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A VERY FAST, VERY STRONG, TOPOLOGICALLY MEANINGFUL
AND FUN KNOT INVARIANT

DROR BAR-NATAN AND ROLAND VAN DER VEEN

ABSTRACT. In this paper we introduce © = (A, ), a pair of polynomial knot invariants
which is: \q/L Ch/\V
e Theoretically and practically fast: © can be computed in polynomial time a’hd/\we"com— <———-
puted\it in full on random knots with over 300 crossings, and its evaluation on on simple
ratlonal numbers on random knots with over 700 crossings.
éﬂ- mo\ e Strong: Its separation power is much greater than, say, the HOMFLY-PT polynomial and
Khovanov homology (taken together) on knots with up to 15 crossings (Whlle esmputing
ouch-faster]. “{\) Lc?/ﬂ/igvz;/w h"l_.{/)
e Topologically meaningful: It gives a genus bound, and there are reasons to hope that it o /g
would do more. ,_7 mé/
e Fun: Scroll to Figures 1.1, 1.2, and 3.1.
A is merely the Alexander polynomial. 6 is almost certainly equal to an invariant that
was studied extensively by Ohtsuki [Oh], continuing Rozansky, Garoufalidis, and Kricker
[GR, Rol, Ro2, Ro3, Kr]. Yet our formulas, proofs, and programs are much simpler and
enable its computation even on very large knots.
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1. Fun

The word “fun” rarely appears in the title of a math paper, so let us start with a brief
justification.

Date: First edition Not Yet. This edition July 16, 2025.
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O is a pair of polynomials. The first, A, is old news, the Alexander polynomial [Al]. Tt is
a one-variable Laurent polynomial in a variable T'. For example, A(&) =T"! —1+T. We
turn such a polynomial to a list of coefficients (for &, it is (1 — 1 1)), and then to a chain
of bars of varying colours: white for the zero coefficients, and red and blue for the positive
and negative coefficients (with intensity proportional to the magnitude of the coefficients).
The result is a “bar code”, and for the trefoil & is it M.

Similiarly, 6 is a 2-variable Laurent polynomial, in variables 77 and 75.

We can turn such a polynomial into a 2D array of coefficients and then

g using the same rules, into a 2D array of colours, namely? into a pictur@' 1 ‘ .

To highlight a certain conjectured hexagonal symmetry of the resulting Ty !
pictures, we apply a certain shear transformation to the plane before L
printing. So the colour of a monomial ¢T7"* Ty gets printed at position i

1 —=1/2\ [ny) . N ny ‘ . '
(0 \/5/2) (n2> instead of the more traditional (n2> On the right is the 2D picture

corresponding to the polynomial 2 + 7T} — 1775 + 15 — 17 1y TflT{l — T{l.

Thus © becomes a pair of pictures: a bar code, and a 2D picture that we call a “hexagonal
QR code”. For the knots in the Rolfsen table (with the unknot prepended at the start), they
are in Flgure 1.1. In addition, the hexagonal QR codes of some 15 knots with > 300 crossings

axe 1.2, and © of a 132-crossing torus knot is in Figure 3.1.

" here are patterns in these figures. There is a hexagonal symmetry and the QR
codes are nearly always hexagons (these are independent properties). Much more can be seen
in Figure 1.1. In Figure 1.2 there seem to be large-scale “sand table patterns” or “diffraction
patterns”. We can’t prove any of these things, and the last one, we can’t even formulate
properly. Yet they are clearly there, too clear to be the result of chance alone.

We plan to have fun over the next few years observing and proving these patterns. We
hope that others will join us too.

2. FORMULAS

1. Old Formulas'. The setup leading to the definition of © is the same as the setup
leading to the definition of the invariant p; of [BV1], and hence we copy a few relevant
paragraphs from [BV1] nearly varbatim, with only a few modifications.

140ld” means that these formulas appeared already in [BV1].
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FIGURE 1.1. © as a bar code and a QR code, for all the knots in the Rolfsen table.
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FIGURE 1.2. 6 (hexagonal QR code only) of the 15 largest knots that we have com-
puted by September 16, 2024. They are all “generic” in as much as we know, and
they all have > 300 crossings. The knots come from [DHOEBL]. Warning: Some
screens/printers may display spurious Moiré interference patterns.

Given an oriented n-crossing knot K, we draw it in the plane as a long D
knot diagram D in such a way that the two strands intersecting at each
crossing are pointing up (that’s always possible because we can always rotate 7
crossings as needed), and so that at its beginning and at its end the knot
is oriented upward. We call such a diagram an upright knot diagram. An
example of an upright knot diagram is shown on the right. [

We then label each edge of the diagram with two labels: a running index
k which runs from 1 to 2n + 1, and a “rotation number” ¢, the geometric
rotation number of that edge (the signed number of times the tangent to the

4
2
edge is horizontal and heading right, with cups counted with +1 signs and
caps with —1; this number is well defined because at their ends, all edges b

(31
g =—1

are headed up). On the right the running index runs from 1 to 7, and the
rotation numbers for all edges are 0 (and hence are omitted) except for ¢y,
which is —1.

~
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Technicality 1. Some Reidemeister moves create or lose an edge and to avoid the need
for renumbering it is beneficial to also allow labelling the edges with non-consecutive labels.
Hence we allow that, and write i* for the successor of the label ¢ along the knot, and i*" for
the successor of i* (these are i + 1 and ¢ + 2 if the labelling is by consecutive integers). Also,
by convention “1” will always refer to the label of the first edge, and “2n + 1”7 will always
refer to the label of the last.

Let X be the set of all crossings in the diagram D, where we encode each crossing as
a triple (sign, incoming over edge, incoming under edge). In our example we have X =
{(1,1,4),(1,5,2), (1,3,6)}.

We let A be the (2n + 1) x (2n + 1) matrix of Laurent polynomials in a formal variable
T, defined by

’—y A=1-— Z (TsEi?iJr + (1 — TS)E,-J+ + Ej7j+) ,
C—.:(s ]”.FJ) f—X
where [ is the identity matrix and E,g denotes the elementary matrix with 1 in row a and
column S and zeros elsewhere. The_summation is over the crossings—e—{s;7, 7 of tie~

\/d—iagna,m—Brand OTICE C is chosen, § denotes Tts sighana——aia j denote the laber e
crossing-where-the lahel 4 belongs to the over-strand-and—4-+ sdeT-STrant:

Alternatively, A = I+ A., where A, is a matrix of zeros except for the blocks as follows:

A, ‘ column ¢t column j*
— row =T° 75 —1 (1)
row j 0 —1

s=+1

We note (as we did in [BV1]) that the determinant of A is equal up to a unit to the
normalized Alexander polynomial A of K. In fact, we have that

A = T(=»(D)-w(D))/2 det(A), (2)

where ¢(D) = )}, ¢ is the total rotation number of D and where w(D) = . s. is the
writhe of D, namely the sum of the signs s, of all the crossings ¢ in D.

We let G = (gap) = A™' and, thinking of it as a function g5 of a pair of edges « and
B, we call it the Green function of the diagram D. When inspired by physics (e.g. [BN2])
we sometimes call it “the 2-point function”, and when thinking of car traffic (e.g. [BN3]) we
sometimes call it “the traffic function”.

We note that the computation of G is the bottleneck in the computation of ©. It requires
inverting a (2n + 1) x (2n + 1) matrix whose entries are (degree 1) Laurent polynomials in
T. It’s a daunting task yet it takes polynomial time, it can be performed in practice even if
n is in the hundreds, and everything which then follows is easier.

2.2. New Formulas. Let T} and 75 be indeteminates and let T3 := T1T,. Let A, == Ar_1,
and G, = (guap) = Gr_1, be A and G subject to the substitution 7' — T,,, where v = 1,2,3
(these are easy to compute once A and G have been computed).

Given crossings ¢ = (s,1,7), co = (S0, %0, Jo0), and ¢; = (s1,11,71) in X, let
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Fi(c) = s[1/2 — g3ii + T5 911920 — T5 9355925 — (15 — 1)g3iiga;i (3)

(T3 — 1)go5ig3ji — Griig2;5 + 23i92j5 + 91ii9355 — 92iiF3j;]
s

T5 —1
+ (15 — 1)g3i (1 = T3 g1 + goij + (15 — 2)g255 — (17 — 1)(T5 + 1)g151)]

Sl(Tlso - 1)(T351 B 1)glj1iog3joi1

5t —1
Fs(p, k) = o(gare — 1/2) (5)

Theorem 2 (Proof in Section 4). The following is a knot invariant:

A%@ym e D) = AnsA, (Z Fi(o)+ Y, Flco,c) + ), Fg(gok,k)>, (6)

ceX cp,c1€X edges k

"f_

[(TY — D)T5 (9355915i — Gojigrji + 15 915i92;:)

FQ(COa Cl) = (T28092i1i0 + 92510 — T;O.g?jﬂo - g2i1j0) (4)

We note without that there is an alternative formula for # in terms of perturbed
Gaussian integration / In that language, and using also the traffic motifs of [BV1, BN3],
the three summands in (6) become Feynman diagrams for processes in which cars governed
by parameter T' = Ty, T, or T3 interact:

4 @3 N\
D /\ D
AN AN
20 Jo\_/h J1 7
=)

In particular, the middle diagram which resembles the greek letter © gave the invariant
its name.

We note also that computationaly, the worst term in (6) is the middle one, and even it
takes merely ~ n? operations in the ring Q(7}, Ty) to complete.

The polynomials Fi(c), Fy(co,c1) and Fs(g, k) are not unique, and we are not certain
that we have the cleanest possible formulas for them. They are human-ugly, yet from a
computational perspective, having 18 terms (as is the case for Fj(c)) isn’t really a problem;
computers don'’t care.

3. IMPLEMENTATION AND EXAMPLES

A concise yet reasonably efficient implementation is worth a thousand formulas. It com-
pletely removes ambiguities, it tests the theories, and it allows for experimentation. Hence
our next task is to implement. The section that follows was generated from a Mathe-
matica [Wo] notebook which is available at [BV2, Theta.nb]. A second implemntation
of ©, using Python and SageMath (https://www.sagemath.org/) is available at https:
//www.rolandvdv.nl/Theta/.

We start by loading the package KnotTheory‘ — it is only needed because it has many
specific knots pre-defined:


https://www.sagemath.org/
https://www.rolandvdv.nl/Theta/
https://www.rolandvdv.nl/Theta/
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@ << KnotTheory" Loading KnotTheory™ version of October 29, 2024, 10:29:52.1301.
Read more at http://katlas.org/wiki/KnotTheory.

Next we quietly define the modules Rot, used to compute rotation numbers, and PolyPlot,
used to plot polynomials as bar codes and as hexagonal QR codes. Neither is a part of the
core of the computation of O, so neither is shown; yet we do show one usage example for
each.

@ (x Rot suppressed x)
Rot [MirroreKnot[3, 1]] ({{1, 1, 4}, {1, 3, 6}, {1, 5, 2}}, {0, 0,0, -1, 0, 0, 0} }

We urge the reader to compare the above output with the knot diagram in Section 2.1.

(» PolyPlot suppressed =x)

PolyPlot[{ZT—1+T’1, ~1+T;-2T,+4 T4 T30},

- 1l

1
-
ImageSize - 100, Labeled - True] ‘

1 T4

The definition of CF below is a technicality telling the computer how to best store poly-
3 “‘, | nomials in the g,qg such as F} and F,. The programs would run just the same without it,
A albeit a bit more slowly:

CF[&_ ] := ExpandeCollect[&, g , F] /. F » Factor;

Next, we decree that T3 = T}T5 and define the three “Feynman Diagram” polynomials F7,
FQ, and Fg:

@ T3 =Ty T3;

Fal{s_, i_, _}1 :=CF[
n s (1 /2-83ii +T5 8141 8251 — B1ii 8255 - (T§ = 1) 82ji 83ii *+ 2 8255 83ii - (1 = T;) 82ji 83ji —
821 8377 - T 821 8355 + 8111 8355 +
((T1-1) g5 (Tgs 825i - T3 8255 + T3 8355) +
(75-2) e (1T e+ g+ (15-2) s - (15-3) (15+2) ) / (13-)))

F,[{s@_, i0_, jO_}, {s1_, i1_, j1_}] :=
n CF [51 (Tie = 1) (T;I - 1) -1 (T§1 - 1) 81,51,1i0 83, jo,i1
( (Tie 82,i1,i0 - gz,u,je) = (Tie 82,j1,i0 - gz,jz,je) ) ]

Fsle , R 1 =0 8ak-0/2;

Next comes the main program computing ©. Fortunately, it matches perfectly with the
mathematical description in Section 2. In line 01 we let X be the list of crossings in an input
knot K, and ¢ the list of its rotation numbers, using the external program Rot which we
have already mentioned. We also let n be the length of X, namely, the number of crossings
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in K. In line 02 we let the starting value of A be the identity matrix, and then in line 03, for
each crossing in X we add to A a 2 x 2 block, in rows ¢ and 7 and columns 7 + 1 and j + 1,
as explain in Equation (1). In line 04 we compute the normalized Alexander polynomial A
as in (2). In line 05 we let G be the inverse of A. In line 06 we declare what it means to
evaluate, ev, a formula £ that may contain symbols of the form g¢,,5: each such symbol is
to be replaced by the entry in position «, 8 of G, but with T replaced with T,. In line 07 we
start computing € by computing the first summand in (6), which in itself, is a sum over the
crossings of the knot. In line 08 we add to # the double sum corresponding to the second
term in (6), and in line 09, we add the third summand of (6). Finally, line 10 outputs a pair:
A, and the re-normalized version of 6.

O[K ] := O[K] =Modu1e[{x, @, n, A, A, G, ev, 8},
(# 01 %) {X, ©} =Rot[K]; n=Length[X];
(x 02 %

A = IdentityMatrix[2n +1];

(« 03 *) Cases[x’ {s_’ 'i__, j_}:—) (AII{i, j}, {i+1) j+1}]] += (—;5 Ts;.l))];

(« 04 = A=-I-(—Total[q)]—Tot:«xl[X|[A11,1]]])/2 Det[A];

(+ B5 +) G =1Inverse[A];

(# 06 *) ev[& ] :=Factor[& /.8, o, » (Gla, A1 /. T-T,)1;
\ n .

(+ 07 x e=ev[Z‘k=1F1[X[[k]]]],

(+ 08 «) @+=ev[>V ST  Fp[X[k1l, X[k211];
(x @9 %) 6 += eV[Z::lF3[(P[[k]]) k]];
(+ 10 ) Factor@{a, (A/.T->Ty) (A/.T>Ty) (A/.T>T;3) 6}

On to examples! Starting with the trefoil knot.

Expand[©[Knot[3, 1]]]

1 1 1 1 1 1 T, T
{—1+—+T,———Ti——— + + +—1+—2+TiT2—T§+T1T§—TiT§}
— T T2 T2 OTITE OTT3OTAT, T, T

PolyPlot [@[Knot[3, 1]], ImageSize - Tiny] ]

Altwnder~

Next are the Conway knot 11,34 and the Kinoshita/Terasaka C
knot 11,,4o. The two are mutants and famously hard tof separate: /3 OQ
they both have A = 1 (as evidenced by their one-bat/bar codes < / NV
below), and they have the same HOMFLY-PT polynomial and 6\ O
Khovanov homology. Yet their # invariants are different. Note U
that the genus of the Conway knot is 3, while the genus of the Kinoshita-Terasaka knot is 2.

This agrees with the apparent higher complexity of the QR code of the Conway polynomial,
and with the observations in Section 5.
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AR -

Torus knots have particularly nice-looking © invariants. Here are the torus knots T3/,
T17/3’ T13/57 and T?/Gi

GraphicsRow [ ImageCompose [

@ PolyPlot[@[Knot[#]], ImageSize -» 120] & /@
{"K11n34", "K11n42"} o

PolyPlot[©[Torusknot @e #], ImageSize - 480],
TubePlot [TorusKnot @e #, ImageSize - 240],
{Right, Bottom}, {Right, Bottom}
1 &/e@{{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

=5
: selel
e
2
. !

O et O

20&96969 'b

&3
.......

The next line shows the computation time in seconds for the 132-crossing torus knot Tz
on a 2024 laptop, without actually showing the output. The output plot is in Figure 3.1.

AbsoluteTiming[®[TorusKnot[22, 7]11;] (1020.73, Null)

Include«ational evaluation

example.
P 4. PROOF OF INVARIANCE

Our proof of the invariance of # (Theorem 2) is very similar, and uses many of the same
oof of the invariance of p1 in [BVl] J'Thus 1nstead of repeating everythmg

@e%}?Q

Like in [BV1, Lemma 3|, the equalities AG = [ and GA = I imply that for any crossing
¢ = (s,i,7) in a knot diagram D, the Green function G = (gn5) of D satisfies the following
“g-rules”, with ¢ denoting the Kronecker delta:

gig = 0ig + T°gi+ g + (1 =T7%)g;+ g, 9i8 = 0jg + gj+ 3, Gon+1.8 = O2nt18,  (7)

gaﬂ-+ = ngai + 504,1“"7 ga,j+ = gaj + (1 — Ts>gm' + 5a,j+u ga@ = (5,1’1. (8)

Furthermore, the systems of equations (7) is equivalent to AG = I and so it fully determines
gap, and likewise for the system (8), which is equivalent to AG = 1.
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ImageCompose [PolyPlot [ [TorusKnot[22, 7]], ImageSize » 7207,
TubePlot [TorusKnot[22, 7], ImageSize -» 360], {Right, Bottom}, {Right, Bottom}]

O O O & o #H 2232802434000 W W W O O O

A I RIRIRT T RTELE (O O - -
OO0 MBI H B e O O D
TR ABENNNIAAIERTER DR R Y

TR N K N N F K F AL R R % B R A
TS ERQBRBNVHVOVOTOWDHRHDHE T Y Y

e RER L x:x A Y
ra 'n.‘ 'a.‘ 3‘ é?t?é’& Q}%%‘%‘% "a; '.; e
RRRIAFIN I A AKA
T RREELE XX X AR R
onu'i.i'i'OOQOQOQOQQG ; ﬁ A Q"e QQ'Q'Q‘: oco
pauogeqqoee{)ﬁ N8 oo o
cosee0 00000 # 0 o
XXX XXX SNy @
IEEEXEE X X q 2 y ¢
A £ X 0%‘&% 3 &/ N\
~ ‘. t. ‘ltﬁ%.b% N
e e % B BN RS
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TR R OO NNV

I T T I IRIRE R LA
N IR T
OO0 G AR R B M O D

o

FIGURE 3.1. The 132-crossing torus knot 75y/; and a plot of its © invariant

Of course, the same g-rules also hold for G, = (g,as) for v = 1,2, 3, except with T replaced
with 7.

We also need a variant g, of gag, defined whenever a and b are two distinct points on the
edges of a knot diagram D, away from the crossings. If « is the edge on which a lies and
is the edge on which b lies, g4 is defined as follows:

Gap if o #* ﬁ;
Gab = 3 Gap if « = 3 and a < b relative to the orientation of the edge o = 3,  (9)
gop — 1 if o = 8 and a > b relative to the orientation of the edge o = 3.

_ﬁ Of course, we can define g,q, from g,s in an-identjcal way.
v/ i

/ /
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It is clear that g and § contain the same information and are easily computable from each
other. The variant g is, strictly speaking, not a matrix and so ¢ is a bit more suitable for
computations. Yet ¢ is a bit better behaved when we try to track, as below, the behaviour
of g / g under Reidemeister moves. Reidemeister moves sometimes merge two edges into
one or break an edge into two. In such cases the points a and b can be “pulled” along with
the move so as to retain their ordering along the overall parametrization of the knot, yet
mere edge labels lose this information. The following discussion and lemma exemplify the
advantage of g of g¢:

Discussion 3. We introduce “null vertices” as on the right into knot dia- J k
grams, whose only function (as we shall see) is to cut edges into parts that

may carry different labels. When dealing with upright knot diagrams as in Section 2.1, we
only allow null vertices between upgoing edges, so that the rotation numbers ; remain well
defined on all edges. In the presence of null vertices the matrix A becomes a bit larger (by
as many null vertices as were added to a knot diagram). The rule (1) for the creation of the
matrix A gets an amendment for null vertices,

J k Ay ‘ column k
row J ‘ —1

)

and the summation for A, A = I+ A.+ >, An, is extended to include summands for the
null vertices. The matrix G = A~! and the function g,z are defined as before. The g-rules
of (7) and (8) get additions,

and it remains true that the system of equations (7)u(10) (as well as (8)u(11)) fully deter-
mines gog. The variant g, is also defined as before, except now a and b @gwrneed to also be
away from the null vertices.

Lemma 4. Inserting a null vertexr does not change ga@mm’ded it 18 inserted away from a
and b. (This statement does not make sense for gnz, as inserting a null vertex changes the
dimensions of the matrizc G = (gag))-

Proof.  Let D be an upright knot diagram having an edge labeled 7 and let D’ be obtained
from it by adding a null vertex within edge ¢, naming the two resulting half-edges j and k
(in order). Let g3 be the Green function for D, and similarly, ggﬁ for D’. We claim that

B=j B=k B¢k}
g' _ a =] Gii Gii gip
o a=Fk |gi—1 g 9ip
a ¢ {]7 k} Joi Gai Gap

Indeed, all we have to do is to verify that the above-defined g ; satisfies all the g-rules
(7)u(10), and that is easy. The lemma now follows easily from the definition of ¢’ in Equa-
tion (9). O

Remark 5. The statement of Theorem 2 does not change in the presence of null vertices:
There are no “F” terms for those, and their only effect on the definition of © in Equation (6)
is to change the edge labels that appear within ¢, ¢;, and ¢y, and within the F3 sum.
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FIGURE 4.1. The modified Green function g, is invariant under Reidemeister moves
performed away from where it is measured.

The following theorem, was not named in [BV1], yet it was stated there as the first part
of the first proof of [BV1, Theorem 1].

Theorem 6. The variant Green function g 1S a “relative invariant”, meaning that once
points a and b are fixed within a knot diagram D, the value of gu does not change if Rei-
demeister moves are performed away from the points a and b. An illustration appears in
Figure 4.1. It follows that the same is also true for g,q for v =1,2 3.

We note that g, is nearly the same as g.g, if a is on o and b is on 8. So Theorem 6
also says that g,s is invariant under Reidemeister moves away from « and f3, except for
edge-renumbering issues and +1 contributions that arise if a« and 8 correspond to edge that
get merged or broken by the Reidemeister moves.

The proof of Theorem 6 is perhaps best understood in terms of the traffic function of [BV1,
BN1, BN3]: One simply needs to verify that for each of the Reidemeister moves, traffic
entering the tangle diagram for the left hand side of the move exits it in the same manner
as traffic entering the tangle diagram for the right hand side of the move, and each of
these verifications, as explained in [BV1, BN1, BN3], is very easy. Yet that proof is a bit
informal, so we opt here to give a fully formal proof along the lines of the first halves of [BV1,
Propositions 7-9].

Proof of Theorem 6. We need to know how the Green function g,z changes under the
orientation-sensitive Reidemeister moves of Figure 4.2 (note that the g,s do not see the
rotation numbers and don’t care if a knot diagram is uprigt in the sense of Section 2.1).
We start with R3b. Below are the two sides of the move, along with the g-rules of
type (7) corresponding to the crossings within, written with the assumption that £ isn’t
in {it,j7, k*}, so several of the Kronecker deltas can be ignored. We use g for the Green
function at the left-hand side of R3b, and ¢’ for the right-hand side, and recall that along
with the further g/¢’-rules corresponding to all the non-moving knot crossings, these rules
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e {al b

R1-left and R1-right brald like R3
Y. y, Aside 2:

counterclockwise and clockwise cyclic R2

FIGURE 4.2. A generating set of oriented Reidemeister moves as in [Po, Figure 6].
Aside 1: the braid-like R2b is not needed. Aside 2: yet R2b cannot replace R2c*
because in the would-be proof, an unpostulated form of R3 is used (which in itself
follows from R2c*).

fully determinme g,5 and g5 for 8¢ {i*, j*, k™ }:

U 4

i A

g§+’5 = T,g;++”3+(1_T)g;€++75
i+ 5 = i+

+
R 9i+.5 = T9irs g+ (1=T) g1 5
Jip = kgt 3L g

H
gi+ g = Tgi++,,8+(1_T)gj++,ﬁ
gj+.8 = 9j++,8

i+ gi B = 515+Tgi+,5+(1—T)gk++75
9k+.,8 = Gk+t 8

g
i
95,8 = 0;+Tg;+ 5+ (1—T)gk+ 5 9ip = Oip+ T g+ (1=T)g}: 5
Y g B = OkB+gk+3 SV k 58 = 0is T 95+ 5
further further further further
crossings g-rules crossings g'-rules

A routine computation (eliminating g;+ g, g;+ g, and g+ g) shows that the first system of
6 equations is equivalent to the following system of 6 equations:
Gip = 5iﬁ + T2gi4+”3 + T(l — T)ngﬂ + (1 — T)gkﬂ—kﬁ,

(12)
95,8 = 5jﬁ + ngH,ﬁ + (1 - T)gkﬂ,m gk, = 5kﬁ + G+ g,

girg =Tgire g+ (L =T)gjr+ 5, Gi+p = Gj+r.p, i+ = G+t 6 (13)

In this system the indices i*, j© and £ do not appear in (12) or in the further g-rules

corresponding to the further crossings. Hence for the purpose of determining g¢,s with
a,f ¢ {it,j7, kt}, Equations (13) can be ignored.

Similarly eliminating g, 4, g}t g> and gy s from the second set of equations, we find that

it is equivalent to
8 =0+ TG s+ T(L = T)g5s 5+ (1= T)gpes . "
955 =08+ Tgies g+ (1 =T)gjer g Grp = Onp + s

9iv g = TG g+ (1=T)grss g Gjr g =TGer s+ (1=T)G4rv 5y Gor g = Grrv - (15)
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Using the same logic as before, for the purpose of determining g;,; with o, 8 ¢ {i",j", k*},
Equations (15) can be ignored.

But now we compare the unignored equations, (12) and (14),and find that they are exactly
the same, except with g < ¢/, and the same is true for the further g/¢’-rules coming from
the further crossings. Hence so long as «, 8 ¢ {1, ", k™ }, we have that g.s = g5 In the
case of the R3b move no edges merge or break up, and hence this implies that g, = g/, so
long as a and b are away from the move.

Next we deal with the case of R2¢™. We use the privileges afforded to us by Lemma 4 to
insert 4 null vertices into the right-hand-side of the move, and like in the case of R3b, we
start with pictures annotated with the relevant type (7) and (10) g-rules, written with the
assumption that 8 ¢ {i*, j*}:

++

/I i+ 3 = Tgi++75 + (1 — T)ngr’ﬁ J ggﬁ = 5@5 + g§+75
B / = d
j+< o 98T 08T I i | j+.p = i+
9ip =0ig+T g g+ (1 =T )gjer 9i+ 5 = Yirr 8
i/ NGt 95v8 = it B iyt s =08+ G g
further further further further
crossings g-rules crossings g'-rules

As in the case of R3b, we eliminate g;+ 3 and g;+ g from the equations for the left hand
side, and find that for the purpose of determining g,s with 5 ¢ {¢*,j*}, they are equivalent
to the equations

9i3 = 52-,[3 + Gi++ and 9i8 = 5j’5 + gj++ 3.

Likewise, the right hand side is clearly equivalent to
9ip = Oip+girp and  gis =055+ Gin g,

and as in the case of R3b, this establishes the invariance of g,, under R2c moves.

For the remaining moves, R2c™, R1l, and Rlr, we merely display the g-rules and leave it
to the readers to verify that when the edges i* and/or j* are eliminated, the left hand sides
become equivalent to the right hand sides:

i i i gt
7 gip = 06ip+Tgiwp+ (1 —-T)gj+ g3 9%75 = 51',5/ + i+ g
j+< + gj+.8 = g5+t 8 o+ i+ 9i+ 5 = 9j+
gi+ g = T_lgi++75 +(1— T_l)gj+,g gg+7r3 = gQHﬁ
it NG 9j.8 = 9.5 + i+ .5 it i 95e =00t Gjeg
i an it " "
9i+p =Tgi+p g =g 9i+ 5 = Yi++ g
i +(1=T)gi+ it gf’ﬁ_ 5 fg, i) gls="0ip+Tgls 4
i gig = 6Z,ﬁ + gi+ 3 Z 1,83 1,3 i+,8 . —|—(1 — T)g;lyr’ﬁ

We can now move on to the main part of the proof of Theorem 2. We need to show the
invariance of # under the “upright Reidemeister” moves of Figure 4.3.
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Oalwlo (el (Ll L

o jtf@@'%

S
[ \
S S

p=m+n

p=-1

F1GURE 4.3. The upright Reidemeister moves: The R1 and R3 moves are already
upright and remain the same as in Figure 4.2. The crossings in the R2 moves of
Figure 4.2 are rotated to be upright. We also need two further moves: The null vertex
move NV for adding and removing null vertices, and the swirl move Sw which then
implies that any two ways of turning a crossing upright are the same. We sometimes
indicate rotation numbers symbolically rather than using complicated spirals.

A A D! kt P ans Dr
cx ¥+
m n 011' \j N m n

FIGURE 4.4. The two sides D' and D" of the R3b move. The left side D' consists of
3 distinuighed crossings ¢} = (1,74, k), ¢ = (1,i,k%), ¢4 = (1,i",57) and a collection
of further crossings ¢, = (s,m,n) € Y, where Y is the set of crossings not participating
in the R3b move. The right side D" consists of ¢ = (1,4,7), ¢4 = (1,i",k), ¢§ =
(1,77, k™) and the same set Y of further crossings c,.

Proposition 7. The moves in Figure .3 are sufficient. If two upright knot diagrams (with
null vertices) represent the same knot, they can be connected by a sequence of moves as in

the figure. @5417“;‘

Proof. The proof is ‘contained in the caption of Figure 4.3. A more detailed version is

in [BVH]. L]
Proposition 8. The quantity 6 is invariant under R3b.

Proof. Let D; and D, be two knot diagrams that differ only by an R3b move, and label
their relevant edges and crossings as in Figure 4.4. Let gf,aﬂ and g;,,5 be their corresponding
Green functions. Let F{(c), Fj(co,c1) and Fi(¢p, k) be defined from gl,; as in (3)~(5), and
similarly make FY, Fy and F3 using g;,4.

By the invariance of the Alexander polynomial, the pre-factor A;As;Ag is the same for
6(D') and for §(D") (see Equation (6)). By Theorem 6, g5 = g,q5 so long as a,f ¢
{i*,7%,k*}. And so the only terms that may differ in §(D") between h = [ and h = r are
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the terms
h h h h h h h
At = Z Fi'(e) + Z FY(co,c1), B" = Z F3(co,¢y), and C" = Z F3(cy,c1). (16)
CE{C?Q,S} co,cle{ci‘,gﬁ} coe{c?’273},cer cle{c?’273},cy€Y

We claim that A' = A", B! = B", and C! = C".

To show that A" = A", we need to compare polynomials in g/, 5 with polynomials in g, 5 in
which a and 3 may belong to the set {i™, 77, k*} on which it may be that ¢g' # ¢". Fortunately
the g-rules of Equations (7) and (8) allow us to rewrite the offending ¢’s, namely the ones with
subscripts in {i*, 7%, k*}, in terms of other g’s whose subscripts are in {i, j, k,i*", 57 k*},
where ¢' = ¢g". Soitis e

Al /. (the g-rules for ¢\, ¢, c4) = A" /. (the g-rules for ¢}, 5, cj)

inder d=q,

where the symbol /. means “apply the rules”. This is a finite computation that can in-
principle be carried out by hand. But each A" is a sum of 349 = 12 polynomials in the g"’s,
these polynomials are rather unpleasant (see (3) and (4)), and applying the relevant g-rules
adds a bit further to the complexity. Luckily, we can delegate this pages-long calculation to

;ﬂl an entity thatMoesn’t complain. W9~ s cour /\JL('_] YalZ

First, we implement the Kronecker d-function, the g-rules for a crossing (s,1,j), and the
g-rules for a list of crossings X:

(0°) i ,5 t=If[i===], 1, @];
n gRules[{s_, i_, j_}] :={
By js P Byits+0iss Byis DTy Brits+ (1-T) 8yjts + s,
8y o it Ti 8rai t Ogit) 8y ajt?8raj* (1 - Ti) 8rai + 5aj+
}s
gRules[X _ List] :=Unione@e Table[gRules[c], {c, {X}}]
We then let X1 be the three crossings in the left-hand-side of the R3b move, as in Figure 4.4,
we let A1l be the A’ term of (16), and we let 1hs be the result of applying the g-rules for the

crossings in X1 to A1. We print only a “Short” version of 1hs because the full thing would
cover about 2.5 pages:

x1= ({1, 3, k}, {1, i, k*}, {1, i*, 3°}};

Al = Sum[F;[c], {c, X1}] + Sum[F,[cO, c1], {cO, X1}, {cl, X1}];
lhs = Simplify[Al //. gRules @@ X1];
Short[1lhs, 5]

1
- (3—3T2+ <«<129>> +
2 (1-Ty)

2 (1-Ty) (1+Ty (Taga,ccant,i— (-1+T2) 82, cc10,1) = (~1+Ty) 82,(k*)*,i)
(T+ (1-T1T2) 83, (k) *,5 * 83, (k") k) )
We do the same for A", except this time, without printing at all:

Xr= ({1, i, 33, {1, i*, k}, {1, 3%, k*}};

Ar =Sum[F;[c], {c, Xr}] + Sum[F,[cO, c1], {cO, Xr}, {cl, Xr}];
rhs = Simplify[Ar //. gRules @@ Xr] ;

We then compare 1hs with rhs. The output, True, tells us that we have proven (17):
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() simplify[1hs == rhs] True

We show that B! = B" by following exactly the same procedure. Note that we ignore the
summation over ¢, and instead treat it as a fixed crossing ¢, = (s,m,n). If an equality is
proven for every fixed ¢, it is of course also proven for the sum over ¢, € Y.

@ lhs = Sum[F,[cO, {s, m, n}], {cO, X1}] //. gRules @@ X1; True
n rhs = Sum[F,[c@, {s, m, n}], {cO, Xr}] //. gRules @@ Xr; o
Simplify[lhs == rhs]

Similarly we prove that C' = C", and this concludes the proof of Proposition 8.

@ lhs = Sum[F,[{s, m, n}, c1], {c1, X1}] //. gRules @@ X1; True
n rhs = Sum[F,[{s, m, n}, c1], {cl, Xr}] //. gRules @@ Xr; o @
Simplify[lhs == rhs] [K

Remark 9. The computations above were carried out for generic g,.s and for a generic
¢y = (s,m,n); namely, without specifying the knot diagrams in full, and hence without
assigning specific values to g,qp, and without specifying m and n. Under these conditions
the three parts of (16) cannot mix (namely, terms from, say, A" cannot cancel terms in B"
or C"), and so it would have been enough to show that E' = E”, where E" combines A" and
B" and C" (and a few harmless further terms) by adding ¢, to the summation corresponding
to A"
E'"= > Fo+ ) Feoa).
ce{c?,g&y} CO»CIG{C?,z,&y}

But that’s a simpler computation:
ESum[X ] := (Sum[Fi[c], {C, X}] + Sum[F,[c®, c1], {c®, X}, {cl, X}]) //. gRules @@ X

x1= {{1, 3, k}, {1, i, k*}, {1, i*, 3°}}; True

Xr={{1, i, 3}, {1, i*, k}, {1, 3%, k™}};
Simplify [ESum[Append[X1, {s, m, n}]] == ESum[Append[Xr, {s, m, n}]]1] @

Proposition 10. The quantity 0 is invariant under the upright R2¢™ and R2c¢ .
Proof. For R2¢t we follow the same logic as in the proof of Proposition 8, as simplified by

Remark 9. We start with the figure that replaces Figure 4.4 (note the null vertices in D"
and their minimal effect as in Lemma 4 and Remark 5):

e l\ e N\
i D i '
Nj j

Ao ¢ ol ¢
Yy 2N vi 20N
i m n i m n

g J g J

To compute “E” sums as in Remark 9 we first have to extend the ESum routine to accept
also a list R of pairs (@, k) of the form (rotation number, edge label):
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@ ESum[X , R ] :=
n (Sum[F;[c], {c, X}] +Sum[F,[cO, c1], {cO, X}, {cl, X}] +Sum[F;e@r, {r, R}]) //.
gRules ee X;

We then compute E' by calling ESum with crossings (—1,4, %), (1,i%, ) as in the left hand
side of the R2c* moves, a generic extra crossing (s,m,n), and a rotation number of 1 on
edge j7:

E1 = simplify [ESum[{{-1, i, 3'}, (1, i, 3}, {s, m, n}}, ({1, 3"}}11;
Short[El, 5]
& 1

oy ————————— (1+5+2s (T1Ty)* ont,m+ <<1l>> +2 A
SR 1T ( 112)" 83,m*,m 83,(3%)*.3

T; (1 +S-2581,n",m82,n",m+2S8a,n*,n+ <<28>> + 258 nr,m (1+83,n",n) +283, (j*)*,j) )
The computation of E” is simpler, as it only involves the generic (s, m,n) and the rotation
(1,57). We implement the g-rules for null vertices as in Equations (10) and (11), compute
E", and then compare E' with E" to conclude the invariance under R2c™:

gRU]'es [j—] °= {gy_:j;ﬂ_ g 6J;ﬁ + gV}j"‘)ﬁ’ gV_;a_)j+ £ 6a1j+ + gV)a’:j}

Er = ESum[{{s, m, n}}, {{1, j*}}] //. (Unionee gRules /@ {i, i*, j, 3*});
Simplify[El == Er]

a
True

For R2¢™ we allow ourselves to be even more condensed:

) )
(c°) EL=Esum[{{1, i, 3'}, {-1, i’, 3}, {s, m, n}}, {{-1, "}}]; i
(@) Er=ESum[{{s, m, n}}, {{-1, 3*}}] //. o o
(Union ee gRules /@ {i, i*, j, j*}); J }j
Simplify[Er == E1] i i
True
i+ i+ (z**
Proposition 11. The quantity 0 is invariant under R1l and R1r.
i+ i+ Z‘+
Proof. We aim to use the same approach and conventions as in the ,
1 (3 (3

previous two proofs but hit a minor snag. The g-rules for R1l include
gi+,B = 5¢+5 + Tg,L-H—ﬁ + (1 — T)Qﬁ,ﬁ and ga,i+ = Goi + (]. — T)gaﬁ— + 5a,i+7

and if these are implemented as simple left to right replacement rules, they lead to infinite
recursion. Fortunately, these rules can be rewritten in the form

gi+g = T_15i+6 + gi++ 3 and Ja,it = T_lgai + T_léa,ﬁ,

which makes perfectly valid replacement rules. We thus redefine:
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gRules[{1, i*, i}] = {
n 8y in D 8ritp+0iss By itp 8y (i*)*p * T;l Si*s,

8y a (i*)* DT, 8 ait + aa(i*')*) 8y a it P T:/1 8rai+ T:/:l Sait
}s

The same issue does not arise for R1r (1), and thus the following lines conclude the proof:

Em = ESum[{{s, m, n}}];
Er = ESum[ { {1, i: i+}: {s, my n}}, {{-1, i+}}]3
Simplify[El == Em == Er]

El = ESum[{{1, i*, i}, {s, m, n}}, {{1, i*}}1; True

ﬁ’—y Proposition 12. The quantity 0 is invariant under Sw.

Proof. This one is routine:

(=) EL = ESum[{{1, i, j}, {5, m, n}}, Wht
Q‘ (@) (-1, i), {1, 3}, {1, i), {1, 315 lrng
Er = ESum[{{1, i, 3}, {S, m, n}}1;
Simplify[El == Er]

a
True

Proposition 13. The quantity 0 is invariant under NV.

Proof. Indeed, Fj is linear in . ]
Proof of Theorem 2. Theorem 2 now follows from Propositions 7, 8, 10, 11, 12, and 13.
L]

5. STRONG AND MEANINGFUL

MORE. Do not forget to say something about volumes.
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