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Abstract. In this paper we discuss a pair of polynomial knot invariants Θ “ p∆, θq which
is:
‚ Theoretically and practically fast: Θ can be computed in polynomial time. We can

compute it in full on random knots with over 300 crossings, and its evaluation at simple
rational numbers on random knots with over 600 crossings.

‚ Strong: Its separation power is much greater than the hyperbolic volume, the HOMFLY-
PT polynomial and Khovanov homology (taken together) on knots with up to 15 crossings
(while being computable on much larger knots).

‚ Topologically meaningful: It gives a genus bound, and there are reasons to hope that it
would do more.

‚ Fun: Scroll to Figures 1.1–1.4 and 3.1.
∆ is merely the Alexander polynomial. θ is almost certainly equal to an invariant that
was studied extensively by Ohtsuki [Oh2], continuing Rozansky, Kricker, and Garoufalidis
[Roz1, Roz2, Roz3, Kr, GR]. Yet our formulas, proofs, and programs are much simpler and
enable its computation even on very large knots.
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1. Fun

The word “fun” rarely appears in the title of a math paper, so let us start with a brief
justification.

Θ is a pair of polynomials. The first, ∆, is old news, the Alexander polynomial [Al]. It is
a one-variable Laurent polynomial in a variable T . For example, ∆p.q “ T´1 ´ 1 ` T . We
turn such a polynomial into a list of coefficients (for ., it is p1,´1, 1q), and then to a chain
of bars of varying colours: white for the zero coefficients, and red and blue for the positive
and negative coefficients (with intensity proportional to the magnitude of the coefficients).
The result is a “bar code”, and for the trefoil . it is .

-T1 T2

T1

T2

2
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-
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T1
1

T1 T2

Similarly, θ is a 2-variable Laurent polynomial, in variables T1 and T2.
We can turn such a polynomial into a 2D array of coefficients and then
using the same rules, into a 2D array of colours, namely, into a picture.
To highlight a certain conjectured hexagonal symmetry of the resulting
pictures, we apply a shear transformation to the plane before printing.
So a monomial cT n1

1 T n2
2 gets printed at position pn1 ´ n2{2,

?
3n2{2q in-

stead of the more traditional pn1, n2q. On the right is the 2D picture corresponding to the
polynomial 2 ` T1 ´ T1T2 ` T2 ´ T´1

1 ` T´1
1 T´1

2 ´ T´1
2 .

Thus Θ becomes a pair of pictures: a bar code, and a 2D picture that we call a “hexagonal
QR code”. For the knots in the Rolfsen table (with the unknot prepended at the start), they
are in Figure 1.1. For some alternating square weave knots, they are in Figure 1.2, and for a
random square weave, in Figure 1.3. In addition, the hexagonal QR codes of 15 knots with
ě 300 crossings are in Figure 1.4, and Θ of a 132-crossing torus knot is in Figure 3.1.

left: © Whipple Museum of the History of Science,

University of Cambridge; right: CC-BY-SA 4.0 /

Wikimedia / Matemateca (IME USP) / Rodrigo Tetsuo
Argenton

Clearly there are patterns in these figures.
There is a hexagonal symmetry and the QR
codes are nearly always hexagons (these are in-
dependent properties). Much more can be seen
in Figure 1.1. In Figure 1.4 there seem to be
large-scale patterns perhaps reminiscent of the
“Chladni figures” formed by powders atop vi-
brating plates (on right). We can’t prove any
of these things, and the last one, we can’t even
formulate properly. Yet they are clearly there, too clear to be the result of chance alone.

We plan to have fun over the next few years observing and proving these patterns. We
hope that others will join us too.

DRAFT! See http://drorbn.net/AP/Projects/Theta/

https://www.whipplemuseum.cam.ac.uk/explore-whipple-collections/acoustics/ernst-chladni-physicist-musician-and-musical-instrument-maker
https://www.whipplemuseum.cam.ac.uk/explore-whipple-collections/acoustics/ernst-chladni-physicist-musician-and-musical-instrument-maker
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://en.wikipedia.org/wiki/Chladni%27s_law
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Ñ
Θ

Figure 1.1. Θ as a bar code and a QR code, for all the knots in the Rolfsen table.

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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Figure 1.2. Θ of some square weave knots, as computed by [BV3, WeaveKnots.nb].

Figure 1.3. Θ of a randomized weave knot, as computed by [BV3, WeaveKnots.nb].
Crossings were chosen to be positive or negative with equal probabilities.

2. The Main Theorem

1

2

3

4

6

7

5

D

φ4 “ ´1

Figure 2.1. An example
upright knot diagram.

Given an oriented n-crossing knot K, we draw it in the
plane as a long knot diagram D in such a way that the two
strands intersecting at each crossing are pointing up (that’s
always possible because we can always rotate crossings as
needed), and so that at its beginning and at its end the knot
is oriented upward. We call such a diagram an upright knot
diagram. An example of an upright knot diagram is shown on
the right.

We then label each edge of the diagram with two labels: a
running index k which runs from 1 to 2n` 1, and a “rotation
number” φk, the geometric rotation number of that edge1. On

1The signed number of times the tangent to the edge is horizontal and heading right, with cups counted
with `1 signs and caps with ´1; this number is well defined because at their ends, all edges are headed up.

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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Figure 1.4. θ (hexagonal QR code only) of the 15 largest knots that we have com-
puted by September 16, 2024. They are all “generic” in as much as we know, and
they all have ě 300 crossings. The knots come from [DHOEBL]. Warning: Some
screens/printers may introduce spurious Moiré interference patterns.

the right the running index runs from 1 to 7, and the rotation numbers for all edges are 0
(and hence are omitted) except for φ4, which is ´1.

Let X be the set of all crossings in the diagram D, where we encode each crossing as
a triple (sign, incoming over edge, incoming under edge). In our example we have X “

tp1, 1, 4q, p1, 5, 2q, p1, 3, 6qu.
We let A be the p2n`1q ˆ p2n`1q matrix of Laurent polynomials in a variable T , defined

by

A :“ I ´
ÿ

c“ps,i,jqPX

pT sEi,i`1 ` p1 ´ T s
qEi,j`1 ` Ej,j`1q ,

where I is the identity matrix and Eαβ denotes the elementary matrix with 1 in row α and
column β and zeros elsewhere.

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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Alternatively, A “ I`
ř

cAc, where Ac is a matrix of zeros except for the blocks as follows:

s “ ´1

j

i ` 1 j ` 1

ii

s “ `1

j ` 1 i ` 1

j
ÝÑ

Ac column i ` 1 column j ` 1
row i ´T s T s ´ 1
row j 0 ´1

(1)

We note that the determinant of A is equal up to a unit to the normalized Alexander
polynomial ∆ of K.2 In fact, we have that

∆ “ T p´φpDq´wpDqq{2 detpAq, (2)

where φpDq :“
ř

k φk is the total rotation number of D and where wpDq “
ř

c sc is the
writhe of D, namely the sum of the signs sc of all the crossings c in D.

We let G “ pgαβq “ A´1 and, thinking of it as a function gαβ of a pair of edges α and β,
we call it the Green function of the diagram D. When inspired by physics (e.g. [BN5]) we
sometimes call it “the 2-point function”, and when thinking of car traffic (e.g. [BV1, BN6])
we sometimes call it “the traffic function”.

Let T1 and T2 be indeterminates and let T3 :“ T1T2. Let ∆ν :“ ∆|TÑTν and Gν “ pgναβq :“
G|TÑTν be ∆ and G subject to the substitution T Ñ Tν , where ν “ 1, 2, 3.
Given crossings c “ ps, i, jq, c0 “ ps0, i0, j0q, and c1 “ ps1, i1, j1q in X and an edge label k,

let

F1pcq “ s r1{2 ´ g3ii ` T s
2 g1iig2ji ´ T s

2 g3jjg2ji ´ pT s
2 ´ 1qg3iig2ji (3)

`pT s
3 ´ 1qg2jig3ji ´ g1iig2jj ` 2g3iig2jj ` g1iig3jj ´ g2iig3jjs

`
s

T s
2 ´ 1

rpT s
1 ´ 1qT s

2 pg3jjg1ji ´ g2jjg1ji ` T s
2 g1jig2jiq

` pT s
3 ´ 1qg3ji p1 ´ T s

2 g1ii ` g2ij ` pT s
2 ´ 2qg2jj ´ pT s

1 ´ 1qpT s
2 ` 1qg1jiqs

F2pc0, c1q “
s1pT s0

1 ´ 1qpT s1
3 ´ 1qg1j1i0g3j0i1

T s1
2 ´ 1

pT s0
2 g2i1i0 ` g2j1j0 ´ T s0

2 g2j1i0 ´ g2i1j0q (4)

F3pkq “ pg3kk ´ 1{2qφk (5)

These formulas are uninspiring, yet they are easy to compute (given G), and they work:

Theorem 1 (The Main Theorem, proof in Section 4). The following is a knot invariant:

θpDq :“ ∆1∆2∆3

˜

ÿ

cPX

F1pcq `
ÿ

c0,c1PX

F2pc0, c1q `
ÿ

edges k

F3pkq

¸

. (6)

Som comments are now in order:

Comment 2. We note following [BV1] that gαβ can be interpreted as measuring “car traffic”,
assuming a stream of traffic is injected near the start of edge α and a “traffic counter” is
placed near the end of edge β, and where cars always obey the following traffic rules:

‚ Car travel on the edges of the knot, always in a direction consistent with the orientation
of these edges.

2The informed reader will note that A is a presentation matrix for the Alexander module of K, obtained
by using Fox calculus on the Wirtinger presentation of the fundamental group of the complement of K.

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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‚ When a car reaches a crossing on the under-strand, it travels through and continues on
the other side.

‚ When a car reaches a crossing of sign s “ ˘1 on the over-strand, it continues right through
with probability T s, yet with probability 1 ´ T s it falls down and continues travelling on
the lower strand. (It matters not that T and T´1 cannot be probabilities at the same time
— we merely use the algebraic rules of probability without caring about the inequalities
that normally come with them).

‚ When cars reach the “end” of the knot, the abyss that follows edge 2n ` 1, they falls of
the picture never to be seen again.

These rules can be summarized by the following pictures:

p “ 1 ´ T s

1´T T 1 0 0 1 T´1 1´T´1

For further details, see [BV1]. 2

Comment 3. We note without detail that there is an alternative formula for θ in terms of
perturbed Gaussian integration [BN5]. In that language, and using also the traffic motifs of
Discussion 2, the three summands in (6) become Feynman diagrams for processes in which
cars ν governed by parameter Tν “ T1, T2, or T3 interact:

D

i µν j

D

k 3

φ
j0 i1

D

i0 j1

2

1

3

In particular, the middle diagram which resembles the Greek letter Θ gave the invariant
its name. 3

Comment 4. The computation of G is a bottleneck for the computation of Θ. It requires
inverting a p2n ` 1q ˆ p2n ` 1q matrix whose entries are (degree 1) Laurent polynomials in
T . It’s a daunting task yet it takes polynomial time, it can be performed in practice even if
n is in the hundreds, and everything which then follows is easier.

Computationally, the worst term in (6) is the middle one, and even it takes merely „ n2

operations in the ring QpT1, T2q to complete.
The polynomials F1pcq, F2pc0, c1q and F3pkq are not unique, and we are not certain that

we have the cleanest possible formulas for them. They are ugly from a human perspective,
yet from a computational perspective, having 18 terms (as is the case for F1pcq) isn’t really
a problem; computers don’t care. 4

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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3. Implementation and Examples

3.1. Implementation. A concise yet reasonably efficient implementation is worth a thou-
sand formulas. It completely removes ambiguities, it tests the theories, and it allows for
experimentation. Hence our next task is to implement. The section that follows was gener-
ated from a Mathematica [Wo] notebook which is available at [BV3, Theta.nb]. A second
implementation of Θ, using Python and SageMath (https://www.sagemath.org/) is avail-
able at https://www.rolandvdv.nl/Theta/.

We start by loading the package KnotTheory‘ — it is only needed because it has many

specific knots pre-defined. In this Section and in the next, and mean “human input”

while means “computer output”:

<< KnotTheory` Loading KnotTheory` version of October 29, 2024, 10:29:52.1301.

Read more at http://katlas.org/wiki/KnotTheory.

Next we quietly define the modules Rot, used to compute rotation numbers, and PolyPlot,
used to plot polynomials as bar codes and as hexagonal QR codes. Neither is a part of the
core of the computation of Θ, so neither is shown; yet we do show one usage example for
each.

(* The definitions of Rot and PolyPlot are suppressed *)

Rot[Mirror@Knot[3, 1]] {{{1, 1, 4}, {1, 3, 6}, {1, 5, 2}}, {0, 0, 0, -1, 0, 0, 0}}

We urge the reader to compare the above output with the knot diagram in Figure 2.1.

PolyPlot2 T - 1 + T-1, -1 + T1 - 2 T2 + 4 T1
-1 T2

-1
,

ImageSize  100, Labeled  True

2 T-1
1

T

T1

-2 T2

-1

4

T1 T2

The definition of CF below is a technicality telling the computer how to best store poly-
nomials in the gναβ’s such as F1 and F2. The programs would run just the same without it,
albeit a bit more slowly:

CF[ℰ_] := Expand@Collect[ℰ , g__, F] /. F  Factor;

Next, we decree that T3 “ T1T2 and define the three “Feynman Diagram” polynomials F1,
F2, and F3:

T3 = T1 T2;

DRAFT! See http://drorbn.net/AP/Projects/Theta/

https://www.sagemath.org/
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F1[{s_, i_, j_}] := CF

s 1/ 2 - g3ii + T2
s g1ii g2ji - g1ii g2jj - T2

s
- 1 g2ji g3ii + 2 g2jj g3ii - 1 - T3

s
 g2ji g3ji -

g2ii g3jj - T2
s g2ji g3jj + g1ii g3jj +

T1
s
- 1 g1ji T2

2 s g2ji - T2
s g2jj + T2

s g3jj +

T3
s
- 1 g3ji 1 - T2

s g1ii + g2ij + T2
s
- 2 g2jj - T1

s
- 1 T2

s
+ 1 g1ji T2

s
- 1

F2[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=

CFs1 T1
s0

- 1 T2
s1

- 1-1
T3

s1
- 1 g1,j1,i0 g3,j0,i1

 T2
s0 g2,i1,i0 - g2,i1,j0 - T2

s0 g2,j1,i0 - g2,j1,j0

F3[φ_, k_] = φ g3kk - φ/ 2;

Next comes the main program computing ΘpKq. Fortunately, it matches perfectly with
the mathematical description in Section 2. In line 1 below we use Rot to let X and φ be
the crossings and rotation numbers of K. In addition we let n be the length of X, namely,
the number of crossings in K and we let the starting value of A be the p2n ` 1q ˆ p2n ` 1q

identity matrix. Then in line 2, for each crossing in X we add to A a 2 ˆ 2 block, in rows
i and j and columns i ` 1 and j ` 1, as explain in Equation (1). In line 3 we compute the
normalized Alexander polynomial ∆ as in (2). In line 4 we let G be the inverse of A. In line
5 we declare what it means to evaluate, ev, a formula E that may contain symbols of the
form gναβ: each such symbol is to be replaced by the entry in position α, β of G, but with
T replaced with Tν . In line 6 we start computing θ by computing the first summand in (6),
which in itself, is a sum over the crossings of the knot. In line 7 we add to θ the double sum
corresponding to the second term in (6), and in line 8, we add the third summand of (6).
Finally, line 9 outputs a pair: ∆, and the re-normalized version of θ.

Θ[K_] := Θ[K] = Module{X, φ, n, A, Δ, G, ev, θ},

(* 1 *) {X, φ} = Rot[K]; n = Length[X]; A = IdentityMatrix[2 n + 1];

(* 2 *) CasesX, {s_, i_, j_}  A〚{i, j}, {i + 1, j + 1}〛 += 
-Ts Ts - 1

0 -1
;

(* 3 *) Δ = T(-Total[φ]-Total[X〚All,1〛])/2 Det[A];

(* 4 *) G = Inverse[A];

(* 5 *) ev[ℰ_] := Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];

(* 6 *) θ = ev
k=1

n
F1[X〚k〛];

(* 7 *) θ += ev
k1=1

n


k2=1

n
F2[X〚k1〛, X〚k2〛];

(* 8 *) θ += ev
k=1

2 n
F3[φ〚k〛, k];

(* 9 *) Factor@{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) θ}

;

3.2. Examples. On to examples! Starting with the trefoil knot.

Expand[Θ[Knot[3, 1]]]

-1 +
1

T
+ T, -

1

T1
2
- T1

2
-

1

T2
2
-

1

T1
2 T2

2
+

1

T1 T2
2
+

1

T1
2 T2

+
T1

T2
+
T2

T1
+ T1

2 T2 - T2
2
+ T1 T2

2
- T1

2 T2
2


DRAFT! See http://drorbn.net/AP/Projects/Theta/
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PolyPlot[Θ[Knot[3, 1]], ImageSize  Tiny]

Next are the Conway knot 11n34 and the Kinoshita-Terasaka
knot 11n42. The two are mutants and famously hard to separate:
they both have ∆ “ 1 (as evidenced by their one-bar Alexan-
der bar codes below), and they have the same hyperbolic volume,
HOMFLY-PT polynomial, and Khovanov homology. Yet their θ
invariants are different. Note that the genus of the Conway knot is 3, while the genus of the
Kinoshita-Terasaka knot is 2. This agrees with the apparent higher complexity of the QR
code of the Conway polynomial and with Conjecture 16 below.

PolyPlot[Θ[Knot[#]], ImageSize  120] & /@

{"K11n34", "K11n42"}

 , 

Torus knots have particularly nice-looking Θ invariants. Here are the torus knots T13{2,
T17{3, T13{5, and T7{6:

ImageCompose[PolyPlot[Θ[TorusKnot @@ #], ImageSize  480],

TubePlot[TorusKnot @@ # , ImageSize  240], {Right, Bottom}, {Right, Bottom}] & /@

{{13, 2}, {17, 3}, {13, 5}, {7, 6}} // GraphicsRow

The next line shows the computation time in seconds for the 132-crossing torus knot T22{7

on a 2024 laptop, without actually showing the output. The output plot is in Figure 3.1.

AbsoluteTiming[Θ[TorusKnot[22, 7]];] {1020.73, Null}

We note that if T1 and T2 are assigned specific rational numbers and if the program for Θ is
slightly modified so as to compute each Gν separately (rather than computing G symbolically

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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ImageCompose[PolyPlot[Θ[TorusKnot[22, 7]], ImageSize  720],

TubePlot[TorusKnot[22, 7], ImageSize  360], {Right, Bottom}, {Right, Bottom}]

Figure 3.1. The 132-crossing torus knot T22{7 and a plot of its Θ invariant

and then substituting T Ñ Tν), then the program becomes significantly more efficient, for
inverting a numerical matrix is cheaper than inverting a symbolic matrix (but then one
obtains numerical answers and the beauty and the topological significance (Section 5) are
lost). The Mathematica notebook that accompanies this paper, [BV3, Theta.nb], contains
the required modified program as well as a few computational examples. One finds that with
T1 “ 22{7 and T2 “ 21{13, the invariant Θ can be computed for knots with 600 crossings,
and that for knots with up to 15 crossings, its separation power remains the same.

If T1 and T2 are assigned approximate real values, say π and e computed to 100 decimal
digits, then Θ can be computed on knots with 1,000 crossings and, for knots with up to 15
crossings it remains very strong. But approximate real numbers are a bit thorny. It is hard
to know how far one needs to compute before deciding that two such numbers are equal,

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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and when two such numbers appear unequal, it is hard to tell if that is merely because they
were computed differently and different roundings were applied. Thorns and snares are in
the way of the perverse; He who guards his soul will be far from them (Proverbs 22:5)3.

4. Proof of Invariance

Our proof of the invariance of θ (Theorem 1) is very similar, and uses many of the same
pieces, as the proof of the invariance of ρ1 in [BV1]. Thus at some places here we are
briefer than at [BV1], and sadly, yet in the interest of saving space, we understate here the
interpretation of gαβ as a “traffic function”.
Some Reidemeister moves create or lose an edge and to avoid the need for renumbering

it is beneficial to also allow labelling the edges with non-consecutive labels. Hence we allow
that, and write i` for the successor of the label i along the knot, and i`̀ for the successor of
i` (these are i ` 1 and i ` 2 if the labelling is by consecutive integers). Also, by convention
“1” will always refer to the label of the first edge, and “2n` 1” will always refer to the label
of the last. With this in mind, we have that A “ I `

ř

c Ac, with Ac given by

s “ ´1

j

i` j`

ii

s “ `1

j` i`

j
ÝÑ

Ac column i` column j`

row i ´T s T s ´ 1
row j 0 ´1

(7)

Like in [BV1, Lemma 3], the equalities AG “ I and GA “ I imply that for any crossing
c “ ps, i, jq in a knot diagram D, the Green function G “ pgαβq of D satisfies the following
“g-rules”, with δ denoting the Kronecker delta:

giβ “ δiβ ` T sgi`,β ` p1 ´ T s
qgj`,β, gjβ “ δjβ ` gj`,β, g2n`1,β “ δ2n`1,β, (8)

gα,i` “ T sgαi ` δα,i` , gα,j` “ gαj ` p1 ´ T s
qgαi ` δα,j` , gα,1 “ δα,1. (9)

Furthermore, the systems of equations (8) is equivalent to AG “ I and so it fully determines
gαβ, and likewise for the system (9), which is equivalent to GA “ I.

Of course, the same g-rules also hold for Gν “ pgναβq for ν “ 1, 2, 3, except with T replaced
with Tν .

We also need a variant g̃ab of gαβ, defined whenever a and b are two distinct points on the
edges of a knot diagram D, away from the crossings. If α is the edge on which a lies and β
is the edge on which b lies, g̃ab is defined as follows:

g̃ab “

$

’

&

’

%

gαβ if α ‰ β,

gαβ if α “ β and a ă b relative to the orientation of the edge α “ β,

gαβ ´ 1 if α “ β and a ą b relative to the orientation of the edge α “ β.

(10)

Of course, we can define g̃νab from gαβ in a similar way.
It is clear that g and g̃ contain the same information and are easily computable from each

other. The variant g̃ is, strictly speaking, not a matrix and so g is a bit more suitable for
computations. Yet g̃ is a bit better behaved when we try to track, as below, the changes in g
and g̃ under Reidemeister moves. Reidemeister moves sometimes merge two edges into one
or break an edge into two. In such cases the points a and b can be “pulled” along with the
move so as to retain their ordering along the overall parametrization of the knot, yet mere

3 . ירחק! נפשו שומר

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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edge labels lose this information. From the perspective of traffic functions, g̃ is somewhat
more natural than g, as it makes sense to inject traffic and to count traffic anywhere along
an edge, provided the injection point and the counting point are distinct.

The following discussion and lemma further exemplify the advantage of g̃ of g:

j kDiscussion 5. We introduce “null vertices” as on the right into knot dia-
grams, whose only function (as we shall see) is to cut edges into parts that
may carry different labels. When dealing with upright knot diagrams as in Figure 2.1, we
only allow null vertices where the tangent to the knot is pointing up, so that the rotation
numbers φk remain well defined on all edges. In the presence of null vertices the matrix
A becomes a bit larger (by as many null vertices as were added to a knot diagram). The
rule (7) for the creation of the matrix A gets an amendment for null vertices,

j k
ÝÑ

Anv column k
row j ´1

,

and the summation for A, A “ I `
ř

c Ac `
ř

nv Anv is extended to include summands for the
null vertices. The matrix G “ A´1 and the function gαβ are defined as before. The g-rules
of (8) and (9) get additions,

gjβ “ δjβ ` gkβ, (11) and gαk “ δαk ` gαj, (12)

and it remains true that the system of equations (8)Y(11) (as well as (9)Y(12)) fully deter-
mines gαβ. The variant g̃ab is also defined as before, except now a and b need to also be away
from the null vertices.

Lemma 6. Inserting a null vertex does not change g̃ab provided it is inserted away from the
points a and b.4

Proof. Let D be an upright knot diagram having an edge labelled i and let D1 be obtained
from it by adding a null vertex within edge i, naming the two resulting half-edges j and k
(in order). Let gαβ be the Green function for D, and similarly, g1

αβ for D1. We claim that

g1
αβ “

$

&

%

if β “ j if β “ k if β R tj, ku

gii gii giβ if α “ j
gii ´ 1 gii giβ if α “ k
gαi gαi gαβ if α R tj, ku

Indeed, all we have to do is to verify that the above-defined g1
αβ satisfies all the g-rules

(8)Y(11), and that is easy. The lemma now follows easily from the definition of g̃1 in Equa-
tion (10). l

Remark 7. The statement of our Main Theorem, Theorem 1, does not change in the pres-
ence of null vertices: There are no “F” terms for those, and their only effect on the definition
of Θ in Equation (6) is to change the edge labels that appear within c, c1, and c2, and within
the F3 sum.

The following theorem was not named in [BV1] yet it was stated there as the first part of
the first proof of [BV1, Theorem 1].

4This statement does not make sense for gαβ , as inserting a null vertex changes the dimensions of the
matrix G “ pgαβq.

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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R1

R2

R3

a

b

D
g̃ab

Figure 4.1. The modified Green function g̃ab is invariant under Reidemeister moves
performed away from where it is measured.

R1rR1l

R1-left and R1-right

R3b

braid-like R3

R2c` R2c´

counterclockwise and clockwise cyclic R2

Aside 1:

Aside 2:

Figure 4.2. A generating set of oriented Reidemeister moves as in [Po2, Figure 6].
Aside 1: the braid-like R2b is not needed. Aside 2: yet R2b cannot replace R2c˘

because in the would-be proof, an unpostulated form of R3 is used (which in itself
follows from R2c˘).

Theorem 8. The variant Green function g̃ab is a “relative invariant”, meaning that once
points a and b are fixed within a knot diagram D, the value of g̃ab does not change if Rei-
demeister moves are performed away from the points a and b (an illustration appears in
Figure 4.1). It follows that the same is also true for g̃νab for ν “ 1, 2, 3.

We note that g̃ab is nearly the same as gαβ, if a is on α and b is on β. So Theorem 8
also says that gαβ is invariant under Reidemeister moves away from α and β, except for
edge-renumbering issues and ˘1 contributions that arise if α and β correspond to edges that
get merged or broken by the Reidemeister moves.

The proof of Theorem 8 is perhaps best understood in terms of the traffic function of
Discussion 2: One simply needs to verify that for each of the Reidemeister moves, traffic
entering the tangle diagram for the left hand side of the move exits it in the same manner
as traffic entering the tangle diagram for the right hand side of the move, and each of
these verifications, as explained in [BV1, BN3, BN6], is very easy. Yet that proof is a bit
informal, so we opt here to give a fully formal proof along the lines of the first halves of [BV1,
Propositions 7-9].

Proof of Theorem 8. We need to know how the Green function gαβ changes under the
orientation-sensitive Reidemeister moves of Figure 4.2 (note that the gαβ do not see the
rotation numbers and don’t care if a knot diagram is upright in the sense of Figure 2.1.

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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We start with R3b. Below are the two sides of the move, along with the g-rules of
type (8) corresponding to the crossings within, written with the assumption that β isn’t
in ti`, j`, k`u, so several of the Kronecker deltas can be ignored. We use g for the Green
function at the left-hand side of R3b, and g1 for the right-hand side:

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

further
g-rules

further
crossings

further
g1-rules

further
crossings

gi,β “ δiβ`Tgi`,β`p1´T qgk`̀ ,β

gk`,β “ gk`̀ ,β

gi`,β “ Tgi`̀ ,β`p1´T qgj`̀ ,β

gj`,β “ gj`̀ ,β

gj,β “ δjβ`Tgj`,β`p1´T qgk`,β

gk,β “ δkβ`gk`,β

g1
i`,β “ Tg1

i`̀ ,β`p1´T qg1
k`,β

g1
k,β “ δkβ`g1

k`,β

g1
j`,β “ Tg1

j`̀ ,β`p1´T qg1
k`̀ ,β

g1
k`,β “ g1

k`̀ ,β

g1
i,β “ δiβ`Tg1

i`,β`p1´T qg1
j`,β

g1
j,β “ δjβ`g1

j`,β

k`̀ j`̀ i`̀

i j k

i`

j`

k`

k`̀ j`̀ i`̀

i j k

i`

j`

k`

Recall that along with the further g-rules and/or g1-rules corresponding to all the non-
moving knot crossings, these rules fully determine gαβ and g1

αβ for β R ti`, j`, k`u.
A routine computation (eliminating gi`,β, gj`,β, and gk`,β) shows that the first system of

6 equations is equivalent to the following system of 6 equations:

gi,β “ δiβ ` T 2gi`̀ ,β ` T p1 ´ T qgj`̀ ,β ` p1 ´ T qgk`̀ ,β,

gj,β “ δjβ ` Tgj`̀ ,β ` p1 ´ T qgk`̀ ,β, gk,β “ δkβ ` gk`̀ ,β,
(13)

gi`,β “ Tgi`̀ ,β ` p1 ´ T qgj`̀ ,β, gj`,β “ gj`̀ ,β, gk`,β “ gk`̀ ,β. (14)

In this system the indices i`, j` and k` do not appear in (13) or in the further g-rules
corresponding to the further crossings. Hence for the purpose of determining gαβ with
α, β R ti`, j`, k`u, Equations (14) can be ignored.

Similarly eliminating g1
i`,β, g

1
j`,β, and g1

k`,β from the second set of equations, we find that
it is equivalent to

g1
i,β “ δiβ ` T 2g1

i`̀ ,β ` T p1 ´ T qg1
j`̀ ,β ` p1 ´ T qg1

k`̀ ,β,

g1
j,β “ δjβ ` Tg1

j`̀ ,β ` p1 ´ T qg1
k`̀ ,β, g1

k,β “ δkβ ` g1
k`̀ ,β,

(15)

g1
i`,β “ Tg1

i`̀ ,β`p1´T qg1
k`̀ ,β, g1

j`,β “ Tg1
j`̀ ,β`p1´T qg1

k`̀ ,β, g1
k`,β “ g1

k`̀ ,β. (16)

Using the same logic as before, for the purpose of determining g1
αβ with α, β R ti`, j`, k`u,

Equations (16) can be ignored.
But now we compare the unignored equations, (13) and (15), and find that they are

exactly the same, except with g Ø g1, and the same is true for the further g-rules and/or
g1-rules coming from the further crossings. Hence so long as α, β R ti`, j`, k`u, we have that
gαβ “ g1

αβ. In the case of the R3b move no edges merge or break up, and hence this implies
that g̃ab “ g̃1

ab so long as a and b are away from the move.
Next we deal with the case of R2c`. We use the privileges afforded to us by Lemma 6 to

insert 4 null vertices into the right-hand-side of the move, and like in the case of R3b, we
start with pictures annotated with the relevant type (8) and (11) g-rules, written with the

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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assumption that β R ti`, j`u:

¨ ¨ ¨

further
g1-rules

¨ ¨ ¨

further
crossings

i` j`

gi`,β “ Tgi`̀ ,β ` p1 ´ T qgj`,β

gj,β “ δj,β ` gj`,β

gi,β “ δi,β ` T´1gi`,β ` p1 ´ T´1qgj`̀ ,β

gj`,β “ gj`̀ ,β

¨ ¨ ¨

further
g-rules

i

g1
i`,β “ g1

i`̀ ,β

g1
j,β “ δj,β ` g1

j`,β

g1
i,β “ δi,β ` g1

i`,β

g1
j`,β “ g1

j`̀ ,β

j

j`̀

i`̀

¨ ¨ ¨

further
crossings

i`̀ j

i j`̀

i`j`

As in the case of R3b, we eliminate gi`,β and gj`,β from the equations for the left hand
side, and find that for the purpose of determining gαβ with β R ti`, j`u, they are equivalent
to the equations

gi,β “ δi,β ` gi`̀ ,β and gj,β “ δj,β ` gj`̀ ,β.

Likewise, the right hand side is clearly equivalent to

g1
i,β “ δi,β ` g1

i`̀ ,β and g1
j,β “ δj,β ` g1

j`̀ ,β,

and as in the case of R3b, this establishes the invariance of g̃ab under R2c moves.
For the remaining moves, R2c´, R1l, and R1r, we merely display the g-rules and leave it

to the readers to verify that when the edges i` and/or j` are eliminated, the left hand sides
become equivalent to the right hand sides:

i` j`

g1
i`,β “ g1

i`̀ ,β

g1
j,β “ δj,β ` g1

j`,β

g1
i,β “ δi,β ` g1

i`,β

g1
j`,β “ g1

j`̀ ,β

i

i`̀ j

j`̀

i`j`

gi,β “ δi,β ` Tgi`,β ` p1 ´ T qgj`̀ ,β

gj`,β “ gj`̀ ,β

gi`,β “ T´1gi`̀ ,β ` p1 ´ T´1qgj`,β

gj,β “ δj,β ` gj`,β

i

i`̀ j

j`̀

i`̀

i

i`

gi`,β “ Tgi`̀ ,β

`p1 ´ T qgi`,β

gi,β “ δi,β ` gi`,β

i`̀

i

i`
g1
i`,β “ g1

i`̀ ,β

g1
i,β “ δi,β ` g1

i`,β
i`

g2
i`,β “ g2

i`̀ ,β

g2
i,β “ δi,β ` Tg2

i`,β

`p1 ´ T qg2
i`̀ ,β

i`̀

i

8

We can now move on to the main part of the proof of our Main Theorem, Theorem 1. We
need to show the invariance of θ under the “upright Reidemeister” moves of Figure 4.3.

Proposition 9. The moves in Figure 4.3 are sufficient. If two upright knot diagrams (with
null vertices) represent the same knot, they can be connected by a sequence of moves as in
the figure.

Proof Sketch. There is an obvious well-defined map

upright knot diagrams

relations as in Figure 4.3
ÝÑ

oriented knot diagrams

relations as in Figure 4.2

We merely have to construct an inverse to that map. To do that we merely have to choose
how to turn each crossing in an oriented knot diagram to be upright. The different ways of
doing so differ by instances of the Sw relation (if deeper spirals need to be swirled away, null
vertices may be inserted using NV and the spirals can be undone one rotation at a time). A
more detailed version of the proof is in [BVH]. l

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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R1rR1l

φ
“
m

φ
“
n

φ
“
m

`
n

NV Sw“

φ
“

´
1

φ
“

´
1

φ
“

1

φ
“

1

R2c` R2c´ R3b

Figure 4.3. The upright Reidemeister moves: The R1 and R3 moves are already
upright and remain the same as in Figure 4.2. The crossings in the R2 moves of
Figure 4.2 are rotated to be upright. We also need two further moves: The null vertex
move NV for adding and removing null vertices, and the swirl move Sw which then
implies that any two ways of turning a crossing upright are the same. We sometimes
indicate rotation numbers symbolically rather than using complicated spirals.

Dl Dr

m n

s

m n

s

cl1

cl2

cl3

cy

i j k

k`̀ j`̀ i`̀

i j k

k`̀ j`̀ i`̀

cy

cr3

cr1

j`

i`

k`

cr2
j`

i`

k`

Figure 4.4. The two sides Dl and Dr of the R3b move. The left side Dl consists of
3 distinguished crossings cl1 “ p1, j, kq, cl2 “ p1, i, k`q, cl3 “ p1, i`, j`q and a collection
of further crossings cy “ ps,m, nq P Y , where Y is the set of crossings not participating
in the R3b move. The right side Dr consists of cr1 “ p1, i, jq, cr2 “ p1, i`, kq, cr3 “

p1, j`, k`q and the same set Y of further crossings cy.

Proposition 10. The quantity θ is invariant under R3b.

Proof. Let Dl and Dr be two knot diagrams that differ only by an R3b move, and label
their relevant edges and crossings as in Figure 4.4. Let glναβ and grναβ be their corresponding

Green functions. Let F l
1pcq, F l

2pc0, c1q and F l
3pφ, kq be defined from glναβ as in (3)–(5), and

similarly make F r
1 , F

r
2 and F r

3 using grναβ.
By the invariance of the Alexander polynomial, the pre-factor ∆1∆2∆3 is the same for

θpDlq and for θpDrq (see Equation (6)). By Theorem 8, glναβ “ grναβ so long as α, β R

ti`, j`, k`u. And so the only terms that may differ in θpDhq between h “ l and h “ r are
the terms

Ah
“

ÿ

cPtch1 ,c
h
2 ,c

h
3 u

F h
1 pcq `

ÿ

c0,c1Ptch1 ,c
h
2 ,c

h
3 u

F h
2 pc0, c1q, Bh

“
ÿ

c0Ptch1 ,c
h
2 ,c

h
3 u, cyPY

F h
2 pc0, cyq, and Ch

“
ÿ

c1Ptch1 ,c
h
2 ,c

h
3 u, cyPY

F h
2 pcy, c1q. (17)

We claim that Al “ Ar, Bl “ Br, and C l “ Cr.

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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To show that Al “ Ar, we need to compare polynomials in glναβ with polynomials in grναβ in

which α and β may belong to the set ti`, j`, k`u on which it may be that gl ‰ gr. Fortunately
the g-rules of Equations (8) and (9) allow us to rewrite the offending g’s, namely the ones with
subscripts in ti`, j`, k`u, in terms of other g’s whose subscripts are in ti, j, k, i`̀ , j`̀ , k`̀ u,
where gl “ gr. So it is enough to show that

under gl “ gr, Al
{. (the g-rules for cl1, c

l
2, c

l
3) “ Ar

{. (the g-rules for cr1, c
r
2, c

r
3), (18)

where the symbol {. means “apply the rules”. This is a finite computation that can in-
principle be carried out by hand. But each Ah is a sum of 3 ` 9 “ 12 polynomials in the
gl’s or the gr’s, these polynomials are rather unpleasant (see (3) and (4)), and applying the
relevant g-rules adds a bit further to the complexity. Luckily, we can delegate this pages-long
calculation to an entity that works accurately and doesn’t complain.

First, we implement the Kronecker δ-function, the g-rules for a crossing ps, i, jq, and the
g-rules for a list of crossings X:

δi_,j_ := If[i === j, 1, 0];

gRules[{s_, i_, j_}] := 

gν_jβ_  gν j+β + δjβ, gν_iβ_  Tν
s gνi+β + 1 - Tν

s
 gν j+β + δiβ,

gν_α_i+  Tν
s gναi + δαi+, gν_α_j+  gνα j + 1 - Tν

s
 gναi + δα j+

;

gRules[X___List] := Union @@ Table[gRules[c], {c, {X}}]

We then let Xl be the three crossings in the left-hand-side of the R3b move, as in Figure 4.4,
we let Al be the Al term of (17), and we let lhs be the result of applying the g-rules for the
crossings in Xl to Al. We print only a “Short” version of lhs because the full thing would
cover about 2.5 pages:

Xl = {{1, j, k}, {1, i, k+}, {1, i+, j+}};

Al = Sum[F1[c], {c, Xl}] + Sum[F2[c0, c1], {c0, Xl}, {c1, Xl}];

lhs = Simplify[Al //. gRules @@ Xl];

Short[lhs, 5]

-
1

2 (1 - T2)
3 - 3 T2 +129 +

2 (1 - T2) 1 + T2 (T2 g2,1+,i - (-1 + T2) g2,1,i) - (-1 + T2) g2,k++,i

1 + (1 - T1 T2) g3,k++,j + g3,k++,k

We do the same for Ar, except this time, without printing at all:

Xr = {{1, i, j}, {1, i+, k}, {1, j+, k+}};

Ar = Sum[F1[c], {c, Xr}] + Sum[F2[c0, c1], {c0, Xr}, {c1, Xr}];

rhs = Simplify[Ar //. gRules @@ Xr];

We then compare lhs with rhs. The output, True, tells us that we have proven (18):

Simplify[lhs  rhs] True

DRAFT! See http://drorbn.net/AP/Projects/Theta/
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We show that Bl “ Br by following exactly the same procedure. Note that we ignore the
summation over cy and instead treat cy as a fixed crossing ps,m, nq. If an equality is proven
for every fixed cy, it is of course also proven for the sum over cy P Y .

lhs = Sum[F2[c0, {s, m, n}], {c0, Xl}] //. gRules @@ Xl;

rhs = Sum[F2[c0, {s, m, n}], {c0, Xr}] //. gRules @@ Xr;

Simplify[lhs  rhs]

True

Similarly we prove that C l “ Cr, and this concludes the proof of Proposition 10.

lhs = Sum[F2[{s, m, n}, c1], {c1, Xl}] //. gRules @@ Xl;

rhs = Sum[F2[{s, m, n}, c1], {c1, Xr}] //. gRules @@ Xr;

Simplify[lhs  rhs]

True

10

Remark 11. The computations above were carried out for generic gναβ and for a generic
cy “ ps,m, nq; namely, without specifying the knot diagrams in full, and hence without
assigning specific values to gναβ, and without specifying m and n. Under these conditions
the three parts of (17) cannot mix (namely, terms from, say, Ah cannot cancel terms in Bh

or Ch), and so it would have been enough to show that El “ Er, where Eh combines Ah and
Bh and Ch (and a few harmless further terms) by adding cy to the summation corresponding
to Ah:

Eh
“

ÿ

cPtch1 ,c
h
2 ,c

h
3 ,c

h
yu

F h
1 pcq `

ÿ

c0,c1Ptch1 ,c
h
2 ,c

h
3 ,c

h
yu

F h
2 pc0, c1q.

But that’s a simpler computation:

ESum[X_] := (Sum[F1[c], {c, X}] + Sum[F2[c0, c1], {c0, X}, {c1, X}]) //. gRules @@ X;

Xl = {{1, j, k}, {1, i, k+}, {1, i+, j+}};

Xr = {{1, i, j}, {1, i+, k}, {1, j+, k+}};

Simplify[ESum[Append[Xl, {s, m, n}]]  ESum[Append[Xr, {s, m, n}]]]

True

11

Proposition 12. The quantity θ is invariant under the upright R2c` and R2c´.

Proof. For R2c` we follow the same logic as in the proof of Proposition 10, as simplified by
Remark 11. We start with the figure that replaces Figure 4.4 (note the null vertices in Dr

and their minimal effect as in Lemma 6 and Remark 7):

j

i`̀

i

i`j`

j`̀

Dl Dr

i

j

j`̀

i`̀

j`i`

m n

s

m n

s
cy cy

cl1

cl2

As in Remark 11, we let El and Er be the sums corresponding to the diagrams Dl and
Dr above:

El
“

ÿ

cPtcl1,c
l
2,cyu

F l
1pcq `

ÿ

c0,c1Ptcl1,c
l
2,cyu

F l
2pc0, c1q ` F l

3pj`
q|φj` “1, Er

“ F r
1 pcyq ` F r

2 pcy, cyq ` F r
3 pj`

q|φj` “1.
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We need to show that El “ Er after all relevant g-rules are applied to both sides.
To compute these E sums we first have to extend the ESum routine to accept also a list R

of pairs pφ, kq of the form (rotation number, edge label):

ESum[X_, R_] :=

(Sum[F1[c], {c, X}] + Sum[F2[c0, c1], {c0, X}, {c1, X}] + Sum[F3 @@ r, {r, R}]) //.

gRules @@ X;

We then compute El (and apply the relevant g-rules) by calling ESum with crossings
p´1, i, j`q, p1, i`, jq, and ps,m, nq, and a rotation number of 1 on edge j`:

El = Simplify[ESum[{{-1, i, j+}, {1, i+, j}, {s, m, n}}, {{1, j+}}]];

Short[El, 5]

-
1

2 (-1 + T2
s)

1 + s + 2 s (T1 T2)
s g3,m+,m +11 + 2 g3,j++,j -

T2
s
1 + s - 2 s g1,n+,m g2,n+,m + 2 s g2,n+,n +28 + 2 s g2,m+,m (1 + g3,n+,n) + 2 g3,j++,j

The computation of Er is simpler, as it only involves the generic ps,m, nq and the rotation
p1, j`q. We implement the g-rules for null vertices as in Equations (11) and (12), compute
Er, and then compare El with Er to conclude the invariance under R2c`:

gRules[j_] := {gν_,j,β_  δj,β + gν,j+,β, gν_,α_,j+  δα,j+ + gν,α,j}

Er = ESum[{{s, m, n}}, {{1, j+}}] //. (Union @@ gRules /@ {i, i+, j, j+});

Simplify[El  Er]

True

For R2c´ we allow ourselves to be even more condensed:

i`j`

i

i`̀

j

j`̀

j`i`

j

j`̀

i

i`̀

El = ESum[{{1, i, j+}, {-1, i+, j}, {s, m, n}}, {{-1, j+}}];

Er = ESum[{{s, m, n}}, {{-1, j+}}] //.

(Union @@ gRules /@ {i, i+, j, j+});

Simplify[Er  El]

True

12

i`̀

i

i`

i`̀

i

i` i`

i`̀

i

Proposition 13. The quantity θ is invariant under R1l and R1r.

Proof. We aim to use the same approach and conventions as in the
previous two proofs but hit a minor snag. The g-rules for R1l include

gi`β “ δi`β ` Tgi`̀ ,β ` p1 ´ T qgi`,β and gα,i` “ gαi ` p1 ´ T qgαi` ` δα,i` ,

and if these are implemented as simple left to right replacement rules, they lead to infinite
recursion. Fortunately, these rules can be rewritten in the form

gi`β “ T´1δi`β ` gi`̀ ,β and gα,i` “ T´1gαi ` T´1δα,i` ,

which makes perfectly valid replacement rules. We thus redefine:
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gRules[{1, i+, i}] = 

gν_iβ_  gνi+β + δiβ, gν_i+β_  gνi++β + Tν
-1

δi+β,

gν_α_i++  Tν gναi+ + δαi++, gν_α_i+  Tν
-1 gναi + Tν

-1
δαi+

;

The same issue does not arise for R1r (!), and thus the following lines conclude the proof:

El = ESum[{{1, i+, i}, {s, m, n}}, {{1, i+}}];

Em = ESum[{{s, m, n}}];

Er = ESum[{{1, i, i+}, {s, m, n}}, {{-1, i+}}];

Simplify[El  Em  Er]

True

13

j

j` i`

i

φ“1φ“1

i j

j` i`

φ“ ´1 φ“ ´1

Proposition 14. The quantity θ is invariant under Sw.

Proof. This one is routine:

El = ESum[{{1, i, j}, {s, m, n}}];

Er = ESum[{{1, i, j}, {s, m, n}}, {{-1, i}, {-1, j}, {1, i+}, {1, j+}}];

Simplify[El  Er]

True

14

Proposition 15. The quantity θ is invariant under NV.

Proof. Indeed, F3 is linear in φ. l

We are now ready to complete the proof of the Main Theorem.
Proof of Theorem 1. The Main Theorem now follows from Propositions 9, 10, 12, 13, 14,
and 15. l

5. Strong and Meaningful

5.1. Strong. To illustrate the strength of Θ, Table 5.1 summarizes the separation powers of
Θ and of some common knot invariants and combinations of those knot invariants on prime
knots with up to 15 crossings (up to reflections and reversals).

In line 2 of the table we list the total number of tabulated knots with up to n crossings.
For example, there are 313,230 prime knots up to reflections and reversals with at most 15
crossings. In the following lines we list the separation deficits on these knots, for different
invariants or combinations of invariants. For example, in line 3 we can see that on knots
with up to 10 crossings, the Alexander polynomial ∆ has a separation deficit of 38: meaning,
that it attains 249 ´ 38 “ 211 distinct values on the 249 knots with up to 10 crossings. For
deficits, the smaller the better!5 Thus the deficit of 236,326 for ∆ at n ď 15 means that
the Alexander polynomial is a rather weak invariant, in as much as separation power is
concerned.

5This is not a political statement.
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1 n ď 10 ď 11 ď 12 ď 13 ď 14 ď 15
2 knots 249 801 2,977 12,965 59,937 313,230
3 ∆ (38) (250) (1,204) (7,326) (39,741) (236,326)
4 σ (108) (356) (1,525) (7,736) (40,101) (230,592)
5 J (7) (70) (482) (3,434) (21,250) (138,591)
6 Kh (6) (65) (452) (3,226) (19,754) (127,261)
7 H (2) (31) (222) (1,839) (11,251) (73,892)
8 Vol („6) („25) („113) („1,012) („6,353) („43,607)
9 pKh, H,Volq („0) („14) („84) („911) („5,917) („41,434)
10 p∆, ρ1q (0) (14) (95) (959) (6,253) (42,914)
11 p∆, ρ1, ρ2q (0) (14) (84) (911) (5,926) (41,469)
12 pρ1, ρ2,Kh, H,Volq (0) („14) („84) („911) („5,916) („41,432)
13 Θ (0) (3) (19) (194) (1,118) (6,758)
14 pΘ, ρ2q (0) (3) (10) (169) (982) (6,341)
15 pΘ, σq (0) (3) (19) (194) (1,118) (6,758)
16 pΘ,Khq (0) (3) (18) (185) (1,062) (6,555)
17 pΘ, Hq (0) (3) (18) (185) (1,064) (6,563)
18 pΘ,Volq (0) („3) („10) („169) („973) („6,308)
19 pΘ, ρ2,Kh, H,Volq (0) („3) („10) („169) („972) („6,304)

Table 5.1. The separation powers of some knot invariants and combinations of knot
invariants (in lines 3–19, smaller numbers are better). The data in this table was
assembled by [BV3, Stats.nb].

In line 4 we shows the deficits for the Levine-Tristram signature [Le, Tr, Co] as computed
by the program in [BN4]. We were surprised to find that for knots with up to 15 crossings
these deficits are smaller than those of ∆.

Line 5 shows the deficits for the Jones polynomial J . It is better than ∆, and better
than ∆ and σ taken together (deficits not shown) but still rather weak. Line 6 shows the
deficits for Khovanov homology Kh. They are only a bit lower than those of J . On line 7,
the HOMFLY-PT polynomial H is noticeably better.

On line 8 we consider the hyperbolic volume Vol of the knot complement, as computed
by SnapPy [CDGW]. We computed volumes using SnapPy’s high_precision flag, which
makes SnapPy compute to roughly 63 decimal digits, and then truncated the results to 58
decimal digits to account for possible round-off errors within the last few digits. But then we
are unsure if we computed enough. . . . Hence the uncertainty symbols “„” on some of the
results here and in the other lines that contain Vol. This said, Vol seems to be the champion
so far.

Line 9 is “everything so far, taken together”. Note that Kh dominates J and H dominates
both ∆ and J , so there’s no point adding ∆ and/or J into the mix. We note that adding σ
to the triple pKh, H,Volq, or even to the pair pKh,Volq, does not improve the results; namely,
for knots with up to 15 crossings the pair pKh,Volq dominates σ, even though each of Kh
and Vol does not dominate σ and the discrepancies start already at 11 crossings. We don’t
know if this means anything.
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On line 10, the Rozansky-Overbay invariant ρ1 [Roz1, Roz2, Roz3, Ov], also discussed
by us in [BV1], does somewhat better. Note that the computation of ∆ is a part of the
computation of ρ1, so we always take them together. In line 11 we add ρ2 [BN3] to make
the results yet a bit better.

Line 12 is “everything before Θ”.
Line 13 makes our case that Θ is strong — the deficit here, for knots with up to 15

crossings, is about a sixth of the deficit in line 12!
Line 14 reinforces our case by just a bit: note that it makes sense to bundle ρ2 along with

Θ, for their computations are very similar. Note also that Conjecture 21 below means that
it is pointless to consider pΘ, ρ1q.

Line 15 shows that for knots with up to 15 crossings, Θ dominates σ. We don’t know if
this persists.

Lines 16 through 18 show that at crossing number ď 15 and in the presence of Θ, and
especially in the presence of both Θ and ρ2, it is pointless to also consider H or Kh, and
only mildly useful to also consider Vol. Line 19 shows that once Vol has been added to Θ,
the other invariants contribute almost nothing.

We note that of all the invariants considered above, the only one known to (sometimes)
detect knot mutation is Θ (see Section 3.2).

We also note that the Vn polynomials of Garoufalidis and Kashaev [GK], and in particular
V2 [GL] share many properties with Θ and are stronger than Θ on knots with up to 15
crossings. But they are not nearly as computable on large knots. It would be very interesting
to explore the relationship between the Vn’s and Θ.

5.2. Meaningful. Many knot polynomials have some separation power, some more and
some less, yet they seem to “see” almost no other topological properties of knots. The
greatest exception is the Alexander polynomial, which despite having rather weak separation
powers, gives a genus bound, a fiberedness condition, and a ribbon condition. The definition
of θ is in some sense “near” the definition of ∆, and one may hope that θ will share some of
the good topological properties of ∆.

5.2.1. The Knot Genus. With significant computational and theoretical (see also Discus-
sion 23 and Comment 26 below) evidence we believe the following to be true:

Conjecture 16. Let K be a knot and gpKq the genus of K. Then degT1
θpKq ď 2gpKq.
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Using the available genus data in KnotInfo [LM]
we have verified this conjecture for all knots with
up to 13 crossings (see [BV3, KnotGenus.nb]). The
example of the Conway knot and the Kinoshita-
Terasaka knot in Section 3.2 shows that the bound
in Conjecture 16 can be stronger than the bound
degT ∆pKq ď gpKq coming from the Alexander
polynomial. Another such example is the 48-crossing
Gompf-Scharlemann-Thompson GST 48 knot [GST], shown on the right. Here’s the relevant
computation, with X14,1 (say) meaning “the crossing p1, 14, 1q” and X̄2,29 (say) meaning
“p´1, 2, 29q”:
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GST48 = EPDX14,1, X2,29, X3,40, X43,4, X26,5,

X6,95, X96,7, X13,8, X9,28, X10,41, X42,11, X27,12,

X30,15, X16,61, X17,72, X18,83, X19,34, X89,20,

X21,92, X79,22, X68,23, X57,24, X25,56, X62,31,

X73,32, X84,33, X50,35, X36,81, X37,70, X38,59,

X39,54, X44,55, X58,45, X69,46, X80,47, X48,91,

X90,49, X51,82, X52,71, X53,60, X63,74, X64,85,

X76,65, X87,66, X67,94, X75,86, X88,77, X78,93;

AbsoluteTiming@

PolyPlot[{Δ48, θ48} = Θ[GST48],

ImageSize  Small]

16.8944, 

{Exponent[Δ48, T], ⌈Exponent[θ48, T1] / 2⌉} {8, 10}

Thus θ gives a better lower bound on the genus of GST 48, 10, then the lower bound
coming from ∆, which is 8. Seeing that GST 48 may be a counter-example to the ribbon-slice
conjecture [GST], we are happy to have learned more about it. Also see Dream 34 below.

The hexagonal QR code of large knots is often a clear hexagon (e.g. Figure 1.4), but the
hexagonal QR code of GST 48, displayed above, is rounded at the corners. We don’t know if
this is telling us anything about topological properties of GST 48.

5.2.2. Fibered Knots. Upon inspecting the values of Θ on the Rolfsen table, Figure 1.1, we
noticed that often (but not always) the bar code shows the exact same colour sequence as
the top row of the QR code, or exactly its opposite. This and some experimentation lead us
to the following conjecture, for which we do not have theoretical support.

Conjecture 17. If K is a fibered knot and d is the degree of ∆pKq (the highest power of
T ), then the coefficient of T 2d

2 in θpKq, which is a polynomial in T1, is an integer multiple
of T d

1∆pKq|TÑT1. See examples in Figure 5.1, where the integer factor is denoted spKq.

Using the available fiberedness data in KnotInfo [LM] we found that the condition in this
conjecture holds for all 5,397 fibered knots with up to 13 crossings, while it fails on all but
48 of the 7,568 non-fibered knots with up to 13 crossings. See [BV3, FiberedKnots.nb].

We note that if K is fibered then degree d of ∆pKq is the genus of K, and the coefficient
of T d in ∆pKq is ˘1 (see [Rol, Section 10H]). The latter condition is an often-used fast-to-
compute criterion for a knot to be fibered.

If Conjecture 17 is true then the condition in it is another fast-to-compute criterion for a
knot to be fibered, and this criterion is sometimes stronger than the Alexander condition.
For example, both the Conway and the Kinoshita-Terasaka knots are not fibered yet their
Alexander polynomial is 1, which is monic. In both cases the coefficient of T 0

2 in θ is not an
integer multiple of 1 (see Section 3.2), so the condition in Conjecture 17 would detect that
these two knots are not fibered.

6. Stories, Conjectures, and Dreams

There is a story teller in each of us, who wants to tell a coherent story, with a beginning,
a middle, and an end. Unfortunately of us, the Θ story isn’t that neat. Calling the content
of the first few sections of this paper “the middle”, we are quite unsure about the beginning
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Figure 5.1. The invariant Θ of the
fibered knot 12n242, also known as the
p´2, 3, 7q pretzel knot, and of the fibered
knot 77. For the first, spKq ą 0 and the
bar code visibly matches with the top row
of the QR code (though our screens and
printers and eyes may not be good enough
to detect minor shading differences, so a
visual inspection may not be enough). For
the second, twice the degree of ∆ is visibly
greater than the degree of θ, so spKq “ 0.

Figure 6.1. A long version of the rotational
virtual knot KS from [Kau3]. It has X “

tp´1, 1, 6q, p´1, 2, 4q, p1, 9, 3q, p´1, 7, 5q, p1, 10, 8qu

and φ “ p´1, 0, 0, 1, 0,´1, 0, 0, 1, 0, 0q. 1
2

3

4

5

6

7

8

9

10

`

` ´

´

´

φ9 “ 1

φ4 “ 1

φ6 “ ´1

11

and the end. The “beginning” can be construed to mean “the thought process that lead us
here”. But that process was too long and roundabout to be given in full here (though much
of it can be gleaned by reading this section). What’s worse, we believe that ultimately, our
peculiar thought process will be replaced by much more solid foundations and motivations,
perhaps along the lines of Dreams 31 and 32. But this solid foundation is not available yet,
even if we are working hard to expose it. As for the end of the story, it is clearly not known
yet.

Hence this section is a bit sketchy and disorganized. Those facts that we already know,
those conjectures we believe in, and the dreams we dream, are all here in some random order.
But the narrative is lacking.

Conjecture 18. θ has hexagonal symmetry. That is, for any knot K, we have that θ “

θ|T1ÑT1,T2ÑT´1
1 T´1

2
(“the QR code is invariant under reflection about a horizontal line”), and

θ “ θ|T1ÑT1T2,T2ÑT´1
2

(“the QR code is invariant under reflection about the line of slope 30˝”).

The Alexander polynomial has a simpler symmetry, ∆ “ ∆|TÑT´1 . It is rather difficult
to deduce the symmetry of ∆ from the formula in this paper, Equation (2) (though it is
possible; once notational differences are overcome, the proof is e.g. in [CF, Chapter IX]).
Instead, the standard proof of the symmetry of ∆ uses the Seifert surface formula for ∆
(e.g. [Li, Chapter 6]). We expect that Conjecture 18 will be proven as soon as a Seifert
formula is found for θ. See Dream 31 below.

A rotational virtual knot is a virtual knot diagram [Kau2] whose edges6 are marked with
“rotation numbers” φk, modulo the same moves as in Figure 4.3.7 Clearly, Θ extends to long

6Ignoring “virtual crossings”. See [BDV, Section 4].
7This definition is slightly different than the original in [Kau3] but the equivalence is easy to show.
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rotational virtual knots, and its proof of invariance extends verbatim. Yet as shown below,
on the long rotational virtual knot KS of Figure 6.1 (and indeed, on almost any other long
rotational virtual knot which is not a classical knot), the hexagonal symmetry of θ fails. So
something non-local must happen within any proof of Conjecture 18.

KS = {{{-1, 1, 6}, {-1, 2, 4}, {1, 9, 3}, {-1, 7, 5}, {1, 10, 8}},

{0, 0, 0, 1, 0, -1, 0, 0, 1, 0, 0}};

PolyPlot[Θ[KS], ImageSize  Tiny]

Conjecture 19. If K̄ denotes the mirror image of a knot K, then θpK̄q “ ´θpKq.

Conjecture 20. If ´K denotes the reverse of a knot K (namely, K taken with the opposite
orientation), then θp´Kq “ θpKq.

Conjecture 21. θ dominates the Rozansky-Overbay invariant ρ1 [Roz1, Roz2, Roz3, Ov],
also discussed by us in [BV1]. In fact, ρ1 “ ´θ|T1ÑT,T2Ñ1.

Conjecture 22. θ is equal to the “two-loop polynomial” studied extensively by Ohtsuki [Oh2],
continuing Rozansky, Garoufalidis, and Kricker [GR, Roz1, Roz2, Roz3, Kr].

Discussion 23. People who are already familiar with “the loop expansion” may consider
the above conjecture an “explanation” of θ. We differ. An elementary construction ought to
have a simple explanation, and the loop expansion is too complicated to be that.

Be it as it may, Ohtsuki [Oh2] shows that Conjecture 22 implies Conjectures 16, 18, 19,
and 20. 23

Next, let us briefly sketch some key points from [BN1, BV2], where we explain how to
obtain poly-time computable knot invariants from certain Lie algebraic constructions.

Discussion 24. Let g be a semi-simple Lie algebra, let b be its upper Borel subalgebra, and
let h be its Cartan subalgebra. Then b has a Lie bracket β and, as the dual of the lower Borel
subalgebra, it also has a cobracket δ. It turns out that g can be recovered from the triple
pb, β, δq; in fact, g` :“ g ‘ h » Dpb, β, δq, where D denotes the Manin double construction8.
We now set g`

ϵ :“ Dpb, β, ϵδq, where ϵ is a formal “small” parameter. The family g`
ϵ is a

1-parameter family of Lie algebras all defined on the same underlying vector space b‘b˚. If
ϵ is invertible then g`

ϵ is independent of ϵ and is always isomorphic to g` “ g`
1 . Yet at ϵ “ 0,

g`
0 is solvable, and as the name “solvable” suggests, computations in g`

0 can be “solved”.
Hence in [BN1, BV2], mostly in the case where g “ sl2, we use the Drinfeld double con-

struction to quantize the universal enveloping algebra Upg`
ϵ q and use it to define a “universal

quantum invariant” Zg
ϵ (in the sense of [La, Oh1]). We then expand Zg

ϵ near where it’s easy;
namely, as a power series around ϵ “ 0. In the case of g “ sl2, and almost certainly in
general, we write Zg

ϵ “ ρg0 exp
`
ř

dě1 ρ
g
dϵ

d
˘

and find that we can interpret the ρgd as poly-
nomials in as many variables as the rank of g. It turns out that ρg0 is always determined

8We are unsure about naming. D is also known as “the Drinfeld double” construction for Lie bialgebras
(as opposed to Hopf algebras). Yet when Drinfeld first refers to this construction in [Dr], in reference to
Lie bialgebras, he repeatedly names it after Manin (under the less clear name “Manin triples”), yet without
providing a reference. Our choice is to use “Manin double” when doubling Lie bialgebras and “Drinfeld
double” when doubling Hopf algebra, as we found no indication that Manin knew about the latter process.
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by the Alexander polynomial and the ρgd are always computable in polynomial time (with
polynomials whose exponents and coefficients get worse as d grows bigger and g gets more
complicated.

Our papers and talks [BV1, BV2, BN3] carry out the above procedure in the case where
g “ sl2, calling the resulting invariants ρd, for d ě 1. They are the same as ρ1 and ρ2 of
Section 5.1. 24

Following some preliminary work by Schaveling [Sch], in the summer of 2024 we’ve set out
to find good formulas for ρsl31 . Tracing Discussion 24 seemed technically hard, so instead, we
extracted from the procedure the “shape” of the formulas we could expect to get and, and
then we found the invariant θ by the method of undetermined coefficients assisted by some
difficult-to-formulate intuition (more in Comment 30 below). Thus our formulas for θ arose
from our expectations for ρsl31 , and yet we have not proved that they are equal!

Conjecture 25. Up to conventions and normalizations, θ “ ρsl31 .

Comment 26. Using the techniques of [BN2, BV2] we expect to be able to prove a genus
bound for ρsl31 , similar to the bound in Conjecture 16. Thus we expect that Conjecture 25
will imply Conjecture 16.

Discussion 27. People who are versed with Lie algebras and their quantizations may con-
sider the above an “explanation” of θ, and may be looking forward to a more detailed
exposition of ρgd. We differ, for the same reasons as in Discussion 23. We expect the eventual
“origin story” for θ to be simpler and more natural. 27

Discussion 28. It is the basis of the theory of “Feynman diagrams”, and hence it is ex-
tremely well known in the physics community, that perturbed Gaussian integrals, when
convergent, can be computed (as asymptotic series) efficiently using “Feynman diagrams”
(see e.g. [Po1]). Physicists use this routinely in infinite dimensions; yet the finite dimensional
formulation can be sketched as follows:

ż

Rd

eQ`ϵP
„ C

ÿ

ně0

ϵn
ÿ

F

EpF q, (19)

where Q is a non-degenerate quadratic on Rd, P is a “smaller” perturbation, C is some
constant involving π’s and the determinant of Q, the summation

ř

F is over “Feynman
diagrams” of complexity n, and F ÞÑ EpF q is some procedure, which can be specified in full
but we will not do it here, which assigns to every Feynman diagram F an algebraic sum
which in itself depends only on the coefficients of P and the entries of the inverse of Q.
In fact, one may take the right-hand-side of Equation (19) to be the definition of the

left-hand-side, especially if the left-hand-side is not convergent, or does not make sense for
some other reason. Namely, one may set

G

ż

Rd

eQ`ϵP :“ C
ÿ

ně0

ϵn
ÿ

F

EpF q. (20)

The result is an integration theory defined on perturbed Gaussians in fully algebraic terms,
and which shares some of the properties of “ordinary” integration, such as having a version
of Fubini’s theorem. In a sense, that’s what physicists do: path integrals don’t quite make
sense, so instead they are defined using Feynman diagrams and the right-hand-side of Equa-
tion (20). Another example is the “Århus integral” of [BGRT], where the integral in itself
is diagrammatic, as is the output of the integration procedure. 28
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Fact 29. There is a perturbed Gaussian formula for Θ. More precisely, one can assign a
6-dimensional Euclidean space R6

e with coordinates p1e, p2e, p3e, x1e, x2e, x3e to each edge e of
a knot diagram D and then form R6E :“

ś

eR6
e, a space whose dimension is 6 times the

number of edges in E. One can then form a “Lagrangian” LD “ QD ` ϵPD by summing over
all the crossings of D local contributions that involve only the variables associated with the
four edges around each crossings, and adding a “correction” which is a sum over the edges e
of D of terms that depend only on the rotation number of e and on the variables in R6

e, such
that

G

ż

R6E

eLD “ G

ż

R6E

eQD`ϵPD “
p2πq3|E|

∆1∆2∆3

exp

ˆ

ϵ
θ

∆1∆2∆3

˙

` Opϵ2q,

and such that the Feynman diagram expansion of the left-hand-side of the above equation
becomes precisely formula (6) for θ. See more about all this in [BN5].

Comment 30. In fact, Fact 29 is what we initially predicted based on Discussion 24, along
with some further information about the “shape” of PD. We used the method of unde-
termined coefficients to find precise formulas for PD, and then the technique of Feynman
diagrams to derive our main formula, Equation 6.

Dream 31. There is a “Seifert formula” for Θ. More precisely, let K be a knot, let Σ be
a Seifert surface for K, let H – H1pΣ;Rq, and let 6H denote H ‘ H ‘ H ‘ H ‘ H ‘ H.
Let QΣ denote 3 copies of the standard Seifert form on H ‘ H, taken with parameters T1,
T2, and T3; so QΣ is a quadratic on 6H. We dream that there a “perturbation term” PΣ,
a polynomial function on 6H defined in terms of some low degree finite type invariants of
various knotted graphs formed by representatives of classes in H (also taking account of their
intersections), such that

G

ż

6H

eLΣ “ G

ż

6H

eQΣ`ϵPΣ “
p2πq3 dimpHq

∆1∆2∆3

exp

ˆ

ϵ
θ

∆1∆2∆3

˙

` Opϵ2q.

If this dream is true, it will probably prove Conjectures 16, 18, 19, and 20 much as the
Seifert formula for ∆ can be used to prove the genus bound provided by ∆ and its basic
symmetry properties.

We note the relationship between this dream and [Oh2, Theorem 4.4].

Dream 32. All the invariants from Discussion 24 have Seifert formulas in the style of
Dream 31. In fact, there ought to be a characterization of those Lagrangians LΣ for which
G

ş

eLΣ is a knot invariant, and there may be a construction of all those Lagrangians which is
intrinsic to topology and does not rely of the theory of Lie algebras.

Ñ

If a knot K is ribbon then for some g it has a Seifert
surface Σ of genus g such that g of the generators of H1pΣq

can be represented by a g-component unlink (see the hint
on the right, and see further details in [Kau1, Chapter VIII]
or in [Ba, Section 3.4]). This implies that the Seifert matrix

M of Σ has the form

ˆ

0 A
A˚ B

˙

, which implies that the determinant of M , the Alexander

polynomial ∆, satisfies the Fox-Milnor condition:

Theorem 33 (Fox and Milnor, [FM]). If K is a ribbon knot, then there exists some polyno-
mial fpT q such that ∆ “ fpT qfpT´1q.
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L2a 1 L4a 1 L5a 1 L6a 1 L6a 2 L6a 3 L6a 4 L6a 5 L6n 1 L7a 1

L7a 2 L7a 3 L7a 4 L7a 5 L7a 6 L7a 7 L7n 1 L7n 2 L8a 1 L8a 2

L8a 3 L8a 4 L8a 5 L8a 6 L8a 7 L8a 8 L8a 9 L8a 10 L8a 11 L8a 12

L8a 13 L8a 14 L8a 15 L8a 16 L8a 17 L8a 18 L8a 19 L8a 20 L8a 21 L8n 1

L8n 2 L8n 3 L8n 4 L8n 5 L8n 6 L8n 7 L8n 8 L9a 1 L9a 2 L9a 3

L9a 4 L9a 5 L9a 6 L9a 7 L9a 8 L9a 9 L9a 10 L9a 11 L9a 12 L9a 13

L9a 14 L9a 15 L9a 16 L9a 17 L9a 18 L9a 19 L9a 20 L9a 21 L9a 22 L9a 23

L9a 24 L9a 25 L9a 26 L9a 27 L9a 28 L9a 29 L9a 30 L9a 31 L9a 32 L9a 33

L9a 34 L9a 35 L9a 36 L9a 37 L9a 38 L9a 39 L9a 40 L9a 41 L9a 42 L9a 43

L9a 44 L9a 45 L9a 46 L9a 47 L9a 48 L9a 49 L9a 50 L9a 51 L9a 52 L9a 53

L9a 54 L9a 55 L9n 1 L9n 2 L9n 3 L9n 4 L9n 5 L9n 6 L9n 7 L9n 8

L9n 9 L9n 10 L9n 11 L9n 12 L9n 13 L9n 14 L9n 15 L9n 16 L9n 17 L9n 18

L9n 19 L9n 20 L9n 21 L9n 22 L9n 23 L9n 24 L9n 25 L9n 26 L9n 27 L9n 28

Ñ
Θ

Figure 6.2. Θ for all the prime links with up to 9 crossings, up to reflections and
with arbitrary choices of strand orientations. Empty boxes correspond to links for which
∆ “ 0.

Dream 34. Dream 31, along with the fact that half the homology of a Seifert surface of a
ribbon knot can be represented by an unlink, will imply that θ takes a special form on ribbon
knots, giving us stronger powers to detect knots that are not ribbon.

Discussion 35. In this paper we concentrated on knots, yet at least partially, Θ can be
generalized also to links. Indeed, the definitions in Section 2 and the proof in Section 4 go
through provided the matrix A is invertible; namely, provided the Alexander polynomial ∆
is non-zero (for knots, this is always the case), and provided we choose one component of
the link to cut open.

The programs of Section 3 fail for minor reasons, and a fix is in [BV3, Theta4Links.nb].
Some results are in Figure 6.2. Preliminary testing using these programs suggests that the
resulting invariant is independent of the choice of the cut component, but we did not prove
that.

If ∆ “ 0, one may contemplate replacing G “ A´1 by the adjugate matrix adjpAq of A
(the matrix of codimension 1 minors, which satisfies A ¨adjpAq “ detpAqI. Some preliminary
testing is also in [BV3, Theta4Links.nb]. Yet if G is replaced with adjpAq, it equivalence
with the g-rules (Equations (8) and (9)) breaks, and so we have no proof of invariance. We
may attempt to fix that in a future work, but it is not done yet.
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We note that the two loop expansion of Conjecture 22 does not predict that Θ should
extend to links. We also note that the solvable approximation technique of Discussion 24
does predict that exntention, and in fact, it predicts more: that much like the Gassner
representation [Ga] and the multi-variable Alexander polynomial (e.g. [Kaw, Chapter 7]),
there should be a multi-variable version of Θ which would be a polynomial in 2m variables
when evaluated on an m-component link. We did not attempt to find explicit formulas for
the multi-variable Θ. 35
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