
A VERY FAST, VERY STRONG, TOPOLOGICALLY MEANINGFUL
AND FUN KNOT INVARIANT

DROR BAR-NATAN AND ROLAND VAN DER VEEN

Abstract. In this paper we introduce Θ � p∆, θq, a pair of polynomial knot invariants
which is:

 Theoretically and practically fast: Θ can be computed in polynomial time and we com-

puted it in full on random knots with over 300 crossings, and its evaluation on on simple
rational numbers on random knots with over 700 crossings.


 Strong: Its separation power is much greater than, say, the HOMFLY-PT polynomial and
Khovanov homology (taken together) on knots with up to 15 crossings (while computing
much faster).


 Topologically meaningful: It gives a genus bound, and there are reasons to hope that it
would do more.


 Fun: Scroll to Figures 1.1, 1.2, and 3.1.
∆ is merely the Alexander polynomial. θ is almost certainly equal to an invariant that
was studied extensively by Ohtsuki

Ohtsuki:TwoLoop
[Oh], continuing Rozansky, Garoufalidis, and KrickerGaroufalidisRozansky:LoopExpansion, Rozansky:Contribution, Rozansky:Burau, Rozansky:U1RCC, Kricker:Lines

[GR, Ro1, Ro2, Ro3, Kr]. Yet our formulas, proofs, and programs are much simpler and
enable its computation even on very large knots.
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1. Fun

The word “fun” rarely appears in the title of a math paper, so let us start with a brief
justification.

Θ is a pair of polynomials. The first, ∆, is old news, the Alexander polynomial
Alexander:TopologicalInvariants
[Al]. It is

a one-variable Laurent polynomial in a variable T . For example, ∆p.q � T�1 � 1 � T . We
turn such a polynomial to a list of coefficients (for ., it is p1 � 1 1q), and then to a chain
of bars of varying colours: white for the zero coefficients, and red and blue for the positive
and negative coefficients (with intensity proportional to the magnitude of the coefficients).
The result is a “bar code”, and for the trefoil . is it .

-T1 T2

T1

T2

2

-
1

T2

-
1

T1
1

T1 T2

Similiarly, θ is a 2-variable Laurent polynomial, in variables T1 and T2.
We can turn such a polynomial into a 2D array of coefficients and then
using the same rules, into a 2D array of colours, namely into a picture!
To highlight a certain conjectured hexagonal symmetry of the resulting
pictures, we apply a certain shear transformation to the plane before
printing. So the colour of a monomial cT n1

1 T n2
2 gets printed at position�

1 �1{2
0

?
3{2

�

n1

n2



instead of the more traditional

�
n1

n2



. On the right is the 2D picture

corresponding to the polynomial 2� T1 � T1T2 � T2 � T�1
1 � T�1

1 T�1
2 � T�1

2 .
Thus Θ becomes a pair of pictures: a bar code, and a 2D picture that we call a “hexagonal

QR code”. For the knots in the Rolfsen table (with the unknot prepended at the start), they
are in Figure 1.1. In addition, the hexagonal QR codes of some 15 knots with ¥ 300 crossings
are in Figure 1.2, and Θ of a 132-crossing torus knot is in Figure 3.1.

Clearly there are patterns in these figures. There is a hexagonal symmetry and the QR
codes are nearly always hexagons (these are independent properties). Much more can be seen
in Figure 1.1. In Figure 1.2 there seem to be large-scale “sand table patterns” or “diffraction
patterns”. We can’t prove any of these things, and the last one, we can’t even formulate
properly. Yet they are clearly there, too clear to be the result of chance alone.

We plan to have fun over the next few years observing and proving these patterns. We
hope that others will join us too.
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0 1 3 1 4 1 5 1 5 2 6 1 6 2 6 3 7 1 7 2

7 3 7 4 7 5 7 6 7 7 8 1 8 2 8 3 8 4 8 5

8 6 8 7 8 8 8 9 8 10 8 11 8 12 8 13 8 14 8 15

8 16 8 17 8 18 8 19 8 20 8 21 9 1 9 2 9 3 9 4

9 5 9 6 9 7 9 8 9 9 9 10 9 11 9 12 9 13 9 14

9 15 9 16 9 17 9 18 9 19 9 20 9 21 9 22 9 23 9 24

9 25 9 26 9 27 9 28 9 29 9 30 9 31 9 32 9 33 9 34

9 35 9 36 9 37 9 38 9 39 9 40 9 41 9 42 9 43 9 44

9 45 9 46 9 47 9 48 9 49 10 1 10 2 10 3 10 4 10 5

10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 15

10 16 10 17 10 18 10 19 10 20 10 21 10 22 10 23 10 24 10 25

10 26 10 27 10 28 10 29 10 30 10 31 10 32 10 33 10 34 10 35

10 36 10 37 10 38 10 39 10 40 10 41 10 42 10 43 10 44 10 45

10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55

10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65

10 66 10 67 10 68 10 69 10 70 10 71 10 72 10 73 10 74 10 75

10 76 10 77 10 78 10 79 10 80 10 81 10 82 10 83 10 84 10 85

10 86 10 87 10 88 10 89 10 90 10 91 10 92 10 93 10 94 10 95

10 96 10 97 10 98 10 99 10 100 10 101 10 102 10 103 10 104 10 105

10 106 10 107 10 108 10 109 10 110 10 111 10 112 10 113 10 114 10 115

10 116 10 117 10 118 10 119 10 120 10 121 10 122 10 123 10 124 10 125

10 126 10 127 10 128 10 129 10 130 10 131 10 132 10 133 10 134 10 135

10 136 10 137 10 138 10 139 10 140 10 141 10 142 10 143 10 144 10 145

10 146 10 147 10 148 10 149 10 150 10 151 10 152 10 153 10 154 10 155

10 156 10 157 10 158 10 159 10 160 10 161 10 162 10 163 10 164 10 165

Ñ
Θ

Figure 1.1. Θ as a bar code and a QR code, for all the knots in the Rolfsen table.fig:Rolfsen
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Figure 1.2. θ (hexagonal QR code only) of the 15 largest knots that we have com-
puted by September 16, 2024. They are all “generic” in as much as we know, and
they all have ¥ 300 crossings. The knots come from

DHOEBL:Random
[DHOEBL]. Warning: Some

screens/printers may display spurious Moiré interference patterns.fig:300
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2. Formulas
sec:Formulasssec:OldFormulas

2.1. Old Formulas1. The setup leading to the definition of Θ is the same as the setup
leading to the definition of the invariant ρ1 of

APAI
[BV1], and hence we copy a few relevant

paragraphs from
APAI
[BV1] nearly varbatim, with only a few modifications.

1

2

3

4

5

6

7

φ
4
�
�
1

DGiven an oriented n-crossing knot K, we draw it in the plane as a long
knot diagram D in such a way that the two strands intersecting at each
crossing are pointing up (that’s always possible because we can always rotate
crossings as needed), and so that at its beginning and at its end the knot
is oriented upward. We call such a diagram an upright knot diagram. An
example of an upright knot diagram is shown on the right.

We then label each edge of the diagram with two labels: a running index
k which runs from 1 to 2n� 1, and a “rotation number” φk, the geometric
rotation number of that edge (the signed number of times the tangent to the
edge is horizontal and heading right, with cups counted with �1 signs and
caps with �1; this number is well defined because at their ends, all edges
are headed up). On the right the running index runs from 1 to 7, and the
rotation numbers for all edges are 0 (and hence are omitted) except for φ4,
which is �1.

tech:nonseq Technicality 1. Some Reidemeister moves create or lose an edge and to avoid the need for
renumbering it is beneficial to also allow labelling the edges with non-consecutive labels.
Hence we allow that, and write i� for the successor of the label i along the knot, and i�� for
the successor of i� (these are i� 1 and i� 2 if the labelling is by consecutive integers). Also,
by convention “1” will always refer to the label of the first edge, and “2n � 1” will always
refer to the label of the last. 1

Let X be the set of all crossings in the diagram D, where we encode each crossing as
a triple (sign, incoming over edge, incoming under edge). In our example we have X �
tp1, 1, 4q, p1, 5, 2q, p1, 3, 6qu.

We let A be the p2n � 1q � p2n � 1q matrix of Laurent polynomials in a formal variable
T , defined by

A :� I �
¸
c

pT sEi,i� � p1� T sqEi,j� � Ej,j�q ,

where I is the identity matrix and Eαβ denotes the elementary matrix with 1 in row α and
column β and zeros elsewhere. The summation is over the crossings c � ps, i, jq of the
diagram D, and once c is chosen, s denotes its sign and i and j denote the labels below the
crossing where the label i belongs to the over-strand and j to the under-strand.

Alternatively, A � I�°c Ac, where Ac is a matrix of zeros except for the blocks as follows:

i ij

s � �1 s � �1

j

j� i� i� j�

ÝÑ
Ac column i� column j�

row i �T s T s � 1
row j 0 �1

(1) eq:A

1“Old” means that these formulas appeared already in
APAI
[BV1].
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We note (as we did in
APAI
[BV1]) that the determinant of A is equal up to a unit to the

normalized Alexander polynomial ∆ of K. In fact, we have that

∆ � T p�φpDq�wpDqq{2 detpAq, (2) eq:Delta

where φpDq :� °k φk is the total rotation number of D and where wpDq � °c sc is the
writhe of D, namely the sum of the signs sc of all the crossings c in D.

We let G � pgαβq � A�1 and, thinking of it as a function gαβ of a pair of edges α and
β, we call it the Green function of the diagram D. When inspired by physics (e.g.

IType
[BN2])

we sometimes call it “the 2-point function”, and when thinking of car traffic (e.g.
Toronto-241030
[BN3]) we

sometimes call it “the traffic function”.
We note that the computation of G is the bottleneck in the computation of Θ. It requires

inverting a p2n � 1q � p2n � 1q matrix whose entries are (degree 1) Laurent polynomials in
T . It’s a daunting task yet it takes polynomial time, it can be performed in practice even if
n is in the hundreds, and everything which then follows is easier.

2.2. New Formulas. Let T1 and T2 be indeteminates and let T3 :� T1T2. Let ∆ν :� ∆TÑTν

and Gν � pgναβq :� GTÑTν be ∆ and G subject to the substitution T Ñ Tν , where ν � 1, 2, 3
(these are easy to compute once ∆ and G have been computed).

Given crossings c � ps, i, jq, c0 � ps0, i0, j0q, and c1 � ps1, i1, j1q in X, let

F1pcq � s r1{2� g3ii � T s
2 g1iig2ji � T s

2 g3jjg2ji � pT s
2 � 1qg3iig2ji (3) eq:F1

�pT s
3 � 1qg2jig3ji � g1iig2jj � 2g3iig2jj � g1iig3jj � g2iig3jjs

� s

T s
2 � 1

rpT s
1 � 1qT s

2 pg3jjg1ji � g2jjg1ji � T s
2 g1jig2jiq

� pT s
3 � 1q pg3ji � T s

2 g1iig3ji � g2ijg3ji � pT s
2 � 2qg2jjg3jiq

� pT s
1 � 1qpT s

2 � 1qpT s
3 � 1qg1jig3jis

F2pc0, c1q � s1pT s0
1 � 1qpT s1

3 � 1qg1j1i0g3j0i1
T s1
2 � 1

pT s0
2 g2i1i0 � g2j1j0 � T s0

2 g2j1i0 � g2i1j0q (4) eq:F2

F3pφk, kq � φkpg3kk � 1{2q (5) eq:F3

thm:Main Theorem 2 (Proof in Section 4). The following is a knot invariant:

θpDq :� ∆1∆2∆3

�¸
c

F1pcq �
¸
c0,c1

F2pc0, c1q �
¸
k

F3pφk, kq
�
. (6) eq:Main

We note without detail that there is an alternative formula for θ in terms of perturbed
Gaussian integration

IType
[BN2]. In that language, and using also the traffic motifs of

APAI, Toronto-241030
[BV1, BN3],

the three summands in (6) become Feynman diagrams for processes in which cars governed
by parameter T � T1, T2, or T3 interact:

D

i 21 j

D

k

φ1
j0 i1

D

i0 j1

3

2
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In particular, the middle diagram which resembles the greek letter Θ gave the invariant
its name.

We note also that computationaly, the worst term in (6) is the middle one, and even it
takes merely � n2 operations in the ring QpT1, T2q to complete.

The polynomials F1pcq, F2pc0, c1q and F3pφ, kq are not unique, and we are not certain
that we have the cleanest possible formulas for them. They are human-ugly, yet from a
computational perspective, having 18 terms (as is the case for F1pcq) isn’t really a problem;
computers don’t care.
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3. Implementation and Examples

A concise yet reasonably efficient implementation is worth a thousand formulas. It com-
pletely removes ambiguities, it tests the theories, and it allows for experimentation. Hence
our next task is to implement. The section that follows was generated from a Mathe-
matica

Wolfram:Mathematica
[Wo] notebook which is available at

Self
[BV2, Theta.nb]. A second implemntation

of Θ, using Python and SageMath (https://www.sagemath.org/) is available at https:

//www.rolandvdv.nl/Theta/.
We start by loading the package KnotTheory‘ — it is only needed because it has many

specific knots pre-defined:

<< KnotTheory` Loading KnotTheory` version of October 29, 2024, 10:29:52.1301.

Read more at http://katlas.org/wiki/KnotTheory.

Next we quietly define the commands Rot, used to compute rotation numbers, and PolyPlot,
used to plot polynomials as bar codes and as hexagonal QR codes. Neither is a part of the
core of the computation of Θ, so neither is shown; yet we do show one usage example for
each.

(* Rot suppressed *)

Rot[Mirror@Knot[3, 1]] {{{1, 1, 4}, {1, 3, 6}, {1, 5, 2}}, {0, 0, 0, -1, 0, 0, 0}}

We urge the reader to compare the above output with the knot diagram in Section 2.1.

(* PolyPlot suppressed *)

PolyPlot2 T - 1 + T-1, -1 + T1 - 2 T2 + 4 T1
-1 T2

-1
,

ImageSize  100, Labeled  True

2 T-1
1

T

T1

-2 T2

-1

4

T1 T2

The definition of CF below is a technicality telling the computer how to best store poly-
nomials in the gναβ such as F1 and F2. The programs would run just the same without it,
albeit a bit more slowly:

CF[ℰ_] := Expand@Collect[ℰ , g__, F] /. F  Factor;

Next, we decree that T3 � T1T2 and define the three “Feynman Diagram” polynomials F1,
F2, and F3:

T3 = T1 T2;

F1[{s_, i_, j_}] := CF

s 1/ 2 - g3ii + T2
s g1ii g2ji - g1ii g2jj - T2

s
- 1 g2ji g3ii + 2 g2jj g3ii - 1 - T3

s
 g2ji g3ji -

g2ii g3jj - T2
s g2ji g3jj + g1ii g3jj +

T1
s
- 1 g1ji T2

2 s g2ji - T2
s g2jj + T2

s g3jj +

T3
s
- 1 g3ji 1 - T2

s g1ii - T1
s
- 1 T2

s
+ 1 g1ji + T2

s
- 2 g2jj + g2ij T2

s
- 1

https://www.sagemath.org/
https://www.rolandvdv.nl/Theta/
https://www.rolandvdv.nl/Theta/
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F2[{s0_, i0_, j0_}, {s1_, i1_, j1_}] :=

CFs1 T1
s0

- 1 T2
s1

- 1-1
T3

s1
- 1 g1,j1,i0 g3,j0,i1

 T2
s0 g2,i1,i0 - g2,i1,j0 - T2

s0 g2,j1,i0 - g2,j1,j0

F3[φ_, k_] = φ g3kk - φ/ 2;

Next comes the main program computing Θ. Fortunately, it matches perfectly with the
mathematical description in Section 2. In line 01 we let X be the list of crossings in an input
knot K, and φ the list of its rotation numbers, using the external program Rot which we
have already mentioned. We also let n be the length of X, namely, the number of crossings
in K. In line 02 we let the starting value of A be the identity matrix, and then in line 03, for
each crossing in X we add to A a 2� 2 block, in rows i and j and columns i� 1 and j � 1,
as explain in Equation (1). In line 04 we compute the normalized Alexander polynomial ∆
as in (2). In line 05 we let G be the inverse of A. In line 06 we declare what it means to
evaluate, ev, a formula E that may contain symbols of the form gναβ: each such symbol is
to be replaced by the entry in position α, β of G, but with T replaced with Tν . In line 07 we
start computing θ by computing the first summand in (6), which in itself, is a sum over the
crossings of the knot. In line 08 we add to θ the double sum corresponding to the second
term in (6), and in line 09, we add the third summand of (6). Finally, line 10 outputs a pair:
∆, and the re-normalized version of θ.

Θ[K_] := Θ[K] = Module{X, φ, n, A, Δ, G, ev, θ},

(* 01 *) {X, φ} = Rot[K]; n = Length[X];

(* 02 *) A = IdentityMatrix[2 n + 1];

(* 03 *) CasesX, {s_, i_, j_}  A〚{i, j}, {i + 1, j + 1}〛 += 
-Ts Ts - 1

0 -1
;

(* 04 *) Δ = T(-Total[φ]-Total[X〚All,1〛])/2 Det[A];

(* 05 *) G = Inverse[A];

(* 06 *) ev[ℰ_] := Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];

(* 07 *) θ = ev
k=1

n
F1[X〚k〛];

(* 08 *) θ += ev
k1=1

n


k2=1

n
F2[X〚k1〛, X〚k2〛];

(* 09 *) θ += ev
k=1

2 n
F3[φ〚k〛, k];

(* 10 *) Factor@{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) θ}

;

On to examples! Starting with the trefoil knot.

Expand[Θ[Knot[3, 1]]]

-1 +
1

T
+ T, -

1

T1
2
- T1

2
-

1

T2
2
-

1

T1
2 T2

2
+

1

T1 T2
2
+

1

T1
2 T2

+
T1

T2
+
T2

T1
+ T1

2 T2 - T2
2
+ T1 T2

2
- T1

2 T2
2

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PolyPlot[Θ[Knot[3, 1]], ImageSize  Tiny]

Next are the Conway knot 11n34 and the Kinoshita-Terasaka
knot 11n42. The two are mutants and famously hard to separate:
they both have ∆ � 1 (as evidenced by their one-bar bar codes
below), and they have the same HOMFLY-PT polynomial and
Khovanov homology. Yet their θ invariants are different. Note
that the genus of the Conway knot is 3, while the genus of the Kinoshita-Terasaka knot is 2.
This agrees with the apparent higher complexity of the QR code of the Conway polynomial,
and with the observations in Section 5.

PolyPlot[Θ[Knot[#]], ImageSize  120] & /@

{"K11n34", "K11n42"}

 , 

Torus knots have particularly nice-looking Θ invariants. Here are the torus knots T13{2,
T17{3, T13{5, and T7{6:

GraphicsRow[ImageCompose[

PolyPlot[Θ[TorusKnot @@ #], ImageSize  480],

TubePlot[TorusKnot @@ # , ImageSize  240],

{Right, Bottom}, {Right, Bottom}

] & /@ {{13, 2}, {17, 3}, {13, 5}, {7, 6}}]

The next line shows the computation time in seconds for the 132-crossing torus knot T22{7

on a 2024 laptop, without actually showing the output. The output plot is in Figure 3.1.

AbsoluteTiming[Θ[TorusKnot[22, 7]];] {1020.73, Null}
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ImageCompose[PolyPlot[Θ[TorusKnot[22, 7]], ImageSize  720],

TubePlot[TorusKnot[22, 7], ImageSize  360], {Right, Bottom}, {Right, Bottom}]

Figure 3.1. The 132-crossing torus knot T22{7 and a plot of its Θ invariantfig:T227
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4. Proof of Invariance
sec:Proof

Our proof of the invariance of θ (Theorem 2) is very similar, and uses many of the same
pieces, as the proof of the invariance of ρ1 in

APAI
[BV1]. Thus instead of repeating everything

we just summarize those steps that are identical and then provide the needed details for the
steps that differ.

Like in
APAI
[BV1, Lemma 3], the equalities AG � I and GA � I imply that for any crossing

c � ps, i, jq in a knot diagram D, the Green function G � pgαβq of D satisfies the following
“g-rules”, with δ denoting the Kronecker delta:

giβ � δiβ � T sgi�,β � p1� T sqgj�,β, gjβ � δjβ � gj�,β, g2n�1,β � δ2n�1,β, (7) eq:CarRules

gα,i� � T sgαi � δα,i� , gα,j� � gαj � p1� T sqgαi � δα,j� , gα,1 � δα,1. (8) eq:CounterRules

Furthermore, the systems of equations (7) is equivalent to AG � I and so it fully determines
gαβ, and likewise for the system (8), which is equivalent to AG � I.
Of course, the same g-rules also hold for Gν � pgναβq for ν � 1, 2, 3, except with T replaced

with Tν .
We also need a variant ḡab of gαβ, defined whenever a and b are two distinct points on the

edges of a knot diagram D, away from the crossings. If α is the edge on which a lies and β
is the edge on which b lies, ḡab is defined as follows:

ḡab �

$'&
'%
gαβ if α � β,

gαβ if α � β and a   b relative to the orientation of the edge α � β,

gαβ � 1 if α � β and a ¡ b relative to the orientation of the edge α � β.

(9) eq:barg

Of course, we can define ḡνab from gαβ in an identical way.
It is clear that g and ḡ contain the same information and are easily computable from each

other. The variant ḡ is, strictly speaking, not a matrix and so g is a bit more suitable for
computations. Yet ḡ is a bit better behaved when we try to track, as below, the behaviour
of g / ḡ under Reidemeister moves. Reidemeister moves sometimes merge two edges into
one or break an edge into two. In such cases the points a and b can be “pulled” along with
the move so as to retain their ordering along the overall parametrization of the knot, yet
mere edge labels lose this information. The following discussion and lemma exemplify the
advantage of ḡ of g:

j kDiscussion 3. We introduce “null vertices” as on the right into knot dia-
grams, whose only function (as we shall see) is to cut edges into parts that
may carry different labels. The matrix A becomes a bit larger (by as many null vertices
as were added to a knot diagram). The rule (1) for the creation of the matrix A gets an
amendment for null vertices,

j k ÝÑ Anv column k
row j �1 ,

and the summation for A, A � I�°c Ac�
°

nv Anv is extended to include summands for the
null vertices. The matrix G � A�1 and the function gαβ are defined as before. The g-rules
of (7) and (8) get additions,
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R1

R2

R3

a

b

D
ḡab

Figure 4.1. The modified Green function ḡab is invariant under Reidemeister moves
performed away from where it is measured.fig:RelativeInvariance

gjβ � δjβ � gkβ, (10) eq:NullCarRulesand gαk � δαk � gαj, (11) eq:NullCounterRules

and it remains true that the system of equations (7)Y(10) (as well as (8)Y(11)) fully deter-
mines gαβ. The variant ḡab is also defined as before, except now a and b also need to also be
away from the null vertices.

lem:NullVertices Lemma 4. Inserting a null vertex does not change ḡab, provided it is inserted away from a
and b. (This statement does not make sense for gαβ, as inserting a null vertex changes the
dimensions of the matrix G � pgαβq).
Proof. Let D be an upright knot diagram having an edge labeled i and let D1 be obtained
from it by adding a null vertex within edge i, naming the two resulting half-edges j and k
(in order). Let gαβ be the Green function for D, and similarly, g1αβ for D1. We claim that

g1αβ �
β � j β � k β R tj, ku

α � j gii gii giβ
α � k gii � 1 gii giβ

α R tj, ku gαi gαi gαβ

.

Indeed, all we have to do is to verify that the above-defined g1αβ satisfies all the g-rules
(7)Y(10), and that is easy. The lemma now follows easily from the definition of ḡ1 in Equa-
tion (9). l

The following theorem, was not named in
APAI
[BV1], yet it was stated there as the first part

of the first proof of
APAI
[BV1, Theorem 1].

thm:RelativeInvariant Theorem 5. The variant Green function ḡab is a “relative invariant”, meaning that once
points a and b are fixed within a knot diagram D, the value of ḡab does not change if Rei-
demeister moves are performed away from the points a and b. An illustration appears in
Figure 4.1. It follows that the same is also true for ḡνab for ν � 1, 2, 3.

We note that ḡab is nearly the same as gαβ, if a is on α and b is on β. So Theorem 5
also says that gαβ is invariant under Reidemeister moves away from α and β, except for
edge-renumbering issues and �1 contributions that arise if α and β correspond to edge that
get merged or broken by the Reidemeister moves.

The proof of Theorem 5 is perhaps best understood in terms of the traffic function of
APAI, Oaxaca-2210, Toronto-241030
[BV1,

BN1, BN3]: One simply needs to verify that for each of the Reidemeister moves, traffic
entering the tangle diagram for the left hand side of the move exits it in the same manner
as traffic entering the tangle diagram for the right hand side of the move, and each of
these verifications, as explained in

APAI, Oaxaca-2210, Toronto-241030
[BV1, BN1, BN3], is very easy. Yet that proof is a bit

informal, so we opt here to give a fully formal proof along the lines of the first halves of
APAI
[BV1,

Propositions 7-9].
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Proof of Theorem 5. We need to know how the Green function gαβ changes under Reide-
meister moves, and we start with R3. Below are the two sides of the move, along with the
g-rules of type (7) corresponding to the crossings within, written with the assumption that
β isn’t in ti�, j�, k�u, so several of the Kronecker deltas can be ignored. We use g for the
Green function at the left-hand side of R3, and g1 for the right-hand side, and recall that
along with the further g/g1-rules corresponding to all the non-moving knot crossings, these
rules fully determinme gαβ and g1αβ for β R ti�, j�, k�u:

� � � � � � � � � � � �

further
g-rules

further
crossings

further
g1-rules

further
crossings

gi,β � δiβ�Tgi�,β�p1�T qgk��,β
gk�,β � gk��,β

gi�,β � Tgi��,β�p1�T qgj��,β
gj�,β � gj��,β

gj,β � δjβ�Tgj�,β�p1�T qgk�,β
gk,β � δkβ�gk�,β

g1i�,β � Tg1i��,β�p1�T qg1k�,β
g1k,β � δkβ�g1k�,β

g1j�,β � Tg1j��,β�p1�T qg1k��,β
g1k�,β � g1k��,β

g1i,β � δiβ�Tg1i�,β�p1�T qg1j�,β
g1j,β � δjβ�g1j�,β

k�� j�� i��

i j k

i�

j�

k�

k�� j�� i��

i j k

i�
j�

k�

A routine computation (eliminating gi�,β, gj�,β, and gk�,β) shows that the first system of
6 equations is equivalent to the following system of 6 equations:

gi,β � δiβ � T 2gi��,β � T p1� T qgj��,β � p1� T qgk��,β,
gj,β � δjβ � Tgj��,β � p1� T qgk��,β, gk,β � δkβ � gk��,β,

(12) eq:R3LeftOuter

gi�,β � Tgi��,β � p1� T qgj��,β, gj�,β � gj��,β, gk�,β � gk��,β. (13) eq:R3LeftInner

In this system the indices i�, j� and k� do not appear in (12) or in the further g-rules
corresponding to the further crossings. Hence for the purpose of determining gαβ with
α, β R ti�, j�, k�u, Equations (13) can be ignored.

Similarly eliminating g1i�,β, g
1
j�,β, and g1k�,β from the second set of equations, we find that

it is equivalent to

g1i,β � δiβ � T 2g1i��,β � T p1� T qg1j��,β � p1� T qg1k��,β,
g1j,β � δjβ � Tg1j��,β � p1� T qg1k��,β, g1k,β � δkβ � g1k��,β,

(14) eq:R3RightOuter

g1i�,β � Tg1i��,β�p1�T qg1k��,β, g1j�,β � Tg1j��,β�p1�T qg1k��,β, g1k�,β � g1k��,β. (15) eq:R3RightInner

Using the same logic as before, for the purpose of determining g1αβ with α, β R ti�, j�, k�u,
Equations (15) can be ignored.

But now we compare the unignored equations, (12) and (14) and find that they are exactly
the same, except with g Ø g1, and the same is true for the further g/g1-rules coming from
the further crossings. Hence so long as α, β R ti�, j�, k�u, we have that gαβ � g1αβ. In the
case of the R3 move no edges merge or break up, and hence this implies that ḡab � ḡ1ab so
long as a and b are away from the move.
Next we deal with the case of cyclic R2 moves – R2 moves in which the two strands

involved have opposing orientations. We use the privileges afforded to us by Lemma 4 to
insert 4 null vertices into the right-hand-side of the R2c moves, and like in the case of R3,
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R2cR1rR1l R2b

R3 Sw�

Figure 4.2. The upright Reidemeister moves: Reidemeister 1 left and right, Reide-
meister 2 braid-like and cyclic, Reidemeister 3, and (the �) Swirl.fig:UprightRMoves

we start with pictures annotated with the relevant type (7) and (10) g-rules, written with
the assumption that β R ti�, j�u:

� � �

further
crossings

� � �

further
g1-rules

j

i��

i

i�

gi�,β � Tgi��,β � p1� T qgj�,β
gj,β � δj,β � gj�,β

gi,β � δi,β � T�1gi�,β � p1� T�1qgj��,β
gj�,β � gj��,β

j�

� � � � � �

further
g-rules

further
crossings

i

j

j�� j��

i��

j�i�

g1i,β � δi,β � g1i�,β
g1j�,β � g1j��,β

g1i�,β � g1i��,β
g1j,β � δj,β � g1j�,β

As in the case of R3, we eliminate gi�,β and gj�,β from the equations for the left hand side,
and find that for the purpose of determining gαβ with β R ti�, j�u, they are equivalent to
the equations

gi,β � δi,β � gi��,β and gj,β � δj,β � gj��,β.

Likewise, the right hand side is clearly equivalent to

g1i,β � δi,β � g1i��,β and g1j,β � δj,β � g1j��,β,

and as in the case of R3, this establishes the invariance of ḡab under R2c moves.
MORE.
We can now move on to the main part of the proof of Theorem 2. As follows from

APAI
[BV1,

Theorem 2], we need to prove the invariance of θ under the “upright Reidemeister” moves
of Figure 4.2. We start with the hardest, R3:

prop:R3 Proposition 6. The quantity θ is invariant under R3.

Proof. Let Dl and Dr be two knot diagrams that differ only by an R3 move, and label their
relevant edges and crossings as in Figure 4.3. Let glναβ and grναβ be their corresponding Green

functions. Let F l
1pcq, F l

2pc0, c1q and F l
3pφ, kq be defined from glναβ as in (3)–(5), and similarly

make F r
1 , F

r
2 and F r

3 using grναβ.
By the invariance of the Alexander polynomial, the pre-factor ∆1∆2∆3 is the same for

θpDlq and for θpDrq (see Equation (6)). By Theorem 5, glναβ � grναβ so long as α, β R
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Dl Dr

m n

s

m n

s

cl1

cl2

cl3

cy

i j k

k�� j�� i��

i j k

k�� j�� i��

cy

cr3

cr1

j�
i�

k�
cr2

j� i�

k�

Figure 4.3. The two sides Dl and Dr of the R3 move. The left side Dl consists of 3
distinuighed crossings cl1 � p1, j, kq, cl2 � p1, i, k�q, cl3 � p1, i�, j�q and a collection of
further crossings cy � ps,m, nq P Y , where Y is the set of crossings not participating
in the R3 move. The right side Dr consists of cr1 � p1, i, jq, cr2 � p1, i�, kq, cr3 �
p1, j�, k�q and the same set Y of further crossings cy.fig:R3

ti�, j�, k�u. And so the only terms that may differ in θpDhq between h � l and h � r are
the terms

Ah �
¸

cPtch1,2,3u

F h
1 pcq �

¸
c0,c1Ptch1,2,3u

F h
2 pc0, c1q, Bh �

¸
c0Ptch1,2,3u, cyPY

F h
2 pc0, cyq, and Ch �

¸
c1Ptch1,2,3u, cyPY

F h
2 pcy, c1q. (16) eq:ABC

We claim that Al � Ar, Bl � Br, and C l � Cr.
To show that Al � Ar, we need to compare polynomials in glναβ with polynomials in grναβ in

which α and β may belong to the set ti�, j�, k�u on which it may be that gl � gr. Fortunately
the g-rules of Equations (7) and (8) allow us to rewrite the offending g’s, namely the ones with
subscripts in ti�, j�, k�u, in terms of other g’s whose subscripts are in ti, j, k, i��, j��, k��u,
where gl � gr. So it is enough to show that

Al {. (the g-rules for cl1, c
l
2, c

l
3) � Ar {. (the g-rules for cr1, c

r
2, c

r
3) under gl � gr, (17) eq:R3A

where the symbol {. means “apply the rules”. This is a finite computation that can in-
principle be carried out by hand. But each Ah is a sum of 3�9 � 12 polynomials in the gh’s,
these polynomials are rather unpleasant (see (3) and (4)), and applying the relevant g-rules
adds a bit further to the complexity. Luckily, we can delegate this pages-long calculation to
an entity that doesn’t complain.

First, we implement the Kronecker δ-function, the g-rules for a crossing ps, i, jq, and the
g-rules for a list of crossings X:

δi_,j_ := If[i === j, 1, 0];

gRules[{s_, i_, j_}] := 

gν_jβ_  gν j+β + δjβ, gν_iβ_  Tν
s gνi+β + 1 - Tν

s
 gν j+β + δiβ,

gν_α_i+  Tν
s gναi + δαi+, gν_α_j+  gνα j + 1 - Tν

s
 gναi + δα j+

;

gRules[X___List] := Union @@ Table[gRules[c], {c, {X}}]

We then let Xl be the three crossings in the left-hand-side of the R3 move, as in Figure 4.3,
we let Al be the Al term of (16), and we let lhs be the result of applying the g-rules for the
crossings in Xl to Al. We print only a “Short” version of lhs because the full thing would
cover about 2.5 pages:



20 DROR BAR-NATAN AND ROLAND VAN DER VEEN

Xl = {{1, j, k}, {1, i, k+}, {1, i+, j+}};

Al = Sum[F1[c], {c, Xl}] + Sum[F2[c0, c1], {c0, Xl}, {c1, Xl}];

lhs = Simplify[Al //. gRules @@ Xl];

Short[lhs, 5]

-
1

2 (1 - T2)
3 - 3 T2 +129 +

2 (1 - T2) 1 + T2 (T2 g2,1+,i - (-1 + T2) g2,1,i) - (-1 + T2) g2,k++,i

1 + (1 - T1 T2) g3,k++,j + g3,k++,k

We do the same for Ar, except this time, without printing at all:

Xr = {{1, i, j}, {1, i+, k}, {1, j+, k+}};

Ar = Sum[F1[c], {c, Xr}] + Sum[F2[c0, c1], {c0, Xr}, {c1, Xr}];

rhs = Simplify[Ar //. gRules @@ Xr];

We then compare lhs with rhs. The output, True, tells us that we have proven (17):

Simplify[lhs  rhs] True

We show that Bl � Br by following exactly the same procedure. Note that we ignore the
summation over cy and instead treat it as a fixed crossing cy � ps,m, nq. If an equality is
proven for every fixed cy, it is of course also proven for the sum over cy P Y .

lhs = Sum[F2[c0, {s, m, n}], {c0, Xl}] //. gRules @@ Xl;

rhs = Sum[F2[c0, {s, m, n}], {c0, Xr}] //. gRules @@ Xr;

Simplify[lhs  rhs]

True

Similarly we prove that C l � Cr, and this concludes the proof of Proposition 6.

lhs = Sum[F2[{s, m, n}, c1], {c1, Xl}] //. gRules @@ Xl;

rhs = Sum[F2[{s, m, n}, c1], {c1, Xr}] //. gRules @@ Xr;

Simplify[lhs  rhs]

True

l

rem:E Remark 7. The computations above were carried out for generic gναβ and for a generic
cy � ps,m, nq; namely, without specifying the knot diagrams in full, and hence without
assigning specific values to gναβ, and without specifying m and n. Under these conditions
the three parts of (16) cannot mix (namely, terms from, say, Ah cannot cancel terms in Bh

or Ch), and so it would have been enough to show that El � Er, where Eh combines Ah and
Bh and Ch (and a few harmless further terms) by adding cy to the summation corresponding
to Ah:

Eh �
¸

cPtch1,2,3,yu

F h
1 pcq �

¸
c0,c1Ptch1,2,3,yu

F h
2 pc0, c1q.

But that’s a simpler computation:

ESum[X_] := (Sum[F1[c], {c, X}] + Sum[F2[c0, c1], {c0, X}, {c1, X}]) //. gRules @@ X;

Xl = {{1, j, k}, {1, i, k+}, {1, i+, j+}};

Xr = {{1, i, j}, {1, i+, k}, {1, j+, k+}};

Simplify[ESum[Append[Xl, {s, m, n}]]  ESum[Append[Xr, {s, m, n}]]]

True
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prop:R2c Proposition 8. The quantity θ is invariant under R2c�.

Proof. We follow the same logic as in the proof of Proposition 6, as simplified by Remark 7.
We start with the figure that replaces Figure 4.3:

j

i��

i

i�j�

j��

i

j

j��

i��

j�i�

Dl Dr

m n

s

m n

s
cy cy

To compute “E” sums as in Remark 7 we first have to extend the ESum routine to accept
also a list R of pairs pφ, kq of the form (rotation number, edge label):

ESum[X_, R_] :=

(Sum[F1[c], {c, X}] + Sum[F2[c0, c1], {c0, X}, {c1, X}] + Sum[F3 @@ r, {r, R}]) //.

gRules @@ X;

We then compute El by calling ESum with crossings p�1, i, j�q, p1, i�, jq as in the left hand
side of the R2c� moves, a generic extra crossing ps,m, nq, and a rotation number of 1 on
edge j�:

El = Simplify[ESum[{{-1, i, j+}, {1, i+, j}, {s, m, n}}, {{1, j+}}]];

Short[lhs, 5]

-
1

2 (-1 + T2
s)

1 + s + 2 s (T1 T2)
s g3,m+,m +11 + 2 g3,j++,j -

T2
s
1 + s - 2 s g1,n+,m g2,n+,m + 2 s g2,n+,n +28 + 2 s g2,m+,m (1 + g3,n+,n) + 2 g3,j++,j

The computation of Er is simpler, as it only involves the generic ps,m, nq and the rotation
p1, j�q. We apply the g-rules of Equation (10) “by hand” on gναβ (only if α P ti, i�, j, j�u)
and then compare El with Er to conclude the proof:

Er = Simplify[ESum[{{s, m, n}}, {{1, j}}] //.

gν_,α_,β_ /; MemberQ[{i, i+, j, j+}, α]  δα,β + gν,α+,β];

Simplify[El  Er]

True

l
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5. Strong and Meaningful
sec:SandM

6. Conjectures and Dreams
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