
A VERY FAST, VERY STRONG, TOPOLOGICALLY MEANINGFUL
AND FUN KNOT INVARIANT

DROR BAR-NATAN AND ROLAND VAN DER VEEN

Abstract. In this paper we introduce Θ “ p∆, θq, a pair of polynomial knot invariants
which is:
‚ Theoretically and practically fast: Θ can be computed in polynomial time. We can

compute it in full on random knots with over 300 crossings, and its evaluation at simple
rational numbers on random knots with over 600 crossings.

‚ Strong: Its separation power is much greater than, say, the HOMFLY-PT polynomial
and Khovanov homology (taken together) on knots with up to 15 crossings (while being
computable on much larger knots).

‚ Topologically meaningful: It gives a genus bound, and there are reasons to hope that it
would do more.

‚ Fun: Scroll to Figures 1.1, 1.2, and 3.1.
∆ is merely the Alexander polynomial. θ is almost certainly equal to an invariant that
was studied extensively by Ohtsuki [Oh], continuing Rozansky, Garoufalidis, and Kricker
[GR, Ro1, Ro2, Ro3, Kr]. Yet our formulas, proofs, and programs are much simpler and
enable its computation even on very large knots.
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1. Fun

The word “fun” rarely appears in the title of a math paper, so let us start with a brief
justification.

Θ is a pair of polynomials. The first, ∆, is old news, the Alexander polynomial [Al]. It is
a one-variable Laurent polynomial in a variable T . For example, ∆p.q “ T´1 ´ 1 ` T . We
turn such a polynomial to a list of coefficients (for ., it is p1 ´ 1 1q), and then to a chain
of bars of varying colours: white for the zero coefficients, and red and blue for the positive
and negative coefficients (with intensity proportional to the magnitude of the coefficients).
The result is a “bar code”, and for the trefoil . is it .

-T1 T2

T1

T2

2

-
1

T2

-
1

T1
1

T1 T2

Similiarly, θ is a 2-variable Laurent polynomial, in variables T1 and
T2. We can turn such a polynomial into a 2D array of coefficients and
then using the same rules, into a 2D array of colours, namely, into a
picture. To highlight a certain conjectured hexagonal symmetry of the
resulting pictures, we apply a certain shear transformation to the plane
before printing. So the colour of a monomial cT n1

1 T n2
2 gets printed at

position

ˆ

1 ´1{2
0

?
3{2

˙ ˆ

n1

n2

˙

instead of the more traditional

ˆ

n1

n2

˙

. On the right is the 2D

picture corresponding to the polynomial 2 ` T1 ´ T1T2 ` T2 ´ T´1
1 ` T´1

1 T´1
2 ´ T´1

2 .
Thus Θ becomes a pair of pictures: a bar code, and a 2D picture that we call a “hexagonal

QR code”. For the knots in the Rolfsen table (with the unknot prepended at the start), they
are in Figure 1.1. In addition, the hexagonal QR codes of some 15 knots with ě 300 crossings
are in Figure 1.2, and Θ of a 132-crossing torus knot is in Figure 3.1.

MORE. Add some mats.
Clearly there are patterns in these figures. There is a hexagonal symmetry and the QR

codes are nearly always hexagons (these are independent properties). Much more can be seen
in Figure 1.1. In Figure 1.2 there seem to be large-scale “sand table patterns” or “diffraction
patterns”. We can’t prove any of these things, and the last one, we can’t even formulate
properly. Yet they are clearly there, too clear to be the result of chance alone.

We plan to have fun over the next few years observing and proving these patterns. We
hope that others will join us too.

2. Formulas

2.1. Old Formulas1. The setup leading to the definition of Θ is the same as the setup
leading to the definition of the invariant ρ1 of [BV1], and hence we copy a few relevant
paragraphs from [BV1] nearly varbatim, with only a few modifications.

1“Old” means that these formulas appeared already in [BV1].

See http://drorbn.net/AP/Projects/Theta/
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0 1 3 1 4 1 5 1 5 2 6 1 6 2 6 3 7 1 7 2

7 3 7 4 7 5 7 6 7 7 8 1 8 2 8 3 8 4 8 5

8 6 8 7 8 8 8 9 8 10 8 11 8 12 8 13 8 14 8 15

8 16 8 17 8 18 8 19 8 20 8 21 9 1 9 2 9 3 9 4

9 5 9 6 9 7 9 8 9 9 9 10 9 11 9 12 9 13 9 14

9 15 9 16 9 17 9 18 9 19 9 20 9 21 9 22 9 23 9 24

9 25 9 26 9 27 9 28 9 29 9 30 9 31 9 32 9 33 9 34

9 35 9 36 9 37 9 38 9 39 9 40 9 41 9 42 9 43 9 44

9 45 9 46 9 47 9 48 9 49 10 1 10 2 10 3 10 4 10 5

10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 15

10 16 10 17 10 18 10 19 10 20 10 21 10 22 10 23 10 24 10 25

10 26 10 27 10 28 10 29 10 30 10 31 10 32 10 33 10 34 10 35

10 36 10 37 10 38 10 39 10 40 10 41 10 42 10 43 10 44 10 45

10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55

10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65

10 66 10 67 10 68 10 69 10 70 10 71 10 72 10 73 10 74 10 75

10 76 10 77 10 78 10 79 10 80 10 81 10 82 10 83 10 84 10 85

10 86 10 87 10 88 10 89 10 90 10 91 10 92 10 93 10 94 10 95

10 96 10 97 10 98 10 99 10 100 10 101 10 102 10 103 10 104 10 105

10 106 10 107 10 108 10 109 10 110 10 111 10 112 10 113 10 114 10 115

10 116 10 117 10 118 10 119 10 120 10 121 10 122 10 123 10 124 10 125

10 126 10 127 10 128 10 129 10 130 10 131 10 132 10 133 10 134 10 135

10 136 10 137 10 138 10 139 10 140 10 141 10 142 10 143 10 144 10 145

10 146 10 147 10 148 10 149 10 150 10 151 10 152 10 153 10 154 10 155

10 156 10 157 10 158 10 159 10 160 10 161 10 162 10 163 10 164 10 165

Ñ
Θ

Figure 1.1. Θ as a bar code and a QR code, for all the knots in the Rolfsen table.

See http://drorbn.net/AP/Projects/Theta/
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Figure 1.2. θ (hexagonal QR code only) of the 15 largest knots that we have com-
puted by September 16, 2024. They are all “generic” in as much as we know, and
they all have ě 300 crossings. The knots come from [DHOEBL]. Warning: Some
screens/printers may display spurious Moiré interference patterns.

1
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7

φ
4

“
´
1

DGiven an oriented n-crossing knot K, we draw it in the plane as a long
knot diagram D in such a way that the two strands intersecting at each
crossing are pointing up (that’s always possible because we can always rotate
crossings as needed), and so that at its beginning and at its end the knot
is oriented upward. We call such a diagram an upright knot diagram. An
example of an upright knot diagram is shown on the right.

We then label each edge of the diagram with two labels: a running index
k which runs from 1 to 2n ` 1, and a “rotation number” φk, the geometric
rotation number of that edge (the signed number of times the tangent to the
edge is horizontal and heading right, with cups counted with `1 signs and
caps with ´1; this number is well defined because at their ends, all edges
are headed up). On the right the running index runs from 1 to 7, and the
rotation numbers for all edges are 0 (and hence are omitted) except for φ4,
which is ´1.

See http://drorbn.net/AP/Projects/Theta/
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Technicality 1. Some Reidemeister moves create or lose an edge and to avoid the need
for renumbering it is beneficial to also allow labelling the edges with non-consecutive labels.
Hence we allow that, and write i` for the successor of the label i along the knot, and i`̀ for
the successor of i` (these are i` 1 and i` 2 if the labelling is by consecutive integers). Also,
by convention “1” will always refer to the label of the first edge, and “2n ` 1” will always
refer to the label of the last. 1

Let X be the set of all crossings in the diagram D, where we encode each crossing as
a triple (sign, incoming over edge, incoming under edge). In our example we have X “

tp1, 1, 4q, p1, 5, 2q, p1, 3, 6qu.
We let A be the p2n ` 1q ˆ p2n ` 1q matrix of Laurent polynomials in a formal variable

T , defined by

A :“ I ´
ÿ

c“ps,i,jqPX

pT sEi,i` ` p1 ´ T s
qEi,j` ` Ej,j`q ,

where I is the identity matrix and Eαβ denotes the elementary matrix with 1 in row α and
column β and zeros elsewhere.

Alternatively, A “ I`
ř

c Ac, where Ac is a matrix of zeros except for the blocks as follows:

i ij

s “ `1 s “ ´1

j

j` i` i` j`

ÝÑ

Ac column i` column j`

row i ´T s T s ´ 1
row j 0 ´1

(1)

We note (as we did in [BV1]) that the determinant of A is equal up to a unit to the
normalized Alexander polynomial ∆ of K. In fact, we have that

∆ “ T p´φpDq´wpDqq{2 detpAq, (2)

where φpDq :“
ř

k φk is the total rotation number of D and where wpDq “
ř

c sc is the
writhe of D, namely the sum of the signs sc of all the crossings c in D.

We let G “ pgαβq “ A´1 and, thinking of it as a function gαβ of a pair of edges α and
β, we call it the Green function of the diagram D. When inspired by physics (e.g. [BN2])
we sometimes call it “the 2-point function”, and when thinking of car traffic (e.g. [BN3]) we
sometimes call it “the traffic function”.

We note that the computation of G is the bottleneck in the computation of Θ. It requires
inverting a p2n ` 1q ˆ p2n ` 1q matrix whose entries are (degree 1) Laurent polynomials in
T . It’s a daunting task yet it takes polynomial time, it can be performed in practice even if
n is in the hundreds, and everything which then follows is easier.

2.2. New Formulas. Let T1 and T2 be indeteminates and let T3 :“ T1T2. Let ∆ν :“ ∆TÑTν

and Gν “ pgναβq :“ GTÑTν be ∆ and G subject to the substitution T Ñ Tν , where ν “ 1, 2, 3
(these are easy to compute once ∆ and G have been computed).

Given crossings c “ ps, i, jq, c0 “ ps0, i0, j0q, and c1 “ ps1, i1, j1q in X, let

See http://drorbn.net/AP/Projects/Theta/
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F1pcq “ s r1{2 ´ g3ii ` T s
2 g1iig2ji ´ T s

2 g3jjg2ji ´ pT s
2 ´ 1qg3iig2ji (3)

`pT s
3 ´ 1qg2jig3ji ´ g1iig2jj ` 2g3iig2jj ` g1iig3jj ´ g2iig3jjs

`
s

T s
2 ´ 1

rpT s
1 ´ 1qT s

2 pg3jjg1ji ´ g2jjg1ji ` T s
2 g1jig2jiq

` pT s
3 ´ 1qg3ji p1 ´ T s

2 g1ii ` g2ij ` pT s
2 ´ 2qg2jj ´ pT s

1 ´ 1qpT s
2 ` 1qg1jiqs

F2pc0, c1q “
s1pT s0

1 ´ 1qpT s1
3 ´ 1qg1j1i0g3j0i1

T s1
2 ´ 1

pT s0
2 g2i1i0 ` g2j1j0 ´ T s0

2 g2j1i0 ´ g2i1j0q (4)

F3pφ, kq “ φpg3kk ´ 1{2q (5)

Theorem 2 (Proof in Section 4). The following is a knot invariant:

θpDq :“ ∆1∆2∆3

˜

ÿ

cPX

F1pcq `
ÿ

c0,c1PX

F2pc0, c1q `
ÿ

edges k

F3pφk, kq

¸

. (6)

We note without detail that there is an alternative formula for θ in terms of perturbed
Gaussian integration [BN2]. In that language, and using also the traffic motifs of [BV1, BN3],
the three summands in (6) become Feynman diagrams for processes in which cars governed
by parameter T “ T1, T2, or T3 interact:

D

i 21 j

D

k

φ1
j0 i1

D

i0 j1

3

2

In particular, the middle diagram which resembles the greek letter Θ gave the invariant
its name.

We note also that computationaly, the worst term in (6) is the middle one, and even it
takes merely „ n2 operations in the ring QpT1, T2q to complete.

The polynomials F1pcq, F2pc0, c1q and F3pφ, kq are not unique, and we are not certain
that we have the cleanest possible formulas for them. They are human-ugly, yet from a
computational perspective, having 18 terms (as is the case for F1pcq) isn’t really a problem;
computers don’t care.

3. Implementation and Examples

3.1. Implementation. A concise yet reasonably efficient implementation is worth a thou-
sand formulas. It completely removes ambiguities, it tests the theories, and it allows for
experimentation. Hence our next task is to implement. The section that follows was gener-
ated from a Mathematica [Wo] notebook which is available at [BV2, Theta.nb]. A second
implemntation of Θ, using Python and SageMath (https://www.sagemath.org/) is avail-
able at https://www.rolandvdv.nl/Theta/.

We start by loading the package KnotTheory‘ — it is only needed because it has many
specific knots pre-defined:

See http://drorbn.net/AP/Projects/Theta/

https://www.sagemath.org/
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<< KnotTheory` Loading KnotTheory` version of October 29, 2024, 10:29:52.1301.

Read more at http://katlas.org/wiki/KnotTheory.

Next we quietly define the modules Rot, used to compute rotation numbers, and PolyPlot,
used to plot polynomials as bar codes and as hexagonal QR codes. Neither is a part of the
core of the computation of Θ, so neither is shown; yet we do show one usage example for
each.

(* Rot suppressed *)

Rot[Mirror@Knot[3, 1]] {{{1, 1, 4}, {1, 3, 6}, {1, 5, 2}}, {0, 0, 0, -1, 0, 0, 0}}

We urge the reader to compare the above output with the knot diagram in Section 2.1.

(* PolyPlot suppressed *)

PolyPlot2 T - 1 + T-1, -1 + T1 - 2 T2 + 4 T1
-1 T2

-1
,

ImageSize  100, Labeled  True

2 T-1
1

T

T1

-2 T2

-1

4

T1 T2

The definition of CF below is a technicality telling the computer how to best store poly-
nomials in the gναβ’s such as F1 and F2. The programs would run just the same without it,
albeit a bit more slowly:

CF[ℰ_] := Expand@Collect[ℰ , g__, F] /. F  Factor;

Next, we decree that T3 “ T1T2 and define the three “Feynman Diagram” polynomials F1,
F2, and F3:

T3 = T1 T2;

F1[{s_, i_, j_}] := CF

s 1/ 2 - g3ii + T2
s g1ii g2ji - g1ii g2jj - T2

s
- 1 g2ji g3ii + 2 g2jj g3ii - 1 - T3

s
 g2ji g3ji -

g2ii g3jj - T2
s g2ji g3jj + g1ii g3jj +

T1
s
- 1 g1ji T2

2 s g2ji - T2
s g2jj + T2

s g3jj +

T3
s
- 1 g3ji 1 - T2

s g1ii + g2ij + T2
s
- 2 g2jj - T1

s
- 1 T2

s
+ 1 g1ji T2

s
- 1

F2[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=

CFs1 T1
s0

- 1 T2
s1

- 1-1
T3

s1
- 1 g1,j1,i0 g3,j0,i1

 T2
s0 g2,i1,i0 - g2,i1,j0 - T2

s0 g2,j1,i0 - g2,j1,j0

F3[φ_, k_] = φ g3kk - φ/ 2;

Next comes the main program computing Θ. Fortunately, it matches perfectly with the
mathematical description in Section 2. In line 01 we let X be the list of crossings in an input
knot K, and φ the list of its rotation numbers, using the external program Rot which we
have already mentioned. We also let n be the length of X, namely, the number of crossings

See http://drorbn.net/AP/Projects/Theta/



8 DROR BAR-NATAN AND ROLAND VAN DER VEEN

in K. In line 02 we let the starting value of A be the identity matrix, and then in line 03, for
each crossing in X we add to A a 2 ˆ 2 block, in rows i and j and columns i ` 1 and j ` 1,
as explain in Equation (1). In line 04 we compute the normalized Alexander polynomial ∆
as in (2). In line 05 we let G be the inverse of A. In line 06 we declare what it means to
evaluate, ev, a formula E that may contain symbols of the form gναβ: each such symbol is
to be replaced by the entry in position α, β of G, but with T replaced with Tν . In line 07 we
start computing θ by computing the first summand in (6), which in itself, is a sum over the
crossings of the knot. In line 08 we add to θ the double sum corresponding to the second
term in (6), and in line 09, we add the third summand of (6). Finally, line 10 outputs a pair:
∆, and the re-normalized version of θ.

Θ[K_] := Θ[K] = Module{X, φ, n, A, Δ, G, ev, θ},

(* 01 *) {X, φ} = Rot[K]; n = Length[X];

(* 02 *) A = IdentityMatrix[2 n + 1];

(* 03 *) CasesX, {s_, i_, j_}  A〚{i, j}, {i + 1, j + 1}〛 += 
-Ts Ts - 1

0 -1
;

(* 04 *) Δ = T(-Total[φ]-Total[X〚All,1〛])/2 Det[A];

(* 05 *) G = Inverse[A];

(* 06 *) ev[ℰ_] := Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];

(* 07 *) θ = ev
k=1

n
F1[X〚k〛];

(* 08 *) θ += ev
k1=1

n


k2=1

n
F2[X〚k1〛, X〚k2〛];

(* 09 *) θ += ev
k=1

2 n
F3[φ〚k〛, k];

(* 10 *) Factor@{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) θ}

;

3.2. Examples. On to examples! Starting with the trefoil knot.

Expand[Θ[Knot[3, 1]]]

-1 +
1

T
+ T, -

1

T1
2
- T1

2
-

1

T2
2
-

1

T1
2 T2

2
+

1

T1 T2
2
+

1

T1
2 T2

+
T1

T2
+
T2

T1
+ T1

2 T2 - T2
2
+ T1 T2

2
- T1

2 T2
2


PolyPlot[Θ[Knot[3, 1]], ImageSize  Tiny]

Next are the Conway knot 11n34 and the Kinoshita-Terasaka
knot 11n42. The two are mutants and famously hard to separate:
they both have ∆ “ 1 (as evidenced by their one-bar Alexander bar
codes below), and they have the same HOMFLY-PT polynomial
and Khovanov homology. Yet their θ invariants are different. Note
that the genus of the Conway knot is 3, while the genus of the Kinoshita-Terasaka knot is 2.
This agrees with the apparent higher complexity of the QR code of the Conway polynomial,
and with the observations in Section 5.

See http://drorbn.net/AP/Projects/Theta/
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PolyPlot[Θ[Knot[#]], ImageSize  120] & /@

{"K11n34", "K11n42"}

 , 

Torus knots have particularly nice-looking Θ invariants. Here are the torus knots T13{2,
T17{3, T13{5, and T7{6:

GraphicsRow[ImageCompose[

PolyPlot[Θ[TorusKnot @@ #], ImageSize  480],

TubePlot[TorusKnot @@ # , ImageSize  240],

{Right, Bottom}, {Right, Bottom}

] & /@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

The next line shows the computation time in seconds for the 132-crossing torus knot T22{7

on a 2024 laptop, without actually showing the output. The output plot is in Figure 3.1.

AbsoluteTiming[Θ[TorusKnot[22, 7]];] {1020.73, Null}

We note that if T1 and T2 are assigned specific rational numbers and if the program for Θ is
slightly modified so as to compute each Gν separately (rather than computing G symbolically
and then substituting T “ Tν), then the program becomes significantly more efficient, for
inverting a numerical matrix is cheaper than inverting a symbolic matrix (but then one
obtains numerical answers and the beauty and the topological significance (Section 5) are
lost). The Mathematica notebook that accompanies this paper, [BV2, Theta.nb], contains
the required modified program as well as a few computational examples. One finds that with
T1 “ 22{7 and T2 “ 21{13, the invariant Θ can be computed for knots with 600 crossings,
and that for knots with up to 15 crossings, its separation power remains the same.

If T1 and T2 are assigned approximate real values, say π and e computed to 100 decimal
digits, then Θ can be computed on knots with 1,000 crossings and, for knots with up to 15,
crossings it remains very strong. But approximate real numbers are a bit thorny. It is hard
to know how far one needs to compute before deciding that two such numbers are equal,
and when two such numbers appear unequal, it is had to tell if that is merely because they

See http://drorbn.net/AP/Projects/Theta/
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ImageCompose[PolyPlot[Θ[TorusKnot[22, 7]], ImageSize  720],

TubePlot[TorusKnot[22, 7], ImageSize  360], {Right, Bottom}, {Right, Bottom}]

Figure 3.1. The 132-crossing torus knot T22{7 and a plot of its Θ invariant

were computed differently and different roundings were applied. Thorns and snares are in
the way of the perverse; He who guards his soul will be far from them (Proverbs 22:5).

4. Proof of Invariance

Our proof of the invariance of θ (Theorem 2) is very similar, and uses many of the same
pieces, as the proof of the invariance of ρ1 in [BV1]. Thus at some places here we are briefer
than at [BV1], and sadly, yet in the interest of saving space, we completely omit here the
interpretation of gαβ as a “traffic function”.

Like in [BV1, Lemma 3], the equalities AG “ I and GA “ I imply that for any crossing
c “ ps, i, jq in a knot diagram D, the Green function G “ pgαβq of D satisfies the following

See http://drorbn.net/AP/Projects/Theta/
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“g-rules”, with δ denoting the Kronecker delta:

giβ “ δiβ ` T sgi`,β ` p1 ´ T s
qgj`,β, gjβ “ δjβ ` gj`,β, g2n`1,β “ δ2n`1,β, (7)

gα,i` “ T sgαi ` δα,i` , gα,j` “ gαj ` p1 ´ T s
qgαi ` δα,j` , gα,1 “ δα,1. (8)

Furthermore, the systems of equations (7) is equivalent to AG “ I and so it fully determines
gαβ, and likewise for the system (8), which is equivalent to AG “ I.

Of course, the same g-rules also hold for Gν “ pgναβq for ν “ 1, 2, 3, except with T replaced
with Tν .

We also need a variant g̃ab of gαβ, defined whenever a and b are two distinct points on the
edges of a knot diagram D, away from the crossings. If α is the edge on which a lies and β
is the edge on which b lies, g̃ab is defined as follows:

g̃ab “

$

’

&

’

%

gαβ if α ‰ β,

gαβ if α “ β and a ă b relative to the orientation of the edge α “ β,

gαβ ´ 1 if α “ β and a ą b relative to the orientation of the edge α “ β.

(9)

Of course, we can define g̃νab from gαβ in a similar way.
It is clear that g and g̃ contain the same information and are easily computable from each

other. The variant g̃ is, strictly speaking, not a matrix and so g is a bit more suitable for
computations. Yet g̃ is a bit better behaved when we try to track, as below, the behaviour
of g / g̃ under Reidemeister moves. Reidemeister moves sometimes merge two edges into
one or break an edge into two. In such cases the points a and b can be “pulled” along with
the move so as to retain their ordering along the overall parametrization of the knot, yet
mere edge labels lose this information. The following discussion and lemma exemplify the
advantage of g̃ of g:

j kDiscussion 3. We introduce “null vertices” as on the right into knot dia-
grams, whose only function (as we shall see) is to cut edges into parts that
may carry different labels. When dealing with upright knot diagrams as in Section 2.1, we
only allow null vertices between upgoing edges, so that the rotation numbers φk remain well
defined on all edges. In the presence of null vertices the matrix A becomes a bit larger (by
as many null vertices as were added to a knot diagram). The rule (1) for the creation of the
matrix A gets an amendment for null vertices,

j k
ÝÑ

Anv column k
row j ´1

,

and the summation for A, A “ I `
ř

c Ac `
ř

nv Anv is extended to include summands for the
null vertices. The matrix G “ A´1 and the function gαβ are defined as before. The g-rules
of (7) and (8) get additions,

gjβ “ δjβ ` gkβ, (10) and gαk “ δαk ` gαj, (11)

and it remains true that the system of equations (7)Y(10) (as well as (8)Y(11)) fully deter-
mines gαβ. The variant g̃ab is also defined as before, except now a and b need to also be away
from the null vertices.

Lemma 4. Inserting a null vertex does not change g̃ab provided it is inserted away from a
and b. (This statement does not make sense for gαβ, as inserting a null vertex changes the
dimensions of the matrix G “ pgαβq).

See http://drorbn.net/AP/Projects/Theta/
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R1

R2

R3

a

b

D
g̃ab

Figure 4.1. The modified Green function g̃ab is invariant under Reidemeister moves
performed away from where it is measured.

Proof. Let D be an upright knot diagram having an edge labeled i and let D1 be obtained
from it by adding a null vertex within edge i, naming the two resulting half-edges j and k
(in order). Let gαβ be the Green function for D, and similarly, g1

αβ for D1. We claim that

g1
αβ “

β “ j β “ k β R tj, ku

α “ j gii gii giβ
α “ k gii ´ 1 gii giβ

α R tj, ku gαi gαi gαβ

.

Indeed, all we have to do is to verify that the above-defined g1
αβ satisfies all the g-rules

(7)Y(10), and that is easy. The lemma now follows easily from the definition of g̃1 in Equa-
tion (9). l

Remark 5. The statement of Theorem 2 does not change in the presence of null vertices:
There are no “F” terms for those, and their only effect on the definition of Θ in Equation (6)
is to change the edge labels that appear within c, c1, and c2, and within the F3 sum.

The following theorem, was not named in [BV1], yet it was stated there as the first part
of the first proof of [BV1, Theorem 1].

Theorem 6. The variant Green function g̃ab is a “relative invariant”, meaning that once
points a and b are fixed within a knot diagram D, the value of g̃ab does not change if Rei-
demeister moves are performed away from the points a and b. An illustration appears in
Figure 4.1. It follows that the same is also true for g̃νab for ν “ 1, 2, 3.

We note that g̃ab is nearly the same as gαβ, if a is on α and b is on β. So Theorem 6
also says that gαβ is invariant under Reidemeister moves away from α and β, except for
edge-renumbering issues and ˘1 contributions that arise if α and β correspond to edge that
get merged or broken by the Reidemeister moves.

The proof of Theorem 6 is perhaps best understood in terms of the traffic function of [BV1,
BN1, BN3]: One simply needs to verify that for each of the Reidemeister moves, traffic
entering the tangle diagram for the left hand side of the move exits it in the same manner
as traffic entering the tangle diagram for the right hand side of the move, and each of
these verifications, as explained in [BV1, BN1, BN3], is very easy. Yet that proof is a bit
informal, so we opt here to give a fully formal proof along the lines of the first halves of [BV1,
Propositions 7-9].

Proof of Theorem 6. We need to know how the Green function gαβ changes under the
orientation-sensitive Reidemeister moves of Figure 4.2 (note that the gαβ do not see the
rotation numbers and don’t care if a knot diagram is uprigt in the sense of Section 2.1).

We start with R3b. Below are the two sides of the move, along with the g-rules of
type (7) corresponding to the crossings within, written with the assumption that β isn’t

See http://drorbn.net/AP/Projects/Theta/
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R1rR1l R2c´

R3b

braid-like R3

R2c`

R1-left and R1-right counterclockwise and clockwise cyclic R2

Aside 2:Aside 1:

Figure 4.2. A generating set of oriented Reidemeister moves as in [Po, Figure 6].
Aside 1: the braid-like R2b is not needed. Aside 2: yet R2b cannot replace R2c˘

because in the would-be proof, an unpostulated form of R3 is used (which in itself
follows from R2c˘).

in ti`, j`, k`u, so several of the Kronecker deltas can be ignored. We use g for the Green
function at the left-hand side of R3b, and g1 for the right-hand side, and recall that along
with the further g/g1-rules corresponding to all the non-moving knot crossings, these rules
fully determinme gαβ and g1

αβ for β R ti`, j`, k`u:

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨

further
g-rules

further
crossings

further
g1-rules

further
crossings

gi,β “ δiβ`Tgi`,β`p1´T qgk`̀ ,β

gk`,β “ gk`̀ ,β

gi`,β “ Tgi`̀ ,β`p1´T qgj`̀ ,β

gj`,β “ gj`̀ ,β

gj,β “ δjβ`Tgj`,β`p1´T qgk`,β

gk,β “ δkβ`gk`,β

g1
i`,β “ Tg1

i`̀ ,β`p1´T qg1
k`,β

g1
k,β “ δkβ`g1

k`,β

g1
j`,β “ Tg1

j`̀ ,β`p1´T qg1
k`̀ ,β

g1
k`,β “ g1

k`̀ ,β

g1
i,β “ δiβ`Tg1

i`,β`p1´T qg1
j`,β

g1
j,β “ δjβ`g1

j`,β

k`̀ j`̀ i`̀

i j k

i`

j`

k`

k`̀ j`̀ i`̀

i j k

i`

j`

k`

A routine computation (eliminating gi`,β, gj`,β, and gk`,β) shows that the first system of
6 equations is equivalent to the following system of 6 equations:

gi,β “ δiβ ` T 2gi`̀ ,β ` T p1 ´ T qgj`̀ ,β ` p1 ´ T qgk`̀ ,β,

gj,β “ δjβ ` Tgj`̀ ,β ` p1 ´ T qgk`̀ ,β, gk,β “ δkβ ` gk`̀ ,β,
(12)

gi`,β “ Tgi`̀ ,β ` p1 ´ T qgj`̀ ,β, gj`,β “ gj`̀ ,β, gk`,β “ gk`̀ ,β. (13)

In this system the indices i`, j` and k` do not appear in (12) or in the further g-rules
corresponding to the further crossings. Hence for the purpose of determining gαβ with
α, β R ti`, j`, k`u, Equations (13) can be ignored.

Similarly eliminating g1
i`,β, g

1
j`,β, and g1

k`,β from the second set of equations, we find that
it is equivalent to

g1
i,β “ δiβ ` T 2g1

i`̀ ,β ` T p1 ´ T qg1
j`̀ ,β ` p1 ´ T qg1

k`̀ ,β,

g1
j,β “ δjβ ` Tg1

j`̀ ,β ` p1 ´ T qg1
k`̀ ,β, g1

k,β “ δkβ ` g1
k`̀ ,β,

(14)

g1
i`,β “ Tg1

i`̀ ,β`p1´T qg1
k`̀ ,β, g1

j`,β “ Tg1
j`̀ ,β`p1´T qg1

k`̀ ,β, g1
k`,β “ g1

k`̀ ,β. (15)

See http://drorbn.net/AP/Projects/Theta/
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Using the same logic as before, for the purpose of determining g1
αβ with α, β R ti`, j`, k`u,

Equations (15) can be ignored.
But now we compare the unignored equations, (12) and (14), and find that they are exactly

the same, except with g Ø g1, and the same is true for the further g/g1-rules coming from
the further crossings. Hence so long as α, β R ti`, j`, k`u, we have that gαβ “ g1

αβ. In the
case of the R3b move no edges merge or break up, and hence this implies that g̃ab “ g̃1

ab so
long as a and b are away from the move.
Next we deal with the case of R2c`. We use the privileges afforded to us by Lemma 4 to

insert 4 null vertices into the right-hand-side of the move, and like in the case of R3b, we
start with pictures annotated with the relevant type (7) and (10) g-rules, written with the
assumption that β R ti`, j`u:

¨ ¨ ¨

further
g1-rules

¨ ¨ ¨

further
crossings

i` j`

gi`,β “ Tgi`̀ ,β ` p1 ´ T qgj`,β

gj,β “ δj,β ` gj`,β

gi,β “ δi,β ` T´1gi`,β ` p1 ´ T´1qgj`̀ ,β

gj`,β “ gj`̀ ,β

¨ ¨ ¨

further
g-rules

i

g1
i`,β “ g1

i`̀ ,β

g1
j,β “ δj,β ` g1

j`,β

g1
i,β “ δi,β ` g1

i`,β

g1
j`,β “ g1

j`̀ ,β

j

j`̀

i`̀

¨ ¨ ¨

further
crossings

i`̀ j

i j`̀

i`j`

As in the case of R3b, we eliminate gi`,β and gj`,β from the equations for the left hand
side, and find that for the purpose of determining gαβ with β R ti`, j`u, they are equivalent
to the equations

gi,β “ δi,β ` gi`̀ ,β and gj,β “ δj,β ` gj`̀ ,β.

Likewise, the right hand side is clearly equivalent to

g1
i,β “ δi,β ` g1

i`̀ ,β and g1
j,β “ δj,β ` g1

j`̀ ,β,

and as in the case of R3b, this establishes the invariance of g̃ab under R2c moves.
For the remaining moves, R2c´, R1l, and R1r, we merely display the g-rules and leave it

to the readers to verify that when the edges i` and/or j` are eliminated, the left hand sides
become equivalent to the right hand sides:

i` j`

g1
i`,β “ g1

i`̀ ,β

g1
j,β “ δj,β ` g1

j`,β

g1
i,β “ δi,β ` g1

i`,β

g1
j`,β “ g1

j`̀ ,β

i

i`̀ j

j`̀

i`j`

gi,β “ δi,β ` Tgi`,β ` p1 ´ T qgj`̀ ,β

gj`,β “ gj`̀ ,β

gi`,β “ T´1gi`̀ ,β ` p1 ´ T´1qgj`,β

gj,β “ δj,β ` gj`,β

i

i`̀ j

j`̀

i`̀

i

i`

gi`,β “ Tgi`̀ ,β

`p1 ´ T qgi`,β

gi,β “ δi,β ` gi`,β

i`̀

i

i`
g1
i`,β “ g1

i`̀ ,β

g1
i,β “ δi,β ` g1

i`,β
i`

g2
i`,β “ g2

i`̀ ,β

g2
i,β “ δi,β ` Tg2

i`,β

`p1 ´ T qg2
i`̀ ,β

i`̀

i

6

We can now move on to the main part of the proof of Theorem 2. We need to show the
invariance of θ under the “upright Reidemeister” moves of Figure 4.3.

See http://drorbn.net/AP/Projects/Theta/
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R1rR1l

φ
“
m

φ
“
n

φ
“
m

`
n

NV Sw“

φ
“

´
1

φ
“

´
1

φ
“

1

φ
“

1

R2c` R2c´ R3b

Figure 4.3. The upright Reidemeister moves: The R1 and R3 moves are already
upright and remain the same as in Figure 4.2. The crossings in the R2 moves of
Figure 4.2 are rotated to be upright. We also need two further moves: The null vertex
move NV for adding and removing null vertices, and the swirl move Sw which then
implies that any two ways of turning a crossing upright are the same. We sometimes
indicate rotation numbers symbolically rather than using complicated spirals.

Dl Dr

m n

s

m n

s

cl1

cl2

cl3

cy

i j k

k`̀ j`̀ i`̀

i j k

k`̀ j`̀ i`̀

cy

cr3

cr1

j`

i`

k`

cr2
j`

i`

k`

Figure 4.4. The two sides Dl and Dr of the R3b move. The left side Dl consists of
3 distinuighed crossings cl1 “ p1, j, kq, cl2 “ p1, i, k`q, cl3 “ p1, i`, j`q and a collection
of further crossings cy “ ps,m, nq P Y , where Y is the set of crossings not participating
in the R3b move. The right side Dr consists of cr1 “ p1, i, jq, cr2 “ p1, i`, kq, cr3 “

p1, j`, k`q and the same set Y of further crossings cy.

Proposition 7. The moves in Figure 4.3 are sufficient. If two upright knot diagrams (with
null vertices) represent the same knot, they can be connected by a sequence of moves as in
the figure.

Proof. The proof is essentially contained in the caption of Figure 4.3. A more detailed
version is in [BVH]. l

Proposition 8. The quantity θ is invariant under R3b.

Proof. Let Dl and Dr be two knot diagrams that differ only by an R3b move, and label
their relevant edges and crossings as in Figure 4.4. Let glναβ and grναβ be their corresponding

Green functions. Let F l
1pcq, F l

2pc0, c1q and F l
3pφ, kq be defined from glναβ as in (3)–(5), and

similarly make F r
1 , F

r
2 and F r

3 using grναβ.
By the invariance of the Alexander polynomial, the pre-factor ∆1∆2∆3 is the same for

θpDlq and for θpDrq (see Equation (6)). By Theorem 6, glναβ “ grναβ so long as α, β R

ti`, j`, k`u. And so the only terms that may differ in θpDhq between h “ l and h “ r are

See http://drorbn.net/AP/Projects/Theta/
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the terms

Ah
“

ÿ

cPtch1,2,3u

F h
1 pcq `

ÿ

c0,c1Ptch1,2,3u

F h
2 pc0, c1q, Bh

“
ÿ

c0Ptch1,2,3u, cyPY

F h
2 pc0, cyq, and Ch

“
ÿ

c1Ptch1,2,3u, cyPY

F h
2 pcy, c1q. (16)

We claim that Al “ Ar, Bl “ Br, and C l “ Cr.
To show that Al “ Ar, we need to compare polynomials in glναβ with polynomials in grναβ in

which α and β may belong to the set ti`, j`, k`u on which it may be that gl ‰ gr. Fortunately
the g-rules of Equations (7) and (8) allow us to rewrite the offending g’s, namely the ones with
subscripts in ti`, j`, k`u, in terms of other g’s whose subscripts are in ti, j, k, i`̀ , j`̀ , k`̀ u,
where gl “ gr. So it is enough to show that

under gl “ gr, Al
{. (the g-rules for cl1, c

l
2, c

l
3) “ Ar

{. (the g-rules for cr1, c
r
2, c

r
3), (17)

where the symbol {. means “apply the rules”. This is a finite computation that can in-
principle be carried out by hand. But each Ah is a sum of 3`9 “ 12 polynomials in the gh’s,
these polynomials are rather unpleasant (see (3) and (4)), and applying the relevant g-rules
adds a bit further to the complexity. Luckily, we can delegate this pages-long calculation to
an entity that works accurately and doesn’t complain.

First, we implement the Kronecker δ-function, the g-rules for a crossing ps, i, jq, and the
g-rules for a list of crossings X:

δi_,j_ := If[i === j, 1, 0];

gRules[{s_, i_, j_}] := 

gν_jβ_  gν j+β + δjβ, gν_iβ_  Tν
s gνi+β + 1 - Tν

s
 gν j+β + δiβ,

gν_α_i+  Tν
s gναi + δαi+, gν_α_j+  gνα j + 1 - Tν

s
 gναi + δα j+

;

gRules[X___List] := Union @@ Table[gRules[c], {c, {X}}]

We then let Xl be the three crossings in the left-hand-side of the R3b move, as in Figure 4.4,
we let Al be the Al term of (16), and we let lhs be the result of applying the g-rules for the
crossings in Xl to Al. We print only a “Short” version of lhs because the full thing would
cover about 2.5 pages:

Xl = {{1, j, k}, {1, i, k+}, {1, i+, j+}};

Al = Sum[F1[c], {c, Xl}] + Sum[F2[c0, c1], {c0, Xl}, {c1, Xl}];

lhs = Simplify[Al //. gRules @@ Xl];

Short[lhs, 5]

-
1

2 (1 - T2)
3 - 3 T2 +129 +

2 (1 - T2) 1 + T2 (T2 g2,1+,i - (-1 + T2) g2,1,i) - (-1 + T2) g2,k++,i

1 + (1 - T1 T2) g3,k++,j + g3,k++,k

We do the same for Ar, except this time, without printing at all:

Xr = {{1, i, j}, {1, i+, k}, {1, j+, k+}};

Ar = Sum[F1[c], {c, Xr}] + Sum[F2[c0, c1], {c0, Xr}, {c1, Xr}];

rhs = Simplify[Ar //. gRules @@ Xr];

We then compare lhs with rhs. The output, True, tells us that we have proven (17):

See http://drorbn.net/AP/Projects/Theta/
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Simplify[lhs  rhs] True

We show that Bl “ Br by following exactly the same procedure. Note that we ignore the
summation over cy and instead treat it as a fixed crossing cy “ ps,m, nq. If an equality is
proven for every fixed cy, it is of course also proven for the sum over cy P Y .

lhs = Sum[F2[c0, {s, m, n}], {c0, Xl}] //. gRules @@ Xl;

rhs = Sum[F2[c0, {s, m, n}], {c0, Xr}] //. gRules @@ Xr;

Simplify[lhs  rhs]

True

Similarly we prove that C l “ Cr, and this concludes the proof of Proposition 8.

lhs = Sum[F2[{s, m, n}, c1], {c1, Xl}] //. gRules @@ Xl;

rhs = Sum[F2[{s, m, n}, c1], {c1, Xr}] //. gRules @@ Xr;

Simplify[lhs  rhs]

True

8

Remark 9. The computations above were carried out for generic gναβ and for a generic
cy “ ps,m, nq; namely, without specifying the knot diagrams in full, and hence without
assigning specific values to gναβ, and without specifying m and n. Under these conditions
the three parts of (16) cannot mix (namely, terms from, say, Ah cannot cancel terms in Bh

or Ch), and so it would have been enough to show that El “ Er, where Eh combines Ah and
Bh and Ch (and a few harmless further terms) by adding cy to the summation corresponding
to Ah:

Eh
“

ÿ

cPtch1,2,3,yu

F h
1 pcq `

ÿ

c0,c1Ptch1,2,3,yu

F h
2 pc0, c1q.

But that’s a simpler computation:

ESum[X_] := (Sum[F1[c], {c, X}] + Sum[F2[c0, c1], {c0, X}, {c1, X}]) //. gRules @@ X;

Xl = {{1, j, k}, {1, i, k+}, {1, i+, j+}};

Xr = {{1, i, j}, {1, i+, k}, {1, j+, k+}};

Simplify[ESum[Append[Xl, {s, m, n}]]  ESum[Append[Xr, {s, m, n}]]]

True

9

Proposition 10. The quantity θ is invariant under the upright R2c` and R2c´.

Proof. For R2c` we follow the same logic as in the proof of Proposition 8, as simplified by
Remark 9. We start with the figure that replaces Figure 4.4 (note the null vertices in Dr

and their minimal effect as in Lemma 4 and Remark 5):

j

i`̀

i

i`j`

j`̀

Dl Dr

i

j

j`̀

i`̀

j`i`

m n

s

m n

s
cy cy

To compute “E” sums as in Remark 9 we first have to extend the ESum routine to accept
also a list R of pairs pφ, kq of the form (rotation number, edge label):

See http://drorbn.net/AP/Projects/Theta/



18 DROR BAR-NATAN AND ROLAND VAN DER VEEN

ESum[X_, R_] :=

(Sum[F1[c], {c, X}] + Sum[F2[c0, c1], {c0, X}, {c1, X}] + Sum[F3 @@ r, {r, R}]) //.

gRules @@ X;

We then compute El by calling ESum with crossings p´1, i, j`q, p1, i`, jq as in the left hand
side of the R2c` moves, a generic extra crossing ps,m, nq, and a rotation number of 1 on
edge j`:

El = Simplify[ESum[{{-1, i, j+}, {1, i+, j}, {s, m, n}}, {{1, j+}}]];

Short[El, 5]

-
1

2 (-1 + T2
s)

1 + s + 2 s (T1 T2)
s g3,m+,m +11 + 2 g3,j++,j -

T2
s
1 + s - 2 s g1,n+,m g2,n+,m + 2 s g2,n+,n +28 + 2 s g2,m+,m (1 + g3,n+,n) + 2 g3,j++,j

The computation of Er is simpler, as it only involves the generic ps,m, nq and the rotation
p1, j`q. We implement the g-rules for null vertices as in Equations (10) and (11), compute
Er, and then compare El with Er to conclude the invariance under R2c`:

gRules[j_] := {gν_,j,β_  δj,β + gν,j+,β, gν_,α_,j+  δα,j+ + gν,α,j}

Er = ESum[{{s, m, n}}, {{1, j+}}] //. (Union @@ gRules /@ {i, i+, j, j+});

Simplify[El  Er]

True

For R2c´ we allow ourselves to be even more condensed:

i`j`

i

i`̀

j

j`̀

j`i`

j

j`̀

i

i`̀

El = ESum[{{1, i, j+}, {-1, i+, j}, {s, m, n}}, {{-1, j+}}];

Er = ESum[{{s, m, n}}, {{-1, j+}}] //.

(Union @@ gRules /@ {i, i+, j, j+});

Simplify[Er  El]

True

10

i`̀

i

i`

i`̀

i

i` i`

i`̀

i

Proposition 11. The quantity θ is invariant under R1l and R1r.

Proof. We aim to use the same approach and conventions as in the
previous two proofs but hit a minor snag. The g-rules for R1l include

gi`β “ δi`β ` Tgi`̀ ,β ` p1 ´ T qgi`,β and gα,i` “ gαi ` p1 ´ T qgαi` ` δα,i` ,

and if these are implemented as simple left to right replacement rules, they lead to infinite
recursion. Fortunately, these rules can be rewritten in the form

gi`β “ T´1δi`β ` gi`̀ ,β and gα,i` “ T´1gαi ` T´1δα,i` ,

which makes perfectly valid replacement rules. We thus redefine:

See http://drorbn.net/AP/Projects/Theta/
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gRules[{1, i+, i}] = 

gν_iβ_  gνi+β + δiβ, gν_i+β_  gνi++β + Tν
-1

δi+β,

gν_α_i++  Tν gναi+ + δαi++, gν_α_i+  Tν
-1 gναi + Tν

-1
δαi+

;

The same issue does not arise for R1r (!), and thus the following lines conclude the proof:

El = ESum[{{1, i+, i}, {s, m, n}}, {{1, i+}}];

Em = ESum[{{s, m, n}}];

Er = ESum[{{1, i, i+}, {s, m, n}}, {{-1, i+}}];

Simplify[El  Em  Er]

True

11

j

j` i`

i

φ“1φ“1

i j

j` i`

φ“ ´1 φ“ ´1

Proposition 12. The quantity θ is invariant under Sw.

Proof. This one is routine:

El = ESum[{{1, i, j}, {s, m, n}}];

Er = ESum[{{1, i, j}, {s, m, n}}, {{-1, i}, {-1, j}, {1, i+}, {1, j+}}];

Simplify[El  Er]

True

12

Proposition 13. The quantity θ is invariant under NV.

Proof. Indeed, F3 is linear in φ. l

Proof of Theorem 2. Theorem 2 now follows from Propositions 7, 8, 10, 11, 12, and 13.
l

5. Strong and Meaningful

5.1. Strong. To illustrate how strong Θ is, Table 5.1 summarises the separation powers of
various knot invariants and combinations of knot invariants on prime knots with up to 15
crossings (up to reflections and reversals).

In line 2 of the table we list the total number of tabulated knots with up to n crossings.
For example, there are 313,230 prime knots up to reflections and reversals. In the following
lines we list the separation deficits on these knots, for different invariants or combinations
of invariants. For example, in line 3 we can see that on knots with up to 10 crossings, the
Alexander polynomial ∆ has a separation deficit of 38: meaning, that it attains 249´38 “ 211
distinct values on the 249 knots with up to 10 crossings. For deficits, the smaller the better!2

Thus the deficit of 236,326 for ∆ at n ď 15 means that the Alexander polynomial is a rather
weak invariant, in as much as separation power is concerned.

Line 4 shows the deficits for the Jones polynomial J . It is better than ∆, but still rather
weak. Line 5 shows the deficits for Khovanov homology Kh. They are only a bit lower
than those of J . The HOMFLY-PT polynomial H (line 6) is noticeably better, and when

2This is not a political statement.

See http://drorbn.net/AP/Projects/Theta/
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1 n ď 10 ď 11 ď 12 ď 13 ď 14 ď 15
2 knots 249 801 2,977 12,965 59,937 313,230
3 ∆ (38) (250) (1,204) (7,326) (39,741) (236,326)
4 J (7) (70) (482) (3,434) (21,250) (138,591)
5 Kh (6) (65) (452) (3,226) (19,754) (127,261)
6 H (2) (31) (222) (1,839) (11,251) (73,892)
7 pKh, Hq (1) (30) (214) (1,771) (10,788) (70,245)
8 Vol (6) (25) (113) (1,012) (6,353˘1) (43,607˘3)
9 p∆, ρ1q (0) (14) (95) (959) (6,253) (42,914)
10 p∆, ρ1, ρ2q (0) (14) (84) (911) (5,926) (41,469)
11 Θ (0) (3) (19) (194) (1,118) (6,758)
12 pΘ, ρ2q (0) (3) (10) (169) (982) (6,341)
13 pΘ, ρ2, Hq (0) (3) (10) (169) (982) (6,341)
14 pΘ, ρ2,Khq (0) (3) (10) (169) (981) (6,337)
15 pΘ, ρ2,Kh,Volq (0) (3) (10) (169) (972˘1) (6,304˘3)

Table 5.1. The separation powers of some knot invariants and combinations of knot
invariants (in lines 3–15, smaller numbers are better). The data in this table was
assembled by [BV2, Stats.nb].

taken together with Kh, it gets even a bit better (line 7). Note that Kh dominates J and H
dominates both ∆ and J , so there’s no point adding ∆ and/or J into the mix.
On line 8 we consider the hyperbolic volume of the knot complement, as computed by

SnapPy [CDGW]. We computed volumes using SnapPy’s high_precision flag, which makes
SnapPy compute to roughly 63 decimal digits, and then truncated the results at 35 decimal
digits to account for possible roundoff errors within the last few digits. But then we are
unsure that we computed enough. . . Hence the error bars on some of the results here and in
line 15.

On line 9, the Rozansky-Overbay invariant ρ1 [Ro1, Ro2, Ro3, Ov], also discussed by us
in [BV1], does somewhat better. Note that the computation of ∆ is a part of the computation
of ρ1, so we always take them together. In line 10 we add ρ2 [BN1] to make the results yet
a bit better.

Line 11 makes our case that Θ is strong!
Line 12 reinforces that case by just a bit: note that it makes sense to bundle ρ2 along

with Θ, for their computations are very similar. Note that Conjecture 15 means that it is
pointless to consider pΘ, ρ1q.
Lines 13 through 15 show that at crossing number ď 15 and in the presence of Θ, and

especially in the presence of both Θ and ρ2, it is pointless to also consider H, nearly pointless
to also consider Kh, and not terribly useful to also consider Vol.

We note that of all the invariants considered in this section, the only one known to (some-
times) detect knot mutation is Θ (see Section 3.2).

5.2. Meaningful. Many knot polynomials have some separation power, some more and
some less, yet they seem to “see” almost no other topological properties of knots. The
greatest exception is the Alexander polynomial, which despite having rather weak separation
powers, gives a genus bound, a fiberness condition, and a ribbon condition. The definition

See http://drorbn.net/AP/Projects/Theta/
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of θ is in some sense “near” the definition of ∆, and one may hope that θ will share some
of the good topological properties of ∆. With significant computational and theoretical (see
also MORE) evidence we believe the following to be true:

Conjecture 14. Let K be a knot and gpKq the genus of K. Then degT1
θpKq ď 2gpKq.
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We have verified this conjecture for all knots
with up to 12 crossings. The example of the
Conway and the Kinoshita-Terasaka knots shows
that the bound in Conjecture 14 can be stronger
than the bound degT ∆pKq ď gpKq coming from
the Alexander polynomial. Another such ex-
ample is the 48-crossing Gompf-Scharlemann-
Thompson GST 48 knot [GST], shown on the
right, which may be a counter-example to the
ribbon-slice conjecture. Here’s the relevant computation, with X14,1 (say) meaning “the
crossing p1, 14, 1q” and X̄2,29 (say) meaning “p´1, 2, 29q”:

GST48 = EPDX14,1, X2,29, X3,40, X43,4, X26,5,

X6,95, X96,7, X13,8, X9,28, X10,41, X42,11, X27,12,

X30,15, X16,61, X17,72, X18,83, X19,34, X89,20,

X21,92, X79,22, X68,23, X57,24, X25,56, X62,31,

X73,32, X84,33, X50,35, X36,81, X37,70, X38,59,

X39,54, X44,55, X58,45, X69,46, X80,47, X48,91,

X90,49, X51,82, X52,71, X53,60, X63,74, X64,85,

X76,65, X87,66, X67,94, X75,86, X88,77, X78,93;

AbsoluteTiming[

PolyPlot[Θ48 = Θ@GST48, ImageSize  Small]]

15.1339, 

{Exponent[Θ48〚1〛, T], ⌈Exponent[Θ48〚2〛, T2] / 2⌉} {8, 10}

MORE.

6. Conjectures and Dreams

MORE

Conjecture 15. θ dominates the Rozansky-Overbay invariant ρ1 [Ro1, Ro2, Ro3, Ov], also
discussed by us in [BV1]. In fact, ρ1 “ ´θ|T1ÑT,T2Ñ1.

MORE
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