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A VERY FAST, VERY STRONG, TOPOLOGICALLY MEANINGFUL

AND FUN KNOT INVARIANT

DROR BAR-NATAN AND ROLAND VAN DER VEEN

ABSTRACT. In this paper we introduce © = (A, ), a pair of polynomial knot invariants

which is:

e Theoretically and practically fast: © can be computed in polynomial time. We can
compute it in full on random knots with over 300 crossings, and its evaluation at simple

rational numbers on random knots with over 600 crossings.

Strong: Its separation power is much greater than, say, the HOMFLY-PT polynomial
and Khovanov homology (taken together) on knots with up to 15 crossings (while being
computable on much larger knots).

e Topologically meaningful: It gives a genus bound, and there are reasons to hope that it

would do more.

e Fun: Scroll to Figures 1.1, 1.2, and 3.1.
A is merely the Alexander polynomial. 6 is almost certainly equal to an invariant that
was studied extensively by Ohtsuki [Oh], continuing Rozansky, Garoufalidis, and Kricker
[GR, Rol, Ro2, Ro3, Kr]. Yet our formulas, proofs, and programs are much simpler and
enable its computation even on very large knots.
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1. FuN

The word “fun” rarely appears in the title of a math paper, so let us start with a brief
justification.

O is a pair of polynomials. The first, A, is old news, the Alexander polynomial [Al]. Tt is
a one-variable Laurent polynomial in a variable 7. For example, A(&) = T~' -1+ T. We
turn such a polynomial to a list of coefficients (for &, it is (1 — 1 1)), and then to a chain
of bars of varying colours: white for the zero coefficients, and red and blue for the positive
and negative coefficients (with intensity proportional to the magnitude of the coefficients).
The result is a “bar code”, and for the trefoil & is it M.

Similiarly, € is a 2-variable Laurent polynomial, in variables 77 and
T,. We can turn such a polynomial into a 2D array of coefficients and
then using the same rules, into a 2D array of colours, namely, into a 1
picture. To highlight a certain conjectured hexagonal symmetry of the T K
resulting pictures, we apply a certain shear transformation to the plane 1 1

before printing. So the colour of a monomial ¢T7"Ty? gets printed at W

oL 1 —1/2 1 . oL n1 . .
position (0 \/5/2) (M) instead of the more traditional (n2> On the right is the 2D

picture corresponding to the polynomial 2 + Ty — 1Ty + Ty — Ty ' + Ty My P — Tyt

Thus © becomes a pair of pictures: a bar code, and a 2D picture that we call a “hexagonal
QR code”. For the knots in the Rolfsen table (with the unknot prepended at the start), they
are in Figure 1.1. In addition, the hexagonal QR codes of some 15 knots with > 300 crossings
are in Figure 1.2, and © of a 132-crossing torus knot is in Figure 3.1.

MORE. Add some mats.

Clearly there are patterns in these figures. There is a hexagonal symmetry and the QR
codes are nearly always hexagons (these are independent properties). Much more can be seen
in Figure 1.1. In Figure 1.2 there seem to be large-scale “sand table patterns” or “diffraction
patterns”. We can’t prove any of these things, and the last one, we can’t even formulate
properly. Yet they are clearly there, too clear to be the result of chance alone.

We plan to have fun over the next few years observing and proving these patterns. We
hope that others will join us too.

2. FORMULAS

2.1. Old Formulas'. The setup leading to the definition of © is the same as the setup
leading to the definition of the invariant p; of [BV1], and hence we copy a few relevant
paragraphs from [BV1] nearly varbatim, with only a few modifications.

140ld” means that these formulas appeared already in [BV1].
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FIGURE 1.1. © as a bar code and a QR code, for all the knots in the Rolfsen table.
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FIGURE 1.2. 6 (hexagonal QR code only) of the 15 largest knots that we have com-
puted by September 16, 2024. They are all “generic” in as much as we know, and
they all have > 300 crossings. The knots come from [DHOEBL]. Warning: Some
screens/printers may display spurious Moiré interference patterns.

Given an oriented n-crossing knot K, we draw it in the plane as a long D
knot diagram D in such a way that the two strands intersecting at each
crossing are pointing up (that’s always possible because we can always rotate 7
crossings as needed), and so that at its beginning and at its end the knot
is oriented upward. We call such a diagram an upright knot diagram. An
example of an upright knot diagram is shown on the right. [

We then label each edge of the diagram with two labels: a running index
k which runs from 1 to 2n + 1, and a “rotation number” ¢, the geometric
rotation number of that edge (the signed number of times the tangent to the

4
2
edge is horizontal and heading right, with cups counted with +1 signs and
caps with —1; this number is well defined because at their ends, all edges b

(31
g =—1

are headed up). On the right the running index runs from 1 to 7, and the
rotation numbers for all edges are 0 (and hence are omitted) except for ¢y,
which is —1.

~
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Technicality 1. Some Reidemeister moves create or lose an edge and to avoid the need
for renumbering it is beneficial to also allow labelling the edges with non-consecutive labels.
Hence we allow that, and write i* for the successor of the label ¢ along the knot, and i*" for
the successor of i* (these are i + 1 and ¢ + 2 if the labelling is by consecutive integers). Also,
by convention “1” will always refer to the label of the first edge, and “2n + 1”7 will always
refer to the label of the last.

Let X be the set of all crossings in the diagram D, where we encode each crossing as
a triple (sign, incoming over edge, incoming under edge). In our example we have X =
{(1,1,4),(1,5,2), (1,3,6)}.

We let A be the (2n + 1) x (2n + 1) matrix of Laurent polynomials in a formal variable
T, defined by

Amle Y (B (=T + By,

c=(s,i,j)€X

where [ is the identity matrix and £, denotes the elementary matrix with 1 in row a and
column 3 and zeros elsewhere.
Alternatively, A = I+, A., where A, is a matrix of zeros except for the blocks as follows:

A, ‘ column ¢t column j*
— row 14 —T° 75 —1 (1)
row j 0 —1

s=+1

We note (as we did in [BV1]) that the determinant of A is equal up to a unit to the
normalized Alexander polynomial A of K. In fact, we have that

A = T(=#(D)~w(D))/2 det(A), (2)

where p(D) == >, ¢ is the total rotation number of D and where w(D) = } s, is the
writhe of D, namely the sum of the signs s. of all the crossings ¢ in D.

We let G = (gop) = A™! and, thinking of it as a function g,z of a pair of edges a and
B, we call it the Green function of the diagram D. When inspired by physics (e.g. [BN2])
we sometimes call it “the 2-point function”, and when thinking of car traffic (e.g. [BN3]) we
sometimes call it “the traffic function”.

We note that the computation of GG is the bottleneck in the computation of ©. It requires
inverting a (2n + 1) x (2n + 1) matrix whose entries are (degree 1) Laurent polynomials in
T. It’s a daunting task yet it takes polynomial time, it can be performed in practice even if
n is in the hundreds, and everything which then follows is easier.

2.2. New Formulas. Let T} and 75 be indeteminates and let T3 := T1T,. Let A, == Ar_1,
and G, = (guap) = Gr_1, be A and G subject to the substitution 7' — T,,, where v = 1,2,3
(these are easy to compute once A and G have been computed).

Given crossings ¢ = (s,1,7), co = (S0, %0, Jo0), and ¢; = (s1,11,71) in X, let
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Fi(c) = s[1/2 — g3ii + T5 911920 — T5 9355925 — (15 — 1)g3iiga;i (3)

(T3 — 1)go5ig3ji — Griig2;5 + 23i92j5 + 91ii9355 — 92iiF3j;]
s

T5 —1
+ (15 — 1)g3i (1 = T3 g1 + goij + (15 — 2)g255 — (17 — 1)(T5 + 1)g151)]

Sl(Tlso - 1)(T351 B 1)glj1iog3joi1

5t —1
Fs(p, k) = o(gare — 1/2) (5)

Theorem 2 (Proof in Section 4). The following is a knot invariant:

"f_

[(TY — D)T5 (9355915i — Gojigrji + 15 915i92;:)

F2(007 Cl) = (T28092i1i0 + 92510 — T;O.g?jﬂo - g2i1j0) (4)

0(D) = Ay Ay A (Z Fi(o)+ Y, Flco,c) + ), Fg(gok,k)>. (6)

ceX cp,c1€X edges k

We note without detail that there is an alternative formula for € in terms of perturbed
Gaussian integration [BN2]. In that language, and using also the traffic motifs of [BV1, BN3],
the three summands in (6) become Feynman diagrams for processes in which cars governed
by parameter T' = Ty, T, or T3 interact:

33

D /\ D
AN AN
20 Jo\_/h J1 7
=)

In particular, the middle diagram which resembles the greek letter © gave the invariant
its name.

We note also that computationaly, the worst term in (6) is the middle one, and even it
takes merely ~ n? operations in the ring Q(7}, Ty) to complete.

The polynomials Fi(c), Fy(co,c1) and Fs(g, k) are not unique, and we are not certain
that we have the cleanest possible formulas for them. They are human-ugly, yet from a
computational perspective, having 18 terms (as is the case for Fj(c)) isn’t really a problem;
computers don'’t care.

3. IMPLEMENTATION AND EXAMPLES

3.1. Implementation. A concise yet reasonably efficient implementation is worth a thou-
sand formulas. It completely removes ambiguities, it tests the theories, and it allows for
experimentation. Hence our next task is to implement. The section that follows was gener-
ated from a Mathematica [Wo|] notebook which is available at [BV2, Theta.nb]. A second
implemntation of ©, using Python and SageMath (https://www.sagemath.org/) is avail-
able at https://www.rolandvdv.nl/Theta/.

We start by loading the package KnotTheory‘ — it is only needed because it has many
specific knots pre-defined:


https://www.sagemath.org/
https://www.rolandvdv.nl/Theta/
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@ << KnotTheory" Loading KnotTheory™ version of October 29, 2024, 10:29:52.1301.
Read more at http://katlas.org/wiki/KnotTheory.

Next we quietly define the modules Rot, used to compute rotation numbers, and PolyPlot,
used to plot polynomials as bar codes and as hexagonal QR codes. Neither is a part of the
core of the computation of O, so neither is shown; yet we do show one usage example for
each.

@ (x Rot suppressed x)
Rot [MirroreKnot[3, 1]] ({{1, 1, 4}, {1, 3, 6}, {1, 5, 2}}, {0, 0,0, -1, 0, 0, 0} }

We urge the reader to compare the above output with the knot diagram in Section 2.1.

(» PolyPlot suppressed =x)

PolyPlot[{ZT—1+T’1, ~1+T;-2T,+4 T4 T30},

- 1l

1
-
ImageSize - 100, Labeled - True] ‘

1 T4

The definition of CF below is a technicality telling the computer how to best store poly-
nomials in the g,44’s such as I} and F5. The programs would run just the same without it,
albeit a bit more slowly:

CF[&_ 1 := ExpandeCollect[&, g , F] /. F » Factor;

Next, we decree that T3 = T}T5 and define the three “Feynman Diagram” polynomials F7,
FQ, and Fg:

@ T3 =Ty T3;

Fal{s_, i_, _}]1 :=CF[
n s (1 /2-83ii +T5 8141 8251 — B1ii 8255 - (T§ = 1) 82ji 83ii *+ 2 8255 83ii - (1 = T;) 82ji 83ji —
821 8377 - T 821 8355 + 8111 8355 +
((T1-1) g5 (Tgs 825i - T3 8255 + T3 8355) +
(75-2) e (1T e+ g+ (15-2) s - (15-3) (15+2) ) / (13-)))

F,[{s@_, i0_, jO_}, {s1_, i1_, j1_}] :=
n CF [51 (Tie = 1) (T;I - 1) -1 (T§1 - 1) 81,51,1i0 83, jo,i1
( (Tie 82,i1,i0 - gz,u,je) = (Tie 82,j1,i0 - gz,jz,je) ) ]

Fsle , R 1 =0 8ak-0/2;

Next comes the main program computing ©. Fortunately, it matches perfectly with the
mathematical description in Section 2. In line 01 we let X be the list of crossings in an input
knot K, and ¢ the list of its rotation numbers, using the external program Rot which we
have already mentioned. We also let n be the length of X, namely, the number of crossings
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in K. In line 02 we let the starting value of A be the identity matrix, and then in line 03, for
each crossing in X we add to A a 2 x 2 block, in rows ¢ and 7 and columns 7 + 1 and j + 1,
as explain in Equation (1). In line 04 we compute the normalized Alexander polynomial A
as in (2). In line 05 we let G be the inverse of A. In line 06 we declare what it means to
evaluate, ev, a formula £ that may contain symbols of the form g¢,,5: each such symbol is
to be replaced by the entry in position «, 8 of G, but with T replaced with T,. In line 07 we
start computing € by computing the first summand in (6), which in itself, is a sum over the
crossings of the knot. In line 08 we add to # the double sum corresponding to the second
term in (6), and in line 09, we add the third summand of (6). Finally, line 10 outputs a pair:
A, and the re-normalized version of 6.

O[K ] := O[K] =Modu1e[{x, @, n, A, A, G, ev, 8},
(» 01 %) {X, ©} =Rot[K]; n=Length[X];

(«# 92 %) A = IdentityMatrix[2n +1];

(« 03 *) Cases[x’ {s_’ 'i__, j_}:—) (AII{i, j}, {i+1) j+1}]] += (—;5 Ts;.l))];

(x @4 %) A = T(—Total[q)]—Total[X|[A11,1]]])/2 Det[A];
(+ B5 +) G =1Inverse[A];

(» 06 *) ev[& ] :=Factor[& /.8, ,ao,s » (Gla, A1 /.T>T,)1;
(« O7 «) e=ev[2=1F1[X[[k]]]]; -

(+ 08 «) @+=ev[>V ST  Fp[X[k1l, X[k211];

(x 09 *) © += ev[Z::ng[(p[[k]], k1];

(» 10 %) Factor@{a, (A/.T->Ty) (A/.T>Ty) (A/.T>T3) 6}

3.2. Examples. On to examples! Starting with the trefoil knot.

Expand[©[Knot[3, 1]]]

1 1 11 1 1 T, T
{71+7+T,7—7Ti7—7 + + +—1+—2+TiT27T§+T1T§7TiT§}
T T T T T T, T, T

PolyPlot[@[Knot[3, 1]], ImageSize - Tiny] _

Next are the Conway knot 11,34 and the Kinoshita-Terasaka C
knot 11,,4o. The two are mutants and famously hard to separate: /3 OQ
they both have A = 1 (as evidenced by their one-bar Alexander bar < / NV
codes below), and they have the same HOMFLY-PT polynomial 6\ O
and Khovanov homology. Yet their 6 invariants are different. Note U
that the genus of the Conway knot is 3, while the genus of the Kinoshita-Terasaka knot is 2.

This agrees with the apparent higher complexity of the QR code of the Conway polynomial,
and with the observations in Section 5.
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T -

Torus knots have particularly nice-looking © invariants. Here are the torus knots T3/,
T17/3’ T13/57 and T7/63

GraphicsRow [ ImageCompose [

@ PolyPlot[@[Knot[#]], ImageSize -» 120] & /@
{"K11n34", "K11n42"} o

PolyPlot [@[Torusknot @@ #], ImageSize - 480],
TubePlot [TorusKnot @@ #, ImageSize - 240],
{Right, Bottom}, {Right, Bottom}
] & /e {{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

==
: 433
seses
R
¥

O et O

T 2ROWVBD %

&3
.......

The next line shows the computation time in seconds for the 132-crossing torus knot Tz
on a 2024 laptop, without actually showing the output. The output plot is in Figure 3.1.

AbsoluteTiming[®[TorusKnot[22, 7]11;] (1020.73, Null)

We note that if T} and 75 are assigned specific rational numbers and if the program for © is
slightly modified so as to compute each G, separately (rather than computing G' symbolically
and then substituting 7" = T,), then the program becomes significantly more efficient, for
inverting a numerical matrix is cheaper than inverting a symbolic matrix (but then one
obtains numerical answers and the beauty and the topological significance (Section 5) are
lost). The Mathematica notebook that accompanies this paper, [BV2, Theta.nb], contains
the required modified program as well as a few computational examples. One finds that with
Ty = 22/7 and Ty = 21/13, the invariant © can be computed for knots with 600 crossings,
and that for knots with up to 15 crossings, its separation power remains the same.

If 71 and T5, are assigned approximate real values, say m and e computed to 100 decimal
digits, then © can be computed on knots with 1,000 crossings and, for knots with up to 15,
crossings it remains very strong. But approximate real numbers are a bit thorny. It is hard
to know how far one needs to compute before deciding that two such numbers are equal,
and when two such numbers appear unequal, it is had to tell if that is merely because they
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ImageCompose [PolyPlot [@[TorusKnot[22, 7]], ImageSize » 720],
TubePlot [TorusKnot[22, 7], ImageSize -» 360], {Right, Bottom}, {Right, Bottom}]
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FIGURE 3.1. The 132-crossing torus knot 75y/; and a plot of its © invariant

were computed differently and different roundings were applied. Thorns and snares are in
the way of the perverse; He who guards his soul will be far from them (Proverbs 22:5).

4. PROOF OF INVARIANCE

Our proof of the invariance of 6 (Theorem 2) is very similar, and uses many of the same
pieces, as the proof of the invariance of p; in [BV1]. Thus at some places here we are briefer
than at [BV1], and sadly, yet in the interest of saving space, we completely omit here the
interpretation of g.g as a “traffic function”.

Like in [BV1, Lemma 3|, the equalities AG = I and GA = I imply that for any crossing
¢ = (s,i,7) in a knot diagram D, the Green function G = (g,) of D satisfies the following
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“g-rules”, with ¢ denoting the Kronecker delta:
9is = 0ip + T°givp + (1 =T")gje3,  9i8 =0jp+Gjvp,  Gmr18 = Omp1s,  (7)

Gait = ngai + 504,1""7 Jo,j+ = Goj + (1 - Ts)gai + 5a,j+7 Ga,1 = 5&,1- (8)
Furthermore, the systems of equations (7) is equivalent to AG = I and so it fully determines
gap, and likewise for the system (8), which is equivalent to AG = 1.

Of course, the same g-rules also hold for G, = (g,ap) for v = 1,2, 3, except with 7" replaced
with 7;,.

We also need a variant g, of gns, defined whenever a and b are two distinct points on the
edges of a knot diagram D, away from the crossings. If « is the edge on which a lies and
is the edge on which b lies, g, is defined as follows:

Jap if o #* 57
Gab = 3 Gap if « = 3 and a < b relative to the orientation of the edge o = 5,  (9)
gap — 1 if o= 8 and a > b relative to the orientation of the edge a = 3.

Of course, we can define §,q, from g, in a similar way.

It is clear that g and g contain the same information and are easily computable from each
other. The variant g is, strictly speaking, not a matrix and so g is a bit more suitable for
computations. Yet g is a bit better behaved when we try to track, as below, the behaviour
of g / g under Reidemeister moves. Reidemeister moves sometimes merge two edges into
one or break an edge into two. In such cases the points a and b can be “pulled” along with
the move so as to retain their ordering along the overall parametrization of the knot, yet
mere edge labels lose this information. The following discussion and lemma exemplify the
advantage of g of g:

Discussion 3. We introduce “null vertices” as on the right into knot dia- J k
grams, whose only function (as we shall see) is to cut edges into parts that

may carry different labels. When dealing with upright knot diagrams as in Section 2.1, we
only allow null vertices between upgoing edges, so that the rotation numbers ) remain well
defined on all edges. In the presence of null vertices the matrix A becomes a bit larger (by
as many null vertices as were added to a knot diagram). The rule (1) for the creation of the
matrix A gets an amendment for null vertices,

j k Apy | column k
7 TOW j ‘ —1 ’

and the summation for A, A = I+> A.+>, Ay, is extended to include summands for the

null vertices. The matrix G = A™! and the function g,s are defined as before. The g-rules
of (7) and (8) get additions,

gis = 6jp + Grs, (10) and Jok = Oak + Gajs (11)

and it remains true that the system of equations (7)u(10) (as well as (8)u(11)) fully deter-
mines g,5. The variant g, is also defined as before, except now a and b need to also be away
from the null vertices.

Lemma 4. Inserting a null vertex does not change g, provided it is inserted away from a
and b. (This statement does not make sense for g.z, as inserting a null vertex changes the
dimensions of the matriz G = (gag))-



See http://drorbn.net/AP/Projects/ Theta/

12 DROR BAR-NATAN AND ROLAND VAN DER VEEN

FIGURE 4.1. The modified Green function g, is invariant under Reidemeister moves
performed away from where it is measured.

Proof. Let D be an upright knot diagram having an edge labeled ¢ and let D’ be obtained
from it by adding a null vertex within edge i, naming the two resulting half-edges j and &
(in order). Let gas be the Green function for D, and similarly, g 5 for D’. We claim that

B=j B=k BE{jk}
g’ _ a =7 Gii Gii gis
o a=Fk |gi—1 g 9is
o ¢ {]7 k} Jai Jai Gap

Indeed, all we have to do is to verify that the above-defined g, satisfies all the g-rules
(7)u(10), and that is easy. The lemma now follows easily from the definition of ¢’ in Equa-
tion (9). OJ

Remark 5. The statement of Theorem 2 does not change in the presence of null vertices:
There are no “F” terms for those, and their only effect on the definition of © in Equation (6)
is to change the edge labels that appear within ¢, ¢;, and ¢y, and within the F3 sum.

The following theorem, was not named in [BV1], yet it was stated there as the first part
of the first proof of [BV1, Theorem 1].

Theorem 6. The variant Green function gu s a “relative invariant”, meaning that once
points a and b are fived within a knot diagram D, the value of gu does not change if Rei-
demeister moves are performed away from the points a and b. An illustration appears in
Figure 4.1. It follows that the same is also true for G,q for v =1,2,3.

We note that g, is nearly the same as g.p, if a is on o and b is on B. So Theorem 6
also says that g,s is invariant under Reidemeister moves away from « and 3, except for
edge-renumbering issues and +1 contributions that arise if & and § correspond to edge that
get merged or broken by the Reidemeister moves.

The proof of Theorem 6 is perhaps best understood in terms of the traffic function of [BV1,
BN1, BN3]: One simply needs to verify that for each of the Reidemeister moves, traffic
entering the tangle diagram for the left hand side of the move exits it in the same manner
as traffic entering the tangle diagram for the right hand side of the move, and each of
these verifications, as explained in [BV1, BN1, BN3], is very easy. Yet that proof is a bit
informal, so we opt here to give a fully formal proof along the lines of the first halves of [BV1,
Propositions 7-9).

Proof of Theorem 6. We need to know how the Green function g,z changes under the
orientation-sensitive Reidemeister moves of Figure 4.2 (note that the g,s do not see the
rotation numbers and don’t care if a knot diagram is uprigt in the sense of Section 2.1).
We start with R3b. Below are the two sides of the move, along with the g-rules of
type (7) corresponding to the crossings within, written with the assumption that £ isn’t
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& ( J Y Ln L

T | Rr C D C D we =%
\

? ! N S S

R1-left and R1-right counterclockwise and clockwise cyclic R2 braid-like R3

Aside 1: A \ L Aside 2 A A\ (
Q~<\w~/\>~ >~<\/374 D
14 / 14 14

FIGURE 4.2. A generating set of oriented Reidemeister moves as in [Po, Figure 6].
Aside 1: the braid-like R2b is not needed. Aside 2: yet R2b cannot replace R2c*
because in the would-be proof, an unpostulated form of R3 is used (which in itself
follows from R2c™).

in {i*, 57, k*}, so several of the Kronecker deltas can be ignored. We use g for the Green
function at the left-hand side of R3b, and ¢’ for the right-hand side, and recall that along
with the further g/¢’-rules corresponding to all the non-moving knot crossings, these rules
fully determinme g5 and g, 5 for g ¢ {i*, 5%, k™ }:

A ++
& t E g}+75 = Tg;'++,5+(1_T)g]/€++75

/ _
i+ = i+
+

\Q g£+”3 = Tg£++ﬁ—|—(1—T)g,/ﬁﬁ
g;qj7ﬁ = 5k,8+9;§+,5

_~_+
gi+ 5 = Tgi#—kﬁ‘i‘(l—T)ng’B
gj+.,8 = gj++.,8

i+ 0i8 = 5ig+Tgi+75+(l—T)ngﬁ
Jk+.8 = Gkt 8

iJr
9j,8 = j5+Tg]+ 5-1—(1 T)gk+5 g;}g = 5i,8+Tg£+,g+(1_T)g;+ﬁ
Vg 8= Okg+gr+ SR 55 = ip+je
further further further further
crossings g-rules crossings g'-rules

A routine computation (eliminating g;+ g, g;+ s, and g+ g) shows that the first system of
6 equations is equivalent to the following system of 6 equations:

gip = (Szﬂ + T29i++75 + T(l - T)gj++,5 + (1 - T)gk++”3,
958 = 0ip + Tgj+p+ (1 =T)gerrg,  Grp = ks + Gre
gitp = Tgirr g+ (1 = T)gj++ g, gj+.,8 = gj++.8; Ik+,8 = Gkt++ 8- (13)
In this system the indices i, j© and £ do not appear in (12) or in the further g-rules
corresponding to the further crossings. Hence for the purpose of determining g¢,s with
a,B ¢ {it,j7, k*}, Equations (13) can be ignored.
Similarly eliminating g, 5 g}+ 5, and G 5 from the second set of equations, we find that
it is equivalent to

(12)

Gig =0+ TG g+ T(L =T} s+ (L= T)gprs 5,
9iv g = TG g+ (A=T)grss g Gir g =TGer s+ (1=T)G4rv 55 Gt g = Grrv - (15)

(14)
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Using the same logic as before, for the purpose of determining g;,; with o, 8 ¢ {i",j", k*},
Equations (15) can be ignored.

But now we compare the unignored equations, (12) and (14), and find that they are exactly
the same, except with g < ¢/, and the same is true for the further g/¢’-rules coming from
the further crossings. Hence so long as «, 8 ¢ {1, ", k™ }, we have that g.s = g5 In the
case of the R3b move no edges merge or break up, and hence this implies that g, = g/, so
long as a and b are away from the move.

Next we deal with the case of R2¢™. We use the privileges afforded to us by Lemma 4 to
insert 4 null vertices into the right-hand-side of the move, and like in the case of R3b, we
start with pictures annotated with the relevant type (7) and (10) g-rules, written with the
assumption that 8 ¢ {i*, j*}:

++

/I i+ 3 = Tgi++75 + (1 — T)ngr’ﬁ J ggﬁ = 5@5 + g§+75
B / = d
j+< o 98T 08T I i | j+.p = i+
9ip =0ig+T g g+ (1 =T )gjer 9i+ 5 = Yirr 8
i/ NGt 95v8 = it B iyt s =08+ G g
further further further further
crossings g-rules crossings g'-rules

As in the case of R3b, we eliminate g;+ 3 and g;+ g from the equations for the left hand
side, and find that for the purpose of determining g,s with 5 ¢ {¢*,j*}, they are equivalent
to the equations

9i3 = 52-,[3 + Gi++ and 9i8 = 5j’5 + gj++ 3.

Likewise, the right hand side is clearly equivalent to
9ip = Oip+girp and  gis =055+ Gin g,

and as in the case of R3b, this establishes the invariance of g,, under R2c moves.

For the remaining moves, R2c™, R1l, and Rlr, we merely display the g-rules and leave it
to the readers to verify that when the edges i* and/or j* are eliminated, the left hand sides
become equivalent to the right hand sides:

i i i gt
7 gip = 06ip+Tgiwp+ (1 —-T)gj+ g3 9%75 = 51',5/ + i+ g
j+< + gj+.8 = g5+t 8 o+ i+ 9i+ 5 = 9j+
gi+ g = T_lgi++75 +(1— T_l)gj+,g gg+7r3 = gQHﬁ
it NG 9j.8 = 9.5 + i+ .5 it i 95e =00t Gjeg
i an it " "
9i+p =Tgi+p g =g 9i+ 5 = Yi++ g
i +(1=T)gi+ it gf’ﬁ_ 5 fg, i) gls="0ip+Tgls 4
i gig = 6Z,ﬁ + gi+ 3 Z 1,83 1,3 i+,8 . —|—(1 — T)g;lyr’ﬁ

We can now move on to the main part of the proof of Theorem 2. We need to show the
invariance of # under the “upright Reidemeister” moves of Figure 4.3.
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e s

S
[ \
S S

p=m+n

p=-—1

F1GURE 4.3. The upright Reidemeister moves: The R1 and R3 moves are already
upright and remain the same as in Figure 4.2. The crossings in the R2 moves of
Figure 4.2 are rotated to be upright. We also need two further moves: The null vertex
move NV for adding and removing null vertices, and the swirl move Sw which then
implies that any two ways of turning a crossing upright are the same. We sometimes
indicate rotation numbers symbolically rather than using complicated spirals.

C3 I}f«#
(s ¢ (s
Cy S gt it Cy N
m n € m n
i \j k

FIGURE 4.4. The two sides D' and D" of the R3b move. The left side D' consists of
3 distinuighed crossings ¢} = (1,74, k), ¢ = (1,i,k%), ¢4 = (1,i",57) and a collection
of further crossings ¢, = (s,m,n) € Y, where Y is the set of crossings not participating
in the R3b move. The right side D" consists of ¢] = (1,4,5), ¢ = (1,i*,k), ¢§ =
(1,77, k™) and the same set Y of further crossings c,.

Proposition 7. The moves in Figure .3 are sufficient. If two upright knot diagrams (with
null vertices) represent the same knot, they can be connected by a sequence of moves as in
the figure.

Proof. The proof is essentially contained in the caption of Figure 4.3. A more detailed
version is in [BVH]. O

Proposition 8. The quantity 6 is invariant under R3b.

Proof. Let D; and D, be two knot diagrams that differ only by an R3b move, and label
their relevant edges and crossings as in Figure 4.4. Let g/, 4 and g} be their corresponding
Green functions. Let F{(c), Fj(co,c1) and Fi(¢p, k) be defined from gl; as in (3)~(5), and
similarly make FY, Fy and F3 using g;,4-

By the invariance of the Alexander polynomial, the pre-factor A;A;Ag is the same for
6(D') and for §(D") (see Equation (6)). By Theorem 6, gl.,5 = g,q5 so long as a,f ¢
{i*,7%,k*}. And so the only terms that may differ in §(D") between h = [ and h = r are
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the terms
h h h h h h h
At = Z Fi'(e) + Z FY(co,c1), B" = 2 F3(co,¢y), and C" = Z F3(cy,c1). (16)
ce{ci‘72’3} co,cle{c?,gﬁ} coe{c’f’273},cer cle{c?’273},cy€Y

We claim that A' = A", B! = B", and C! = C".

To show that A" = A", we need to compare polynomials in g/, 5 with polynomials in g, 5 in
which a and 3 may belong to the set {i™, 77, k*} on which it may be that ¢g' # ¢". Fortunately
the g-rules of Equations (7) and (8) allow us to rewrite the offending ¢’s, namely the ones with
subscripts in {i*, 7%, k*}, in terms of other g’s whose subscripts are in {i, j, k,i*", 57 k*},
where ¢' = ¢g". So it is enough to show that

under ¢' = ¢, Al /. (the g-rules for ¢, ¢}, c) = A" /. (the g-rules for ¢, ¢}, c3), (17)

where the symbol /. means “apply the rules”. This is a finite computation that can in-
principle be carried out by hand. But each A" is a sum of 349 = 12 polynomials in the g"’s,
these polynomials are rather unpleasant (see (3) and (4)), and applying the relevant g-rules
adds a bit further to the complexity. Luckily, we can delegate this pages-long calculation to
an entity that works accurately and doesn’t complain.

First, we implement the Kronecker d-function, the g-rules for a crossing (s,1,j), and the
g-rules for a list of crossings X:

(0°) i ,5 t=If[i===], 1, @];
n gRules[{s_, i_, j_}] :={
By js P Byits+0iss Byis DTy Brits+ (1-T) 8yjts + s,
8y o it Ti 8rai t Ogit) 8y ajt?8raj* (1 - Ti) 8rai + 5aj+
}s
gRules[X _ List] :=Unione@e Table[gRules[c], {c, {X}}]
We then let X1 be the three crossings in the left-hand-side of the R3b move, as in Figure 4.4,
we let A1l be the A’ term of (16), and we let 1hs be the result of applying the g-rules for the

crossings in X1 to A1. We print only a “Short” version of 1hs because the full thing would
cover about 2.5 pages:

x1= ({1, 3, k}, {1, i, k*}, {1, i*, 3°}};

Al = Sum[F;[c], {c, X1}] + Sum[F,[cO, c1], {cO, X1}, {cl, X1}];
lhs = Simplify[Al //. gRules @@ X1];
Short[1lhs, 5]

1
- (3—3T2+ <«<129>> +
2 (1-Ty)

2 (1-Ty) (1+Ty (Taga,ccant,i— (-1+T2) 82, cc10,1) = (~1+Ty) gz,(k*)*,i)
(T+ (1-T1T2) 83, (k) *,5 * 83, (k") k) )
We do the same for A", except this time, without printing at all:

Xr= ({1, i, 33, {1, i*, k}, {1, 3%, k*}};

Ar =Sum[F;[c], {c, Xr}] + Sum[F,[cO, c1], {c@, Xr}, {cl, Xr}];
rhs = Simplify[Ar //. gRules @@ Xr] ;

We then compare 1hs with rhs. The output, True, tells us that we have proven (17):
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() simplify[1hs == rhs] True

We show that B! = B" by following exactly the same procedure. Note that we ignore the
summation over ¢, and instead treat it as a fixed crossing ¢, = (s,m,n). If an equality is
proven for every fixed ¢, it is of course also proven for the sum over ¢, € Y.

@ lhs = Sum[F,[c®, {s, m, n}], {c@, X1}] //. gRules @@ X1; True
n rhs = Sum[F,[c@, {s, m, n}], {cO, Xr}] //. gRules @@ Xr; o
Simplify[lhs == rhs]

Similarly we prove that C' = C", and this concludes the proof of Proposition 8.

@ lhs = Sum[F,[{s, m, n}, c1], {cl, X1}] //. gRules @@ X1; True
n rhs = Sum[F,[{s, m, n}, c1], {cl, Xr}] //. gRules @@ Xr; o
Simplify[lhs == rhs]

Remark 9. The computations above were carried out for generic g,,3 and for a generic
¢, = (s,m,n); namely, without specifying the knot diagrams in full, and hence without
assigning specific values to g,qg, and without specifying m and n. Under these conditions
the three parts of (16) cannot mix (namely, terms from, say, A" cannot cancel terms in B"
or C"), and so it would have been enough to show that E' = E”, where E" combines A" and
B" and C" (and a few harmless further terms) by adding ¢, to the summation corresponding

to AM:
E'"= > Fo+ ) Feoa).
CE{C?,Q,Z&,y} 007016{0?,2,3@}

But that’s a simpler computation:

ESum[X_] := (Sum[Fy[c], {c, X}] +Sum[F;[cO, c1], {cO, X}, {cl, X}]) //. gRules @ee X;

(o) XL = {{1, 3, k}, {1, i, k'}, {1, i%, 3°}}; True
n Xr={{1, i, j}, {1, i*, k}, {1, 3%, k™}};
Simplify[ESum[Append[X1, {s, m, n}]] == ESum[Append[Xr, {s, m, n}]]]

Proposition 10. The quantity 0 is invariant under the upright R2¢" and R2¢ .

Proof. For R2c¢™ we follow the same logic as in the proof of Proposition 8, as simplified by
Remark 9. We start with the figure that replaces Figure 4.4 (note the null vertices in D"
and their minimal effect as in Lemma 4 and Remark 5):

e l\ e N\
- D - D
7 1
\j j
it — Ks it |5t — ks
] c ] c
A YN N
i m n i m n
g J g J

To compute “E” sums as in Remark 9 we first have to extend the ESum routine to accept
also a list R of pairs (@, k) of the form (rotation number, edge label):
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@ ESum[X_, R_] :=
n (Sum[F;[c], {c, X}] +Sum[F,[cO, c1], {cO, X}, {cl, X}] +Sum[F;e@r, {r, R}]) //.
gRules @e X;

We then compute E' by calling ESum with crossings (—1,4, %), (1,i%, ) as in the left hand
side of the R2c* moves, a generic extra crossing (s,m,n), and a rotation number of 1 on
edge j7:

El = Simplify [ESum[{{-1, i, %}, {1, i*, 3}, {s, m, n}}, {{1, 37}}11;
Short[El, 5]
& 1

oy ————————— (1+5+2s (T1Ty)* ont,m+ <<1l>> +2 A
SR 1T ( 112)" 83,m*,m 83,(3%)*.3

T; (1 +S-2581,n",mB2,n*,m+258a,n",n+ <<28>> +25gy nr,m (1+83,n",n) +283, (j*)*,j) )
The computation of E” is simpler, as it only involves the generic (s, m,n) and the rotation
(1,57). We implement the g-rules for null vertices as in Equations (10) and (11), compute
E", and then compare E' with E" to conclude the invariance under R2c™:

gRu:I'es [j—] °= {gy_:j;ﬁ_ g 6J;ﬁ + gV}j+)/’" gV_;a_:j+ £ 6a:j+ + gv,a,j}

Er = ESum[{{s, m, n}}, {{1, 3*}}] //. (Unionee gRules /@ {i, i*, j, j*});
Simplify[El == Er]

a
True

For R2¢™ we allow ourselves to be even more condensed:

1 (3
(c°) EL=ESum[{{1, i, 3°}, {-1, i’, 3}, {s, m, n}}, {{-1, "}}]; Vit
(@) Er = ESum[{{s, m, n}}, {{-1, 3*}}] //. o o
(Union ee gRules /e {i, i*, j, §*}); ’ )J
Simplify[Er == E1] i i
True
i+ i+ (z**
Proposition 11. The quantity 0 is invariant under R1l and R1r.
i+ i+ Z‘+
Proof. We aim to use the same approach and conventions as in the ,
1 (3 (3

previous two proofs but hit a minor snag. The g-rules for R1l include
g¢+13 = 5¢+5 + Tg,L-H—ﬁ + (1 — T)Qﬁ,ﬁ and ga,i+ = Goi + (]. — T)goﬂ'-# + 5a,i+7

and if these are implemented as simple left to right replacement rules, they lead to infinite
recursion. Fortunately, these rules can be rewritten in the form

girg =T 005 + girr g and Joit =T Goi + T 0+,

which makes perfectly valid replacement rules. We thus redefine:
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gRules[{1, i*, i}] = {
n 8y in D 8ritp+0iss By itp 8y (i*)*p * T;l Si*s,

8y a (1*)* P Ty Brait + 8a(i*)*s By ai* P T5 Brai + 17 S0st
}s

The same issue does not arise for R1r (1), and thus the following lines conclude the proof:

El = ESum[{{1, i*, i}, {s, m, n}}, {{1, i"}}]; True

Em = ESum[{{s, m, n}}];
Er = ESum[{{1, i: i+}: {s, my n}}, {{-1, i+}}]3
Simplify[El == Em == Er]

Proposition 12. The quantity 0 is invariant under Sw. J (/Z
)

Proof. This one is routine: i j

(°°) EL = ESum[{{1, i, j}, {s, m, n}}];
(@) Er=ESum[{{1, i, §}, {s, m, n}}, {{-1, i}, {-1, 3}, {1, i"}, {1, 3"}}1;
Simplify[El == Er]

[
True

Proposition 13. The quantity 0 is invariant under NV.

Proof. Indeed, F3 is linear in . ]
Proof of Theorem 2. Theorem 2 now follows from Propositions 7, 8, 10, 11, 12, and 13.
]

5. STRONG AND MEANINGFUL

5.1. Strong. To illustrate how strong © is, Table 5.1 summarises the separation powers of
various knot invariants and combinations of knot invariants on prime knots with up to 15
crossings (up to reflections and reversals).

In line 2 of the table we list the total number of tabulated knots with up to n crossings.
For example, there are 313,230 prime knots up to reflections and reversals. In the following
lines we list the separation deficits on these knots, for different invariants or combinations
of invariants. For example, in line 3 we can see that on knots with up to 10 crossings, the
Alexander polynomial A has a separation deficit of 38: meaning, that it attains 249—38 = 211
distinct values on the 249 knots with up to 10 crossings. For deficits, the smaller the better!?
Thus the deficit of 236,326 for A at n < 15 means that the Alexander polynomial is a rather
weak invariant, in as much as separation power is concerned.

Line 4 shows the deficits for the Jones polynomial J. It is better than A, but still rather
weak. Line 5 shows the deficits for Khovanov homology Kh. They are only a bit lower
than those of J. The HOMFLY-PT polynomial H (line 6) is noticeably better, and when

2This is not a political statement.
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1 n <10[ <11 <12 | <13 <14 <15

2 knots 249 | 801 | 2,977 | 12,965 | 59,037 | 313,230

3 A (38) | (250) | (1,204) | (7,326) | (39,741) | (236,326)

4 J (7) | (70) | (482) | (3,434)| (21,250) | (138,591)

5 Kh (6) | (65) | (452) | (3,226)| (19,754) | (127,261)

Al 6 H 2) | (31) | (222) | (1,839) | (11,251) | (73,392)

(k. MWU 71 (Kh H) (1) | (30) | (214) | (1,771)| (10,788) | (70,245)
o 8 Vol (6) | (25 | (113) | (1,012) | (6,353 | (43,60738) | 1%/

9 (A, p1) 0) | (14) | (95) | (959) | (6,253) | (42,914)

101 (A, p1,p2) (0) [ (14) | (84) | (911) | (5,926) | (41,469)

s \¢L4\E7 11 ) ©) [ @ [ (19) | (194) | (1,118) (6,758)

12 (©,p2) 0) | (3) | (10) | (169) | (982) (6,341)

\ 13| (6, MIH) ©0) | 3) | (10) | (169) | (982) (6,341)

L \/(Mﬁﬂ 14| (©,pm KRy | (0) | (3) | (10) | (169) | (981) (6,337)
&) 15[ (©,p2, KR, Vo) | (0) | (3) | (10) | (169) | (97230 | (6,304%8) | A

TABLE 5.1. The separation powers of some knot invariants and combinations of knot
invariants (in lines 3-15, smaller numbers are better). The data in this table was
assembled by [BV2, Stats.nb].

taken together with Kh, it gets even a bit better (line 7). Note that Kh dominates J and H
dominates both A and J, so there’s no point adding A and/or J into the mix.
On line 8 we consider the hyperbolic volume of the knot complement, as computed by
SnapPy [CDGW]. We computed volumes using SnapPy’s high_precision flag, which makes
SnapPy compute to roughly 63 decimal digits, and then truncated the results g¢<35 decimal Z[FQ/J_ f
digits to account for possible roundoff errors within the last few digits. But then we are
::%/msure that we computed enough. . . Hence mﬂgor’a&l&on some of /the results here and in
line 15. 3\9' wqce” rngl 57/,.]/7? ANy
On line 9, the Rozansky-Overbay invariant p; [Rol, Ro2, Ro3, Ov], also discussed by us
in [BV1], does somewhat better. Note that the computation of A is a part of the computation
of p1, so we always take them together. In line 10 we add ps [BN1] to make the results yet
—) a bit better. TN fmlf o5 we Jeo & <V 4 W/Vj’/]\ Wt /‘q/z s —L 79!/‘
Line 11 makes our case that O is strongl — Th¢ JeFror” her /s /[5»1‘/‘ o ‘5»:71?2015'
—2 Line 12 reinforces thase by just a bit: note that it makes sense to bundle py along &/cjcﬁ/it
with ©, for their computations are very similar. Note that Conjecture 15 means that it is /5 g,
pointless to consider (O, p;). /o7
Lines 13 through 15 show that at crossing number < 15 and in the presence of O, and
especially in the presence of both © and p», it is pointless to also consider H, nearly pointless
to also consider Kh, and not terribly useful to also consider Vol.
We note that of all the invariants considered in this section, the only one known to (some-
times) detect knot mutation is © (see Section 3.2).

5.2. Meaningful. Many knot polynomials have some separation power, some more and
some less, yet they seem to “see” almost no other topological properties of knots. The
greatest exception is the Alexander polynomial, which despite having rather weak separation
powers, gives a genus bound, a fiberness condition, and a ribbon condition. The definition
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of 0 is in some sense “near” the definition of A, and one may hope that 6 will share some
of the good topological properties of A. With significant computational and theoretical (see
also MORE) evidence we believe the following to be true:

Conjecture 14. Let K be a knot and g(K) the genus of K. Then degy, 0(K) < 2g(K).

We have verified this conjecture for all knots
with up to 12 crossings. The example of the
Conway and the Kinoshita-Terasaka knots shows
that the bound in Conjecture 14 can be stronger
than the bound deg, A(K) < g(K) coming from
the Alexander polynomial. Another such ex-
ample is the 48-crossing Gompf-Scharlemann-
Thompson GST,s knot [GST], shown on the
right, which may be a counter-example to the
ribbon-slice conjecture. Here’s the relevant computation, with X4, (say) meaning “the
crossing (1,14,1)” and Xy 99 (say) meaning “(—1,2,29)":

GSTag = EPD[X14,15 X2,205 X3,405 Xa3,45 X26,55

Xe,955 Xo6,75 X13,85 Xo,285 X1e,415 Xa2,115 X27,12,

X30,15> X16,615> X17,725> X18,83> X19,34> Xg9,205
X21,025 X79,225 Xes,235 Xs7,245 X25,565 Xe2,315
X73,325 Xsa,33> Xse,355 X36,81> X37,705 X3g,595
X39,545> Xaa,s55 Xsg,a55 Xe9,a65 Xse,475 Xas,01, {15'1339’
Xoo,495 Xs1,825 Xs2,715> Xs3,605 X63,745 Xea,855
X76,655 X87,665 X67,045 X75,865> X88,77> 778,93];
AbsoluteTiming[
PolyPlot [©45 = ©@GST43, ImageSize -» Small]]

(Exponent [04[1], T1, [Exponent [64[2], T2] /21) (8, 10}
MORE.

6. CONJECTURES AND DREAMS
MORE

Conjecture 15. 0 dominates the Rozansky-Overbay invariant p; [Rol, Ro2, Ro3, Ov], also
discussed by us in [BV1]. In fact, p = —0|7,~1r1m—1-

MORE
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