembles the greek letter © gave the invariant
its name.

We note also that computationaly, the worst term in (3) is the middle one, and even it
takes merely ~ n? operations in the ring Q(71, T3).

The polynomials Rj;(c), Ria(co,c1) and I'y(p, k) are not unique, and we are not certain
that we have the cleanest possible formulas for them. As admitted, they are human-ugly.
Yet from a computational perspective, having 18 terms (as is the case for Pr{w;%)y isn’t

(M
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really a problem; computers don’t care. Anyway, here are the formulas:

Ri1(c)=s[1/2 — gs3ii + T5 g1ii92ji — T5 9355925 — (T5 —1)g3iiG2;i
+(T5 —1) 92519350 — G925 + 293925 + G1:i93j5 — 92 935]

s S S S
+ e LI = 1)T5 (93359151 — 92359151 + T3915i923s)
2
+ (15 =1) (930 — T3 9viig3ji + 92639355 + (15 —2) 925 935:)

—(T7 =1)(T5+1) (15 —1)g1;:9354]

s1(T7° = 1)(T5" —1) 91,60 93j0is
o1

Ti(p, k) = p(=1/2 + ga)

R12(Co, 01) =

(75° 924140 + G2jrdo — T5° 925160 — G2indo)

3. IMPLEMENTATION AND EXAMPLES

A concise yet reasonably efficient implementation is worth a thousand formulas. It com-
pletely removes ambiguities, it tests the theories, and it allows for experimentation. Hence
our next task is to implement. The section that follows was generated from a Mathemat-
ica [Wo] notebook which is available at [BV2, Theta.nb].

We start by loading the package KnotTheory‘ — it is only needed because it hgd many
specific knots pre-defined: }/1(,15

G_B << KnotTheory"

E%% Loading KnotTheory™ version of October 29, 2024, 10:29:52.1301.
~ Read more at http://katlas.org/wiki/KnotTheory.

Next we quietly define the commands Rot, used to compute rotation numbers, and PolyPlot,
used to plot polynomials as bar codes and as hexagonal QR codes. Neither is a part of the
core of the computation of O, so neither is shown; yet we do show some usage examples.

G;D (» Rot suppressed x)
@ Rot[Mirror@Knot[3, 1]]
01,1, 4), (1,3, 6), (1,5, 2}, (0, 0, 0, -1, 0, 0})
We urge the reader to compare the above output with the knot diagram in Section 2.1.

/O_E (+ PolyPlot suppressed )

(
g

@ PolyPlot[{T-1+T%, T;+2T,-2T;'T;'}, ImageSize » Tiny]




A VERY FAST, VERY STRONG, TOPOLOGICALLY MEANINGFUL AND FUN KNOT INVARIANT 7

[BN1]
[BN2]
[BV1]

[BV2]

4. PROOF OF INVARIANCE
5. STRONG AND MEANINGFUL

6. CONJECTURES AND DREAMS

REFERENCES

Dror Bar-Natan, Knot Invariants from Finite Dimensional Integration, talks in Beijing (July 2024,
http://drorbn.net/icbs24) and in Geneva (August 2024, http://drorbn.net/ge24). See pp. 5.

Dror Bar-Natan, The Strongest Genuinely Computable Knot Invariant in 2024, talk given in Toronto
(October 2024, http://drorbn.net/to24). See pp. 5.

D. Bar-Natan and R. van der Veen, A Perturbed-Alexander Invariant, Quantum Topology 15 (2024)
449-472, arXiv:2206.12298. See pp. 2, 4, 5.

D. Bar-Natan and R. van der Veen, A Very Fast, Very Strong, Topologically Meaningful and Fun
Knot Invariant, (self-reference), paper and related files at http://drorbn.net/Theta. The arXiv:

[DHOEBL] N. Dunfield, A. Hirani, M. Obeidin, A. Ehrenberg, S. Bhattacharyya, D. Lei, and others, Random

[GR]
[Kr]
[Oh]

[Rol]

[Ro2]
[Ro3]

[Wo

Knots: A Preliminary Report, lecture notes at https://nmd.web.illinois.edu/slides/random_
knots.pdf. Also a data file at https://drorbn.net/AcademicPensieve/People/Dunfield/nmd_
random_knots. See pp. 4.

S. Garoufalidis and L. Rozansky, The Loop Expansion of the Kontsevich Integral, the Null-Move, and
S-Equivalence, arXiv:math.GT/0003187. See pp. 1.

A. Kricker, The Lines of the Kontsevich Integral and Rozansky’s Rationality Conjecture, arXiv:
math/0005284. See pp. 1.

T. Ohtsuki, On the 2-Loop Polynomial of Knots, Geometry & Topology 11 (2007) 1357-1475. See
pp- 1.

L. Rozansky, A Contribution of the Trivial Flat Connection to the Jones Polynomial and Witten’s
Invariant of 3D Manifolds, I, Comm. Math. Phys. 175-2 (1996) 275-296, arXiv:hep-th/9401061. See
pp- 1.

L. Rozansky, The Universal R-Matriz, Burau Representation and the Melvin-Morton Ezpansion of
the Colored Jones Polynomial, Adv. Math. 134-1 (1998) 1-31, arXiv:g-alg/9604005. See pp. 1.

L. Rozansky, A Universal U(1)-RCC Invariant of Links and Rationality Conjecture, arXiv:
math/0201139. See pp. 1.

Wolfram  Language & System Documentation Center, https://reference.wolfram.com/
language/. See pp. 6.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO ONTARIO M5S 2E4, CANADA
Email address: drorbn@math.toronto.edu
URL: http://www.math.toronto.edu/drorbn

UNIVERSITY OF GRONINGEN, BERNOULLI INSTITUTE, P.O. Box 407, 9700 AK GRONINGEN, THE
NETHERLANDS

Email address: roland.mathematics@gmail.com

URL: http://www.rolandvdv.nl/



Rov.rt e g (oo oF QT;

A VERY FAST, VERY STRONG, TOPOLOGICALLY MEANINGFUL
AND FUN KNOT INVARIANT

DROR BAR-NATAN AND ROLAND VAN DER VEEN

ABSTRACT. In this paper we introduce ® = (A, ), a pair of polynomial knot invariants

which is:

e Theoretically and practically fast: © can be computed in polynomial time and we com-
puted it in full on random knots with over 300 crossings, and its evaluation on on simple
rational numbers on random knots with over 700 crossings.

e Strong: Its separation power is much greater than, say, the HOMFLY-PT polynomial and
Khovanov homology (taken together) on knots with up to 15 crossings (while computing
much faster).

e Topologically meaningful: It gives a genus bound, and there are reasons to hope that it
would do more.

“—;) V e Fun: Scroll to Figures 1.1 zmdrlQMf(j T 12

A is merely the Alexander polynomial. 6 is almost certainly equal to an invariant that

was studied extensively by Ohtsuki [Oh], continuing Rozansky, Garoufalidis, and Kricker

[GR, Rol, Ro2, Ro3, Kr]. Yet our formulas, proofs, and programs are much simpler and

enable its computation even on very large knots.

CONTENTS
1. Fun 1
2.  Formulas 2
2.1. Old Formulas 2
2.2. New Formulas 5!
3. Implementation and Examples 6
4. Proof of Invariance 10
5. Strong and Meaningful 14
6. Conjectures and Dreams 14
References 14
1. Fun

The word “fun” rarely appears in the title of a math paper, so let us start with a brief
justification.

Date: First edition Not Yet. This edition December 15, 2024.

2020 Mathematics Subject Classification. Primary 57K14, secondary 16T99.

Key words and phrases. Alexander polynomial, TBW .

This work was partially supported by NSERC grant RGPIN-2018-04350 and by the Chu Family Foun-
dation (NYC). It is available in electronic form, along with source files and a demo Mathematica notebook
at http://drorbn.net/Theta and at arXiv:7777.77777.
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2 DROR BAR-NATAN AND ROLAND VAN DER VEEN

© is a pair of polynomials. The first, A, is old news, the Alexander polynomial [Al]. Tt is
a one-variable Laurent polynomial in a variable T. For example, A(&) =T —1+T. We
turn such a polynomial to a list of coefficients (for &, it is (1 — 1 1)), and then to a chain
of bars of varying colours: white for the zero coefficients, and red and blue for the positive
and negative coefficients (with intensity proportional to the magnitude of the coefficients).
The result is a “bar code”, and for the trefoil & is it [l

Similiarly, @ is a 2-variable Laurent polynomial, in variables 7} and 75.

We can turn such a polynomial into a 2D array of coefficients and then L. |[=hik

using the same rules, into a 2D array of colours, namely into a picture! 1

To highlight a certain conjectured hexagonal symmetry of the resulting T i

pictures, we apply a certain shear transformation to the plane before 1l
T1 Ty Tz

printing. So the colour of a monomial ¢7T7"75? gets printed at position
1 —1/2\ (n1) . - . o '
(0 V3 /2> (n2> instead of the more traditional (n2> On the right is the 2D picture

corresponding to the polynomial 2 + Ty — 11Ty + Ty — T, + Ty Mt — Tyt
Thus © becomes a pair of pictures: a bar code, and a 2D picture that we call a “hexagonal
QR code”. For the knots in the Rolfsen table (with the unknot prepended at the start), they
are in Figure 1.1. In addition, the hexagonal QR codes of some 15 knots with > 300 crossings
—# are in Figure 1. 2 NS &@ OfF A ;j%of‘a s £/~ faf’m kmﬁl IS 1 £ ./—;2’2\7
Clearly there are patterns in Flg"lIfe'S"_\‘l_Lré—— 2. There is athexaginaDsymmetry and th *
’JQR codes are nearly always hexagons (these are independent propertles). Mirch—more can
che seen in Figure 1.1. In Figure 1.2 there seem to be large-scale “sand table patterns” o
“diffraction patterns”. We can’t prove any of these things, and the last one, we can’t even
formulate properly. Yet they are clearly there, too clear to be the result of Chance alone. \
We plan to have fun over the next few years observing and proving these patterns. We NMJ-WJJ
hope that others will join us too.

L\ls 5

2. FORMULAS

1. Old Formulas'. The setup leading to the definition of © is the same as the setup
leading to the definition of the invariant p; of [BV1], and hence we copy a few relevant
paragraphs from [BV1] nearly varbatim, with only a few exea

modificationv

vamarrad
TSVEES

1401d” means that these formulas appeared already in [BV1].
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FIGURE 1.1. © as a bar code and a hexagonal QR code, for all the knots in the Rolfsen

table.
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v

Change to
honeycomb

FIGURE 1.2. 0 (hexagonal QR code only) of the 15 largest knots that we have com-
puted by September 16, 2024. They are all “generic” in as much as we know, and they
all have > 300 crossings. The knots come from [DHOEBL].

Given an oriented n-crossing knot K, we draw it in the plane as a long D
knot diagram D in such a way that the two strands intersecting at each
crossing are pointing up (that’s always possible because we can always rotate 7
crossings as needed), and so that at its beginning and at its end the knot
is oriented upward. We call such a diagram an upright knot diagram. An
example of an upright knot diagram is shown on the right. sl 6

We then label each edge of the diagram with two integer labels: a running k
index k& which runs from 1 to 2n + 1, and a “rotation number” ¢y, the
geometric rotation number of that edge (the signed number of times the

4
{3
tangent to the edge is horizontal and heading right, with cups counted with k
+1 signs and caps with —1; this number is well defined because at their \
1 U

pa=—1

ends, all edges are headed up). On the right the running index runs from 1
to 7, and the rotation numbers fQrall edges are 0 (and hence are omitted)
except for ¢4, which is —1.  InseftA

A Technicality. Some Reidemeister moves create or lose an edge and to avoid the need
for renumbering it is beneficial to also allow labelling the edges with non-consecutive labels. | Move to
Hence we allow that, and write ¢* for the successor of the label ¢ along the knot, and ¢t ﬂ}aecg?tt is
for the successor of i* (these are i + 1 and i + 2 if the labelling is by consecutive integers). 3sed
Also, “1” will always refer to the label of the first edge, and “2n + 1”7 will always refer to the
label of the last.

We let A be the (2n + 1) x (2n + 1) matrix of Laurent polynomials in %formal variable
T ;deﬁned by

A:=1— Z (T°Eiir + (1 =T°)Eij+ + Ejj+),

v Define X to be the set of all crossings in the diagram, where we encode each
crossing as a triple (sign, overpass, underpass). In our example knot we have

X ={(1,1,4),(1,5,2),(1,3,6)}
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where [ is the identity matrix and E,g denotes the elementary matrix with 1 in row a and
column [ and zeros elsewhere. The summation is over the crossings ¢ = (s,4,j) of the
diagram D, and once c is chosen, s denotes its sign and ¢ and j denote the labels below the
crossing where the label i belongs to the over-strand and j to the under-strand.
Alternatively, A = I+ A., where A. is a matrix of zeros except for the blocks as follows:

j+&i+

h

s=+1

| column it column j*
— TOW ! 75 -1 (1)
row j 0 =

1

We note (as we did in [BV1]) that the determinant of A is equal up to a unit to the
normalized Alexander polynomial A of K. In fact, we have that

A = T(eD)=wD)/2 det(A), (2)

where p(D) = >, ¢k is the total rotation number of D and where w(D) = ) s. is the
writhe of D, namely the sum of the signs s. of all the crossings ¢ in D.

We let G = (go5) = A~ and, thinking of it as a function g,z of a pair of edges o and
B, we call it the Green function of the diagram D. When inspired by physics (e.g. [BN1])
we sometimes call it “the 2-point function”, and when thinking of car traffic (e.g. [BN2]) we
sometimes call it “the traffic function”.

We note that the computation of GG is the bottleneck in the computation of ©. It requires
inverting a (2n + 1) x (2n + 1) matrix whose entries thgt, are (degree 1) Laurent polynomials
in T'. It’s a daunting task yet it takes polynomial time, it can be performed in practice even
if n is in the hundreds, and everything which then follows is easier.

2.2. New Formulas. Let 7} and T, be indeteminates and let T3 = T17,. Let A,

Too Ml iL"‘ff\@T — T,) and G, = (guap) = G /(T — T,) be A and G aﬁeéé’vyhthe substltutlon JHM# £

T,, where v = 1,2, 3 (these are easy to compute once A and G have been computed).

nd Tl The formulas for ¢ aeﬁeﬂd—ﬁﬁ—%‘%xe-e_ﬁx_d_nnlvnomlals Fi(c), F5(co, 1) and F3(p, k) in the
forim L/t grey’s which we admit—are rather ugly. So we prefor to-assert their existance and postpone —
Y dhat wp - displeyingthemto-afew paragraphs later

Theorem 1 (Proof in Section 4). With ¢ = (s,i,7), co = (So,%0,J0), and ¢1 = (s1,41,71)

a’

denotmg crossings, there is a quadratic polynomial Fy(c) € Q(T1,Ts)[gvap : @, 5 € {i,j}] in I"'

the gyap s with coefficients in the ring of rational functions in Ty and Ty and with o, 5 € {i, j}, j

and similarly a cubic Fy(co,c1) € Q(T1, T2)[Gvas : ., B € {i0,Jo, 11, 71}], and a lmear Fs5(p, k)
such that the following is a knot invariant:

Q(D) = AlAQAg (Z Fl(C) + Z FQ(CO,Cl) + ZFg(QOk, k‘)) . (3)

€0,C1

We note without detail that there is an alternative formula for 6 in terms of perturbed
Gaussian integration [BN1]. In that language, and using also the traffic motifs of [BV1, BN2],
the three summands in (3) become Feynman diagrams for processes in which cars governed
by parameter T' = 11, T5, or T3 interact:

_W{/
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( @3 h
D /_\ D
N N
e dle
20 ]0\/21 n 7
\ 5, Y,

In particular, the middle diagram which resembles the greek letter © gave the invariant
its name.
" We note also that computationaly, the worst ter 1s the middle one, and even it

—/ takes merely ~ n? operations in the ring Q(7%, T3) 1[;

The polynomials Fi(c), Fy(co,c1) and F3(p, k) are not unlque and we are not certain that
we have the cleanest possible formulas for them. As admitted, they are human-ugly. Yet
from a computational perspective, haying 18 terms (as is the case for Fi(c)) isn’t really a

ﬂ problem; computers don’t care. Ay »Here are the formulas:

{
: Fi(e)=5[1/2 — g3ii + T5 91ii925i — 15 93j;925i — (L5 —1)gsiig2;i
+(T§_1)g2jig3ji — G1ii9255 + 293119255 + G1ii935; — 92ii935;]

W [(Ts 1)T2S (g3jjglji — 925915 + T2891jz‘92jz‘)

TS 1
CQ %ff’ + (15 =1) (9350 — T5 1iag3si + 9219351 + (15 —2)g2559351)
W ~(TF = D)(T+ DT~ Darigan] (4)
s1(T7° = D(T5" —1) 9151603500

F2(CO> Cl) =

T (15° g2irio + 9250jo — 15" G2j1i0 — 92irjo) (D)
% k‘ g3kk - 1/2) (6)
ﬁ.__ﬁa-gu Z f'\,\/cﬁl.f./dzh

3. IMPLEMENTATION AND EXAMPLES

A concise yet reasonably efficient implementation is worth a thousand formulas. It com-
pletely removes ambiguities, it tests the theories, and it allows for experimentation. Hence
our next task is to implement. The section that follows was generated fropa a Mathemat-

ica [Wo] notebook which is available at [BV2, Theta.nb]. Also include a link to https:/www.rolandvdv.nl/Theta/

We start by loading the package KnotTheory‘ — it is only needed because it has many
specific knots pre-defined:

@ << KnotTheory"

% Loading KnotTheory™ version of October 29, 2024, 10:29:52.1301.
Read more at http://katlas.org/wiki/KnotTheory.

Next we quietly define the commands Rot, used to compute rotation numbers, and PolyPlot,
used to plot polynomials as bar codes and as hexagonal QR codes. Neither is a part of the
core of the computation of O, so neither is shown; yet we do show -some-usageexamples—
i OnL usage Sheply
°%) (« Rot d =
(22) (» Rot suppressed x) (‘\0/_ ([V\{,L-\

@_9 Rot[MirroreKnot[3, 1]]

X3
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Vg
—) NN L ©
%{{{1: 1, 43, {1, 3, 6}, {1, 5, 2}}, {0, 0,0, -1, 0, 8}}

We urge the reader to compare the above output with the knot diagram in Section 2.1.

@ (+ PolyPlot suppressed )

(2) PolyPlot[{T-1+T7, T1+2T,-4T'T;'}, ImageSize - Tiny)]L v

’ér‘ﬂﬁ—) Tt
g _

A

\_/wle‘d;cm the reader to reﬂprf on how the “OR 0 de” part of ve-piettire-cor
+o-t 11T

@)
'
»n

Next, we decree that T3 = T1T2 and deﬁne the three ‘Feynman Diagram” polynomials F},
Fy, and F; (those definitions are printed in a smaller font because they are equal to what
was already printed in (4)—(6)):

\=/
—
(5 0) 5 1 (T1 - 1) T3 8155 8255 (T2 - 1) T3 815: 8255
\O °) Fal{1, i, 3 )] = 5 T2 81ii 82ji + % - 81ii 8235 - 7” - 83ii + (1 -T2) 8251 83ii + 2 8255 B3ii +
7 2 =
‘ " (T3-1) 8351 T2 (T3-1) 81338355 (T1-1) (T2+1) (T3-1) 814i 8355 (T3-1) 8215 8351 (T2-2) (T3-1) 8255 8351
- - + + (T3 -1) 825i 8351 + +
o Tt T —ih = Tl
(T1-1) T2 gaji 8355
81ii 83jj + ———————— - B2ii 8335 — T2 825i 83535
il
;B L 1 81821 (T1-1) 814i 824i (T1 - 1) 8151 8255 (T2 - 1) 8251 83ii
D) Fal{-1, i, }]=-=-—0_ = Jl*‘gliigljj* T = u-ZEzjjgaii—
P 2 T, T, (T2-1) T, Ty (T2-1) T,
‘ '] (T3-1) 83ji  (T3-1) 814i 8351 (T1-1) (Ta+1) (T3-1) 815i 8331 (Ta-1) 82158355 (T3-1) 825 8355 (2T2-1) (T3 -1) 8255 8341
+ - - + + -
Ty (T2-1) T (T2-1) T, T (T,-1) T, Ty (T2-1) T3 T (T2-1) T,
(T1-1) 811 8345 82ji 8335
, QG 81ii 83jj — & 82ii 835 + M;
(Inty Ti (T2-1) v

(T1-1) T (T3 - 1) 81,541,i0 82,i1,i0 83,0,i1  (T1 - 1) (T3 - 1) 81,51,ie0 82,i1,je 83, je,i1

o

F2[{1, 10_, jo_}, {1, i1, ji_}] =

-
DE

T,-1 T,-1
(T1 -1) T, (T3 -1) 81,j1,i0 82,51,10 83,j6,i1  (T1-1) (T3-1) B1,51,10 82,31,50 83,50,i1 _
[~ T,-1 ' T2-1 ’
/oia Fa[{1, 10, 30}, {-1, i1, j1_}] = (T1 -1) T; (T3 - 1) 81,51,ie 82,i1,1i0 83,5e,i1 . (T1-1) (T3 -1) 81,51,ie 82,11, jeo 83,5e,i1 A
% Ty (T2-1) Ty (T2-1)
Y] (T1-1) T (T3 -1) 81,j1,i0 82,j1,10 83,j0,i1  (T1-1) (T3-1) 81,51,i0 82,51,50 83,j0,i1 _
Ty (T,-1) ) Ty (T2-1) ’

(T -1) (T3 -1) 81,41,i0 82,i1,i0 83,j0,i1  (T1 = 1) (T3 -1) 81, 41,10 82,i1,j0 83,5e,i1
+ +

F2[{-1, i6_, j6_}, {1, i1_, j1_}]=-

D,

Ti(T2-1) T T1 (T2-1)
(Ty-1) (T3-1) 81,41,i0 82,41,i0 83,j0,i1  (T1 - 1) (T3 -1) 81, 41,10 82,41, j0 83,5e,i1 .
- 3
Ti(T2-1) T Ti (T2-1)
7 (T1 -1) (T3 -1) 81,51,i0 82,i1,i0 83,j0,i1  (T1-1) (T3 -1) 81,41,i0 82,11, 50 83,5e,i1
QF:[(lw,Je},cl,u,ﬂ}]- - - e
= T1(T-1) T, T3 (T2 -1)
g (T1-1) (T3 -1) 81,41,i0 82,41,i0 83,j0,i1  (T1-1) (T3 -1) 81,j1,ie 82,1, 50 83,7, 11
+
(-1 T, T3 (T2-1)

@9 F3[o s R.]1=08wk-0/2;
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Next comes the main program computing ©. Fortunately, it matches perfectly with the
mathematical description in Section 2. In line 01 we let Cs be the list of crossings in an input
v knot K, and ¢ the list of its rotation numbers, using the external program Rot which we
—] have already mentiong, We also let n be the length of Cs, namely, the number of crossings
in K. In line 02 we let the starting value of A be the identity matrix, and then in line 03, for
each crossing in Cs we add to A a 2 x 2 block, in rows ¢ and j and columns 7 + 1 and 7 + 1,
as explain in Equation (1). In line 04 we compute the normalized Alexander polynomial A
as in (2). In line 05 we let G be the inverse of A. In line 06 we declare what it means to
evaluate, ev, a formula £ that may contain symbols of the form g¢,,s3: each such symbol is
to be replaced by the entry in position «, 8 of G, but with T replaced with 7,. In line 07 we
start computing 6 by computing the first summand in (3), which in itself, is a sum over the
crossings of the knot. In line 08 we add to # the double sum corresponding to the second
term in (3), and in line 09, we add the third summand of (3). Finally, line 10 outputs a pair:

A, and the re-normalized version of 6.

N

(°°) o[K_] := ©[K] =Modu1e[{Cs, @, n, A, A, G, ev, 8},

,f/ (/’75 e/

c
LY] («+ @1 «) {Cs, @} =Rot[K]; n = Length[Cs];
(«+ 02 «) A =IdentityMatrix[2n+1]; C g/r}f%;,\q
.. . . . = e ) ~
(# 03 ) Cases[Cs, {s ,1,7 }» (A|[{1, I}, {1+1, J+1}] += ( 0 _1 ))], 7[0 q']\@

(x B4 «) A=T(—Total[q)]—Total[Csl[All,l]]])/2 Det [A];
(« @5 %) G =Inverse[A];
(« 06 *) ev[&_ ] :=Factor[& /.8, ,o,s = (Gla, B /. T>T,)1; \/Q/_S/"fj}'/ﬁ
n . b
(« 87 ) O = ev[zk=1F1[CSIIk]]]].-
n n .
(x 08 x) @+=ev[yl SV FlCs[kil, Cs[k211];
2n .
(x B9 %) @ += eV[Zk=1F3[(P[[k]]) k]]!
(«+ 10 +) Factor@{a, (A/.T->Ty) (A/.T>Ty) (A/.T>T;) 6}

On to examples! Starting with the trefoil knot.

M FMD};—O\/ Expand[©[Knot[3, 1]]]

Q PolyPlot[®[Knot[3, 1]], ImageSize - Tiny]
6
(°°) @[Knot[3, 1]]

{1—T+T2 _1-T1+T§-T2-TiT2+T§+T‘1‘T§-T1T§-T‘1‘T3+T§T‘2‘-TiT‘2‘+T‘1‘T‘2‘}
T

)

Next are the Conway knot 11,34 and the Kinoshita-Terasaka C
knot 11,42. The two are mutants and famously hard to separate: /D /)(D
they both have A = 1 (as evidenced by their one-bar bar codes / YA
S N

below), and they have the same HOMFLY-PT polynomial and
Khovanov homology. Yet their 6 invariants are different. Note
that the genus of the Conway knot is 3, while the genus of the Kinoshita-Terasaka knot is 2.
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This agrees with the apparent higher complexity of the QR code of the Conway polynomial,
and with the observations in Section 5.

PolyPlot[@[Knot[#]], ImageSize -» Small] & /@ {"K11n34", "K11n42"}

-

Torus knots have particularly nice-looking © invariants. Here are the torus knots Ti3s,
Th7/3, T135, and Trg:

@ GraphicsGrid[ {

n TubePlot [TorusKnot ee #] & /@ { {13, 2}, {17, 3}, {13, 5}, {7, 6}},
PolyPlot[e[TorusKnot ee #]] & /@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}}
}

Jl{‘\ oo Bantme o O et O

The next line shows the computation time i$ seconds for the 132-crossing torus knot Ths /7
on a 2024 laptop, without actually showing the output. The output plot is in Figure 3.1.

AbsoluteTiming[@ [TorusKnot[22, 7]];]
{715.344, Null}

wdl Ao ﬂmmcnﬂ(
Com/».,’k’\hﬁ 1
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ImageCompose [PolyPlot [6 [TorusKnot[22, 7]], ImageSize » 7207,
TubePlot [TorusKnot[22, 7], ImageSize -» 360], {Right, Bottom}, {Right, Bottom}]
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e PR EOERERRARNRDDDDREN NN
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FIGURE 3.1. The 132-crossing torus knot T53/7 and a plot of its © invariant

" 4. PROOF OF INVARIANCE

Our proof of the inﬁ%ylf&mce of 6 (Theorem 1) is very similar, and uses many of the same
pieces, as the proofy of ‘invariance of p; in [BV1]. Thus instead of repeating everything we
just summarize those steps that are identical and then provide the needed details for the
steps that differ.

Like in [BV1, Lemma 3], we know that for any crossing ¢ = (s,,7) in a knot diagram D,
the Green functions G, = (g,ap) of D satisfy the following “g-rules” for v = 1,2, 3 and with
0 denoting the Kronecker delta:

Gvis = 0ig + Tgui+ g+ (L =T))guj+ 8, Gujp = 0jp + Guj+ 85
Gait =T, Gvai + Oyt Iv,ajt = Guaj T (1 =T )guas -+ Ocv,j+-

(7)
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FIGURE 4.1. The Green functions g,z are invariant under Reidemeister moves per-
formed away from where they are measured.

c)~» o | </~ -

7R11 Rlr (\> g R2b J Roc
L L

L\ T \1 @“%
/

N

FIGURE 4.2. The upright Reidemeister moves: Reidemeister 1 left and right, Reide-
meister 2 braid-like and cyclic, Reidemeister 3, and (the +) Swirl.

The following theorem, a consequence of the g-rules above and/or of the interpretation of
g as a traffic function as in [BV1], was not named in [BV1], yet it was stated there as the
first part of the first proof of [BV1, Theorem 1]. It is proven by a simple verification for each
of the upright Reidemeister moves, and these verifications appear as the first halves of [BV1,
Propositions 6-9] for R3, R2¢, R1l (and with R1r, R2b, and Sw* omif /ﬂ\@orewty)

¢

Theorem 2. The Green functions g,qs are “relative invariants”, meaning that once edges
a and B are fivzed within a knot diagram D, the values of guap do not change if Reidemeister
moves are performed away from the edges a and 5. An illustration appears in Figure j.1.

We can now move on to the main part of the proof of Theorem 1. As follows from [BV1,
Theorem 2], we need to prove the invariance of # under the “upright Reidemeister” moves
of Figure 4.2. We start with the hardest, R3:

Proposition 3. The quantity 0 is invariant under RS3.

Proof. Let D; and D, be two knot diagrams that differ only by an R3 move, and label their
relevant edges and crossings as in Figure 4.3. Let gf,aﬁ and g7 5 be their corresponding Green
functions. Let F{(c), F3(co,c1) and Fi(p, k) be defined from g/, 5 as in (4)-(6), and similarly
make FY, Iy and F3 using g,

——=—By the invariance of the Alexander polynomial, the pre-factor A;A;Aj3 is the same for

0(D') and for §(D") (see Equation (3)). By Theorem 2, g\ 5 = g,,5 so long as a, 3 ¢
{i*,77,kT}. And so the only terms that may differ in §(D") between h = [ and h = r are
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i i \j k
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FIGURE 4.3. The two sides D' and D" of the R3 move. The left side D' consists of 3
distinuighed crossings ¢ = (1,7,k), ¢, = (1,4,k"), ¢4 = (1,i",j*) and a collection of
further crossings ¢, = (s,m,n) € Y, where Y is the set of crossings not participating
in the R3 move. The right side D" consists of ¢| = (1,4,j), ¢4 = (1,i*,k), ¢ =
(1,5%, k™) and the same set Y of further crossings c,.

the terms
A=Y Fl(e)+ ), Fi(co,c1), B"= D>, F(co,c,), and C" = ) F(cy,c1). (8)
ce{c’f72?3} 00,016{0{17273} 006{0?7273},01“,6)/ cle{c?’zys},cer

We claim that A = A", B! = B", and C' = C".

To show that A' = A", we need to compare polynomials in gf,aﬂ with polynomials in g4 in
which o and 3 may belong to the set {i™, 77, k*} on which it may be that ¢' # ¢". Fortunately
the g-rules of Equation (7) allow us to rewrite the offending ¢’s, namely the ones with
subscripts in {i*, j 7, kT}, in terms of other g’s whose subscripts are in {7, j, k, ™", 777 k*tT},
where ¢! = ¢". So it is enough to show that

Al /. (the g-rules for ¢, ¢}, ) = A" /. (the g-rules for ¢}, c, c3) under ¢' = ¢",  (9)

where the symbol /. means “apply the rules”. This is a finite computation that can in-
principle be carried out by hand. But each A" is a sum of 349 = 12 polynomials in the g"’s,
these polynomials are rather unpleasant (see (4) and (5)), and applying the relevant g-rules
adds a bit further to the complexity. Luckily, we can delegate this pages-long calculation to
an entity that doesn’t complain.

First, we implement the Kronecker d-function, the g-rules for a crossing (s,1,7), and the
g-rules for a list of crossings X:

Cj\ 6i ,j = LR[A=E= e 1N ol
é gRules[{s_Integer, i_, j_}] :={
8, js 2 8yjtst06jss By in Ti Britp + (1 - Ti) 8,55+ 0is,
8y o it Ti 8yvai * Oaits 8y a j* P Bvaj t (1 = Ti) 8vai + 5aj+
}s
gRules[{X _ List}] :=Union@e Table[gRules[c], {c, {X}}]
We then let X1 be the three crossings in the left-hand-side of the R3 move, as in Figure 4.3,
we let Al be the A! term of (8), and we let 1hs be the result of applying the g-rules for the

crossings in X1 to A1. We print only a “Short” version of 1hs because the full thing would
cover about 2.5 pages:
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@Xl: {{1, 3, k}, {1, i, k+}: {1, i*, j+}}5
@ Al = Sum[F,[c], {c, X1}] + Sum[F,[c@, c1], {c@, X1}, {c1, X1}];
lhs = Simplify[Al //. gRules[X1]];
Short[1lhs, 5]

] 1
g ‘m (3— 3Ty + <«<128>> +2 (1-Ty) Ta 8y, (k) .1 <1+ (1-T1T2) 83, (k),5 +g3,(k+)+,k> +
2(1-Tp) (1+T5 (T2 Bo (i) 70 = (=deTy) gz,(j*)*,i) - (-1+Ty) gz,(k*)*,i)
(L+ (1-TaTa) 8, (k%)*,5 + 83, (k*)*,k) )

We do the same for A", except this time, without printing at all:
(o) Xr = ({1, i, 3}, {1, i*, k}, {1, §*, k*'}};

@ Ar =Sum[Fy[c], {c, Xr}] + Sum[F,[cO, c1], {cO, Xr}, {cl, Xr}];
rhs = Simplify[Ar //. gRules[Xr]];

We then compare 1hs with rhs. The output, True, tells us that we have proven (9):

(_) Simplify[lhs == rhs]

g True

We show that B! = B" by following exactly the same procedure. Note that we ignore the
summation over ¢, and instead treat it as fixed. If an equality is proven for every fixed c,,
it is of course also proven for the sum over ¢, € Y. Note also that we repeat the test twice,
for the two choices of the sign of c,:

D\J‘/’__ @Table[

" J&f»

(@) cy={(s,mn};
lhs = Sum[F,[c@, cy], {cO, X1}] //. gRules[X1];
rhs = Sum[F,[c@, cy], {cO, Xr}] //. gRules[Xr];
Simplify[lhs == rhs],

{s, {1: '1}}

g {True, True}

Similarly we prove that C' = C", and this concludes the proof of Proposition 3.

(c9) Table[

L cy = {s, m, n};
lhs = Sum[F,[cy, c1], {c1, X1}] //. gRules[X1];
rhs = Sum[F,[cy, c1], {c1, Xr}] //. gRules[Xr];
Simplify[lhs == rhs],
{s, {1, '1}}

g {True, True}



14 DROR BAR-NATAN AND ROLAND VAN DER VEEN

Remark 4. The computations above were carried out for generic g,,s and for a generic
¢y = (s,m,n); namely, without specifying the knot diagrams in full, and hence without
assigning specific values to g,.3, and without specifying m and n. Under these conditions
the three parts of (8) cannot mix (namely, terms from, say, A" cannot cancel terms in B" or
C™), and so it would have been enough to show that E! = E", where E" combines A" and
B" and C" (and a few harmless further terms) by adding ¢, to the summation corresponding
to AP
E'= > FMo+ ), Fea)
06{0?72’3’?!} 00,016{0?72’3#}

But that’s a simpler computation:

o)
o/

;‘X]-: {{1, j, k}, {1, i, k*}, {1, 1%, 3%}};
@ Xr={{1, i, j}, {1, i*, k}, {1, 3%, k*}};
ESum[X ] := (Sum[F;[c], {c, X}] +Sum[F,[cO, c1], {cO, X}, {cl, X}]) //. gRules[X];
Table[
Simplify [ESum[Append[X1, {s, m, n}]] == ESum[Append [Xr, {s, m, n}]]1],

{S, {1: '1}}

Lo

1
g {True, True}

5. STRONG AND MEANINGFUL

6. CONJECTURES AND DREAMS
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A VERY FAST, VERY STRONG, TOPOLOGICALLY MEANINGFUL
AND FUN KNOT INVARIANT

DROR BAR-NATAN AND ROLAND VAN DER VEEN

ABSTRACT. In this paper we introduce © = (A, ), a pair of polynomial knot invariants

which is:

e Theoretically and practically fast: © can be computed in polynomial time and we com-
puted it in full on random knots with over 300 crossings, and its evaluation on on simple
rational numbers on random knots with over 700 crossings.

e Strong: Its separation power is much greater than, say, the HOMFLY-PT polynomial and
Khovanov homology (taken together) on knots with up to 15 crossings (while computing
much faster).

e Topologically meaningful: It gives a genus bound, and there are reasons to hope that it
would do more.

e Fun: Scroll to Figures 1.1, 1.2, and 3.1.

A is merely the Alexander polynomial. 6 is almost certainly equal to an invariant that

was studied extensively by Ohtsuki [Oh], continuing Rozansky, Garoufalidis, and Kricker

[GR, Rol, Ro2, Ro3, Kr]. Yet our formulas, proofs, and programs are much simpler and

enable its computation even on very large knots.
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1. Fun

The word “fun” rarely appears in the title of a math paper, so let us start with a brief
justification.

Date: First edition Not Yet. This edition January 23, 2025.

2020 Mathematics Subject Classification. Primary 57K14, secondary 16T99.

Key words and phrases. Alexander polynomial, TBW .
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© is a pair of polynomials. The first, A, is old news, the Alexander polynomial [Al]. Tt is
a one-variable Laurent polynomial in a variable T. For example, A($) =T! —1+T. We
turn such a polynomial to a list of coefficients (for &, it is (1 — 1 1)), and then to a chain
of bars of varying colours: white for the zero coefficients, and red and blue for the positive
and negative coefficients (with intensity proportional to the magnitude of the coefficients).
The result is a “bar code”, and for the trefoil & is it M.

Similiarly, @ is a 2-variable Laurent polynomial, in variables 7} and 75.
We can turn such a polynomial into a 2D array of coefficients and then
using the same rules, into a 2D array of colours, namely into a picture! 1 ‘ .
To highlight a certain conjectured hexagonal symmetry of the resulting T, !
pictures, we apply a certain shear transformation to the plane before 1 PRE
printing. So the colour of a monomial ¢7T7" 75 gets printed at position Il
((1) \—/;_)ﬁ) (Z;) instead of the more traditional (Z;) On the right is the 2D picture
corresponding to the polynomial 2 + Ty — 11Ty + Ty — T, + Ty Mt — Tyt

Thus © becomes a pair of pictures: a bar code, and a 2D picture that we call a “hexagonal
QR code”. For the knots in the Rolfsen table (with the unknot prepended at the start), they
are in Figure 1.1. In addition, the hexagonal QR codes of some 15 knots with > 300 crossings
are in Figure 1.2, and © of a 132-crossing torus knot is in Figure 3.1.

Clearly there are patterns in these figures. There is a hexagonal symmetry and the QR
codes are nearly always hexagons (these are independent properties). Much more can be seen
in Figure 1.1. In Figure 1.2 there seem to be large-scale “sand table patterns” or “diffraction
patterns”. We can’t prove any of these things, and the last one, we can’t even formulate
properly. Yet they are clearly there, too clear to be the result of chance alone.

We plan to have fun over the next few years observing and proving these patterns. We
hope that others will join us too.

2. FORMULAS

2.1. Old Formulas'. The setup leading to the definition of © is the same as the setup
leading to the definition of the invariant p; of [BV1], and hence we copy a few relevant
paragraphs from [BV1] nearly varbatim, with only a few modifications.

1401d” means that these formulas appeared already in [BV1].
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FIGURE 1.1. © as a bar code and a QR code, for all the knots in the Rolfsen table.
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FIGURE 1.2. 0 (hexagonal QR code only) of the 15 largest knots that we have com-
puted by September 16, 2024. They are all “generic” in as much as we know, and they
all have > 300 crossings. The knots come from [DHOEBL].

Given an oriented n-crossing knot K, we draw it in the plane as a long D
knot diagram D in such a way that the two strands intersecting at each
crossing are pointing up (that’s always possible because we can always rotate 7
crossings as needed), and so that at its beginning and at its end the knot
is oriented upward. We call such a diagram an upright knot diagram. An
example of an upright knot diagram is shown on the right. 3 >
We then label each edge of the diagram with two integer labels: a running k
index k& which runs from 1 to 2n + 1, and a “rotation number” ¢, the
geometric rotation number of that edge (the signed number of times the

4
{3
tangent to the edge is horizontal and heading right, with cups counted with k
+1 signs and caps with —1; this number is well defined because at their \
1 U

pg=—1

ends, all edges are headed up). On the right the running index runs from 1
to 7, and the rotation numbers for all edges are 0 (and hence are omitted)
except for ¢4, which is —1.
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Let X be the set of all crossings in the diagram D, where we encode each crossing as
a triple (sign, incoming over edge, incoming under edge). In our example we have X =
{(1,1,4),(1,5,2), (1,3,6)}.

We let A be the (2n + 1) x (2n + 1) matrix of Laurent polynomials in a formal variable
T, defined by

A=1-) (T°Eys + (1= T")Eije + Ejje),

where [ is the identity matrix and E,s denotes the elementary matrix with 1 in row « and
column [ and zeros elsewhere. The summation is over the crossings ¢ = (s,4,j) of the
diagram D, and once c is chosen, s denotes its sign and 7 and j denote the labels below the
crossing where the label ¢ belongs to the over-strand and j to the under-strand.
Alternatively, A = I+ A., where A, is a matrix of zeros except for the blocks as follows:

A, ] column ¢t column j*
— rOW ! T8 -1 (1)
row j 0 —1

We note (as we did in [BV1]) that the determinant of A is equal up to a unit to the
normalized Alexander polynomial A of K. In fact, we have that

A = T(=#(D)—w(D))/2 det(A), (2)

where p(D) = >, ¢ is the total rotation number of D and where w(D) = } s. is the
writhe of D, namely the sum of the signs s, of all the crossings ¢ in D.

We let G = (go5) = A™' and, thinking of it as a function g,z of a pair of edges o and
B, we call it the Green function of the diagram D. When inspired by physics (e.g. [BN2])
we sometimes call it “the 2-point function”, and when thinking of car traffic (e.g. [BN3]) we
sometimes call it “the traffic function”.

We note that the computation of GG is the bottleneck in the computation of ©. It requires
inverting a (2n 4+ 1) x (2n + 1) matrix whose entries are (degree 1) Laurent polynomials in
T. It’s a daunting task yet it takes polynomial time, it can be performed in practice even if
n is in the hundreds, and everything which then follows is easier.

2.2. New Formulas. Let T} and T3 be indeteminates and let T3 := T1T,. Let A, == Ar_p,
and G, = (gvap) = Gr-1, be A and G subject to the substitution 7" — T,,, where v = 1,2,3
(these are easy to compute once A and G have been computed).

Given crossings ¢ = (s,1,7), co = (S0, %0, Jo0), and ¢; = (s1,11,71) in X, let
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Fi(c) = s[1/2 — g3ii + T35 911920 — 1593559250 — (T5 — 1)g3:i92ji (3)
+(T5 — 1)925i935i — G1ii9255 + 293ii925; + GriiG355 — g2z‘ig3jj]
s S S S
t e [(TF — 1)T3 (9355915 — 92i3915i + T3 915i924)
2
+ (I35 — 1) (93]'@' — T3 GiiGaz + Goui 0855 + (15 — 2)g2jjg3ji)
— (T3 — D)(T5 + 1)(T5 — 1)g1i935:]

s1(T7° = D(T5" — 1) G150 9350is (s s
1 Ts31 — (12" %auio + G2vio = 15" 920i0 — G2is0) (4
2
F3(or, k) = on(gsur — 1/2) (5)
Theorem 1 (Proof in Section 4). The following is a knot invariant:

(D) = A1 AyAs (Z Fi(c)+ ). Fa(co,c1) + ) Fs(gn, k:)) . (6)

co,C1 k

Fy(co, 1) =

We note without detail that there is an alternative formula for 6 in terms of perturbed
Gaussian integration [BN2]. In that language, and using also the traffic motifs of [BV1, BN3],
the three summands in (6) become Feynman diagrams for processes in which cars governed
by parameter T' = T}, T, or T3 interact:

va @3 M
D /_\ D
A4 A
7N = 7N @ <>
0 Jo 1
\_/ k 5
N 55, J

In particular, the middle diagram which resembles the greek letter © gave the invariant
its name.

We note also that computationaly, the worst term in (6) is the middle one, and even it
takes merely ~ n? operations in the ring Q(7},T;) to complete.

The polynomials Fi(c), Fy(co,c1) and Fs(p, k) are not unique, and we are not certain
that we have the cleanest possible formulas for them. They are human-ugly, yet from a
computational perspective, having 18 terms (as is the case for Fj(c)) isn’t really a problem;
computers don’t care.

3. IMPLEMENTATION AND EXAMPLES

A concise yet reasonably efficient implementation is worth a thousand formulas. It com-
pletely removes ambiguities, it tests the theories, and it allows for experimentation. Hence
our next task is to implement. The section that follows was generated from a Mathe-
matica [Wo] notebook which is available at [BV2, Theta.nb]. A second implemntation
of ©, using Python and SageMath (https://www.sagemath.org/) is available at https:
//www.rolandvdv.nl/Theta/.

We start by loading the package KnotTheory‘ — it is only needed because it has many
specific knots pre-defined:
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) << KnotTheory" E Loading KnotTheory™ version of October 29, 2024, 10:29:52.1301.

Read more at http://katlas.org/wiki/KnotTheory.

Next we quietly define the commands Rot, used to compute rotation numbers, and PolyPlot,
used to plot polynomials as bar codes and as hexagonal QR codes. Neither is a part of the
core of the computation of O, so neither is shown; yet we do show one usage example for
each.

63 (= Rot suppressed x)
@ Rot[Mirrore@Knot[3, 1]] @ {{{1, 1, 4}, {1, 3, 6}, {1, 5, 2}}, {0, 0,0, -1, 0, 0, 0} }
We urge the reader to compare the above output with the knot diagram in Section 2.1.

io\ (» PolyPlot suppressed x)

(co) PolyPlot [{2T-1+T, -14T;-2T,+4T;' 15}, 5 -
¥ ImageSize - 100, Labeled - True] o

1 T4

The definition of CF below is a technicality telling the computer how to best store poly-
nomials in the g,,5 such as F} and F. The programs would run just the same without it,
albeit a bit more slowly:

C_) CF[&5. 1 := ExpandeCollect[s, g, F] /. F - Factor;

Next, we decree that T5 = 117, and define the three “Feynman Diagram” polynomials F7,
FQ, and F3:

/\ ) T3 =Ty Ta;

(o) Fal{s_, i_, J_}] :=CF[
(o 2 4 TS Dass oas o (o s o o (s s oo
| %] S (1 /2-83i; + T, 8144 825i — 81ii 8257 — (Tz = 1) 8251 83ii + 2 8255 83ii — (1 - T3) 82ji 83ji —

821 8357 - T3 8251 8355 + 81ii 8355 +

((T2-1) gaji (T3° 825i - T2 8255 + T3 835) +

(75-3) a5 (275 B - (75 -3) (T3 +3) s+ (75-2) sy + 820 / (75 -1))]
(o) Fal{se_, i6_, jo_}, {s1_, il_, j1_}] :=
CF[s1 (T3°-1) (13" -1)"" (75" - 1) 84,51,10 83, 50,11
( (T;B 82,i1,i0 - 82,i1,50) - (Tia 82,71,i0 - 82,i1,50) ) |
(C2) Fslo s k1 =08 -9/2;
Next comes the main program computing ©. Fortunately, it matches perfectly with the

mathematical description in Section 2. In line 01 we let X be the list of crossings in an input

knot K, and ¢ the list of its rotation numbers, using the external program Rot which we
have already mentioned. We also let n be the length of X, namely, the number of crossings
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in K. In line 02 we let the starting value of A be the identity matrix, and then in line 03, for
each crossing in X we add to A a 2 x 2 block, in rows ¢ and j and columns 7 + 1 and j + 1,
as explain in Equation (1). In line 04 we compute the normalized Alexander polynomial A
as in (2). In line 05 we let G be the inverse of A. In line 06 we declare what it means to
evaluate, ev, a formula £ that may contain symbols of the form g,.5: each such symbol is
to be replaced by the entry in position «, 8 of G, but with 7" replaced with 7,,. In line 07 we
start computing 6 by computing the first summand in (6), which in itself, is a sum over the
crossings of the knot. In line 08 we add to # the double sum corresponding to the second
term in (6), and in line 09, we add the third summand of (6). Finally, line 10 outputs a pair:
A, and the re-normalized version of 6.

% Ccongiell
(» 01 =) {X, @} =Rot[K]; n=Length[X]; |
(+ 02 «) A=IdentityMatrix[2n+1]; \, 2/ O
[

Cases[X, {s ,1,73 31> (A[[{i, 3}, {i+1, j+1}] += ('TS -1

e -1 ))]’ N\ 1774

(o) e[k ] :=e[K] = Module[{x, @, n, A, A, G, ev, 6},
*\

(x B3 %

(x B4 «) A=T(—Total[q)]—Total[Xl[All,l]]])/z Det [A];
(+ 05 +) G = Inverse[A]; .Il'k/c ’/—5’/”7
(» 86 ) ev[&_ ] :=Factor[& /.8, ,o,5 » (G[a, B1 /. T>T,)1;
n
(x O7 *) e:ev[zk=1F1[XIIk]]]]5
(+ 08 «) @+=ev[> ST  FpIXIKk1l, XIk211];
(x @9 *) 6 += eV[Zi:lFB[(P[[k]]J k]].:
(# 10 «) Factor@{A, (A/.T->T1) (A/.T>T,) (A/.T>T3) 6}

On to examples! Starting with the trefoil knot.
(°°) Expand [ [Knot [3, 1]]]

T ] 1 1 1 1 1 1 T, T
é{_u—n,_—_ﬁ_—_ ‘ ‘ +—1+—2+T§T2-T§+T1T§-T§T§}
T i T2 TT72 T, 72 OT2T, T, T,

r(ij PolyPlot[@[Knot[3, 1]], ImageSize - Tiny] e e

Next are the Conway knot 11,35 and the Kinoshita-Terasaka C
knot 11,45. The two are mutants and famously hard to separate: /\ OQ
they both have A = 1 (as evidenced by their one-bar bar codes < \// W
below), and they have the same HOMFLY-PT polynomial and 6\ O
Khovanov homology. Yet their 6 invariants are different. Note b
that the genus of the Conway knot is 3, while the genus of the Kinoshita-Terasaka knot is 2.

This agrees with the apparent higher complexity of the QR code of the Conway polynomial,
and with the observations in Section 5.



See http://drorbn.net/ AP/Projects/Theta/

A VERY FAST, VERY STRONG, TOPOLOGICALLY MEANINGFUL AND FUN KNOT INVARIANT 9

= 0

Torus knots have particularly nice-looking © invariants. Here are the torus knots T3/,
T17/3, T13/5, and T7/63

PolyPlot[@[Knot[#]], ImageSize -» 120] & /@
{"K11n34", "K11n42"} o

@ GraphicsGrid] {
n TubePlot [TorusKnot ee #] & /@ { {13, 2}, {17, 3}, {13, 5}, {7, 6}},
PolyPlot[e[TorusKnotee #]] & /@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}}

H

o Hten O
T QROWD %
o LD D %

“':.‘E : he :E. o : o t‘eu%q%'i
Y ,:;:_:, i 004 LI & 0 : O 9o
hu::. .:E:l ;\; / 5'%0% (ﬁagvf

BRI E S
it 2 DWeRE P
s33203 oo ettt o O ettt O

The next line shows the computation time in seconds for the 132-crossing torus knot. Thy
U\JH/ on a 2024 laptop, without actually showing the output. The output plot is in Figure 3.1.

A AbsoluteTiming[@[TorusKnot[22, 7]1];] {1020.73, Null}

. 4. PROOF OF INVARIANCE

Our proof of the invariance of # (Theorem 1) is very similar, and uses many of the same
pieces, as the proof of the invariance of p; in [BV1]. Thus instead of repeating everything
we just summarize those steps that are identical and then provide the needed details for the
steps that differ.

Like in [BV1, Lemma 3], we know that for any crossing ¢ = (s,,7) in a knot diagram D,

—’ the Green functiong G%: (gpap) of D satisfy the following “g-rules” fgr AL 2Suempd with
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ImageCompose [PolyPlot [6 [TorusKnot[22, 7]], ImageSize » 7207,
TubePlot [TorusKnot[22, 7], ImageSize -» 360], {Right, Bottom}, {Right, Bottom}]
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FIGURE 3.1. The 132-crossing torus knot T5;/7 and a plot of its © invariant

0 denoting the Kronecker delta:
9& Qll\)/ gvis = 0ip + T guiv g + (L = T7)guj+8,  Guip = 0jp + Guj+ s )
uait = nguai =+ 5a it u,oj+ = guaj (1 - Ts)guai =+ 5a gt /L U

~— 3 We also need a variant Gyab Of 9yas defined whenever a and b are two distinct points 6 CQM 7[
the edges of a knot diagram D, away from the crossings. If « is the edge on which a lies and e
—) [ is the edge on which b lies, Grab is defined as follows:

glfoxﬁ if a # /Bv
\% Gyfab = 4 G if @« = f and a < b relative to the orientation of the edge o = f3,
gyps — 1 if « = B and a > b relative to the orientation of the edge oo = f3.
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_J'W R1
X RS \ /3

)5
&/ FIGURE 4.1. The Green functions gs,3 are invariant under Reidemeister moves per-
formed away from where they are measured.

It is clear that g and g contain the same information and are easily computable from each
other. The variant g is, strictly speaking, not a matrix and so g is a bit more suitable for
computations. Yet g is a bit better behaved when we try to track, as below, the behaviour
of g / g under Reidemeister moves. Indeed Reidemeister moves may changes the indexing
a and (B of edges even when those edges are far from the move location, while it makes
sense to keep points like a and b in place when the moves are away. Furthemore and more

) - importantly, the distinction between a < b and a > b when a and b are on the same edge
¢matters below.
gen The following theorem, was not named in [BV1], yet it was stated there as the first part

of the first proof of [BV1, Theorem 1].

eig Theorem 2. The modified Green functiong gy ége-{\/relatwe mvamant)i meaning that once
points a and b are fixed wzthm a knot diagram D, the values of gpa, do not change if Rei-

Jﬁ demeister moves af for y from the pointsa and b, An illustration appears_in
Figure 4.1. "-’f& Semt 18 Wlo Pral o - \()?/ b for ) «/LE

ﬂ The proof of Theorem 2 is perhaps best understood in terms of the function of [BVI, BN,
BN3J: One simply needs to verify that for each of the Reidemeister moves, traffic entering the
tangle diagram for the left hand side of the move exits it in the same manner as traffic entering
the tangle diagram for the right hand side of the move, and each of these verifications, as
explained in [BV1, BN1, BN3], is very easy. Yet this proof is a bit informal, so we opt here
to give a fully formal proof along the lines of the first halves of [BV1, Propositions 7-9].

— Proof of Theorem 2. EI S T T

We can now move on to the main part of the proof of Theorem 1. As follows from [BV1,
Theorem 2], we need to prove the invariance of # under the “upright Reidemeister” moves
of Figure 4.2. We start with the hardest, R3:

Proposition 3. The quantity 0 is invariant under R3.

Proof. Let D; and D, be two knot diagrams that differ only by an R3 move, and label their
relevant edges and crossings as in Figure 4.3. Let g}, 5 and g7, 5 be their corresponding Green
functions. Let F{(c), Fi(co,c1) and Fi(¢, k) be defined from g}, as in (3)-(5), and similarly
make FY, Fy and F3 using g,

By the invariance of the Alexander polynomial, the pre-factor A;A;Aj3 is the same for
0(D') and for §(D") (see Equation (6)). By Theorem 2, g/ 5 = gl,5 so long as a, 3 ¢
{i*t,77,k*}. And so the only terms that may differ in §(D") between h = [ and h = r are
the terms

= 2 Fre) + Z Flley,e1), B = 2 F}(cp,c,), and C" = Z Fl(cy,c1). (8)

ce{c’f,zﬁ} co,cle{c?z’_%} 006{0?1273},01“,&}/ 016{017273} cyeY
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el @Y=+

FIGURE 4.2. The upright Reidemeister moves: Reidemeister 1 left and right, Reide-
meister 2 braid-like and cyclic, Reidemeister 3, and (the +) Swirl.

FIGURE 4.3. The two sides D' and D" of the R3 move. The left side D' consists of 3
distinuighed crossings ¢ = (1,7,k), ¢, = (1,4,k"), ¢4 = (1,i", %) and a collection of
further crossings ¢, = (s,m,n) € Y, where Y is the set of crossings not participating
in the R3 move. The right side D" consists of ¢| = (1,4,j), ¢4 = (1,i*,k), & =
(1,5%, k™) and the same set Y of further crossings c,.

We claim that A' = A", B! = B", and C!' = C".

To show that A' = A", we need to compare polynomials in g 5 With polynomials in g4 in
which o and 3 may belong to the set {i*, j©, k*} on which it may be that ¢' # ¢”. Fortunately
the g-rules of Equation (7) allow us to rewrite the offending ¢’s, namely the ones with
subscripts in {i*, 57, k*}, in terms of other ¢’s whose subscripts are in {7, j, k,i™", j 7 k™},
where ¢' = ¢g". So it is enough to show that

Al /. (the g-rules for ¢, ¢}, ) = A" /. (the g-rules for ¢}, ¢}, c;) under ¢' = ¢", (9)

where the symbol /. means “apply the rules”. This is a finite computation that can in-
principle be carried out by hand. But each A" is a sum of 349 = 12 polynomials in the g"’s,
these polynomials are rather unpleasant (see (3) and (4)), and applying the relevant g-rules
adds a bit further to the complexity. Luckily, we can delegate this pages-long calculation to
an entity that doesn’t complain.

First, we implement the Kronecker d-function, the g-rules for a crossing (s,1,7), and the
g-rules for a list of crossings X:
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(c2) 8,5 :=If[i===3, 1, 0];
E\l gRules[{s_, i_, j_}] :={
8y js P 8vits+65ss By in Ti Britp + (1 - Ti) 8,5t +big,
8y a it ¥ Ti 8rai + Oait) 8y a j* P 8vaj t (1 - Ti) 8rai t 5(1_7'*
}s
gRules[X  List] :=Unione@e Table[gRules[c], {c, {X}}]
We then let X1 be the three crossings in the left-hand-side of the R3 move, as in Figure 4.3,
we let Al be the A’ term of (8), and we let 1hs be the result of applying the g-rules for the

crossings in X1 to A1. We print only a “Short” version of 1hs because the full thing would
cover about 2.5 pages:

(o)X= {{1, 3, k}, {1, i, k'}, {1, i*, 3"}};

\l\] Al = Sum[Fy[c], {c, X1}] + Sum[F,[cO, c1], {cO, X1}, {cl, X1}];
lhs = Simplify[Al //. gRules @@ X1] ;
Short[lhs, 5]

1
) ———————— (3— 3Ty + <«<129>> +
2 (1-Ty)

2 (1-Tp) (1+T2 (T2 82, w1t~ (-1+T2) 82, cc15,1) — (-1+T2) 8, (k)*,1)
(L+ (1-TiT2) 8, (k*)*,5 + 83, (k*)*,k) )
We do the same for A", except this time, without printing at all:
@Xr= {{1, i, 3}, {1, i*, k}, {1, 3%, k*}};

[jl Ar =Sum[F,[c], {c, Xr}] + Sum[F,[cO, cl1], {cO, Xr}, {cl, Xr}];
rhs = Simplify[Ar //. gRules @@ Xr] ;

We then compare 1hs with rhs. The output, True, tells us that we have proven (9):
G_O) Simplify[1lhs == rhs] True

We show that B! = B" by following exactly the same procedure. Note that we ignore the
summation over ¢, and instead treat it as a fixed crossing ¢, = (s,m,n). If an equality is
proven for every fixed ¢, it is of course also proven for the sum over ¢, € Y.

@\ lhs = Sum[F,[c@, {s, m, n}], {c@, X1}] //. gRules @@ X1; True
@) rhs = Sum[F,[cO, {s, m, n}], {c@, Xr}] //. gRules @@ Xr; S
Simplify[1lhs == rhs]

Similarly we prove that C' = C", and this concludes the proof of Proposition 3.

Q lhs = Sum[F,[{s, m, n}, c1], {c1l, X1}] //. gRules @@ X1; g True
Ad rhs = Sum[F,[{s, m, n}, c1], {c1, Xr}] //. gRules @@ Xr;
Simplify[lhs == rhs] U]

Remark 4. The computations above were carried out for generic g,.s and for a generic
¢y = (s,m,n); namely, without specifying the knot diagrams in full, and hence without
assigning specific values to g,.3, and without specifying m and n. Under these conditions
the three parts of (8) cannot mix (namely, terms from, say, A" cannot cancel terms in B or
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CM), and so it would have been enough to show that E' = E", where E”" combines A" and
B" and C" (and a few harmless further terms) by adding ¢, to the summation corresponding
to A"
E'= > FMo+ ), Feoa)
Ce{c?,zg,y} 00,016{0?72?3&}

But that’s a simpler computation:

o
97

i’\ ESum[X ] := (Sum[F;[c], {c, X}] +Sum[F,[cO, c1], {cO, X}, {cl, X}]) //. gRules ee X;

7
e

o)
9

X1={{1, i, k}, {1, i, k*}, {1, i*, 3*}}; O True
Xr={{1, i, j}, {1, i*, k}, {1, 3%, k*}};
Simplify [ESum[Append[X1, {s, m, n}]] == ESum[Append[Xr, {s, m, n}]]]

el
[

5. STRONG AND MEANINGFUL

6. CONJECTURES AND DREAMS
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