
COMPUTING FINITE TYPE INVARIANTS EFFICIENTLY

Abstract. We describe an efficient algorithm to compute finite type invariants of type k
by first creating, for a given knot K with n crossings, a look-up table for all subdiagrams of
K of size ⌈ k

2 ⌉ indexed by dyadic intervals in [0, 2n − 1]. Using this algorithm, any such finite
type invariant can be computed on an n-crossing knot in time ∼ n⌈ k

2 ⌉, a lot faster than the
previously best published bound of ∼ nk.

1. Introduction

Finite type invariants, also known as Vassiliev invariants [Vas90, Vas92], underlie many of
the classical knot invariants, for instance they include the coefficients of the Jones, Alexander,
and more generally HOMFLY-PT polynomials [BL93, BN95]. A knot invariant ζ is said to
be of finite type k (equivalently of degree k) if it vanishes on all knots with at least k + 1
double points, where ζ is extended to knots with double points by the formula:

ζ() = ζ(!)− ζ(").

For example, the linking number of a two-component knot is a finite type invariant of type
1. In our main theorem, we provide an algorithm to compute finite type invariants from a
planar projection of a knot in a surprisingly efficient time depending on the crossing number
of the knot diagram.
Main Theorem. Finite type invariants of type k can be computed on an n-crossing knot in
time at most ∼ n⌈k/2⌉. (See a space-aware version in Section 4).

This is a surprising result as before this theorem, the fastest algorithm (known to the
authors) to compute a type k invariant on a knot diagram with n crossings took time ∼ nk

[BNBNHS23], and it was commonly believed that this was the fastest possible. There are
specific finite type invariants which can be computed much faster, such as the linking number
and the coefficients of the Alexander polynomial, but these are special cases. The Man
Theorem gives the current fastest known algorithm that works for all finite type invariants,
and shows that the computational time can be reduced to roughly the square root of the
previously fastest known algorithm. In a previous paper [BNBNHS23], we proved that finite
type invariants can be computed efficiently using 3D methods. We argued that most knot
invariants, including finite type invariants, should be more efficiently computed using 3D
methods rather than 2D methods. However, the Main Theorem is significant as it is a 2D
method that currently outperforms all known 3D methods to compute finite type invariants.

For complexity measurements in this paper, we measure only polynomial degree (i.e. we
ignore constants and log(n) terms). We write f(n) ∼ g(n) to mean there exist natural
numbers c, k,N so that for all n > N , we have that

1
c
g(n)(log(n))−k < f(n) < cg(n)(log(n))k.

For example, for us, n4 ∼ 5.4 n4(log(n))8.

Key words and phrases. Finite type invariants, Gauss diagrams.
1

2 COMPUTING FINITE TYPE INVARIANTS EFFICIENTLY

For impatient readers, the key formula in this paper is Equation (3). The preceding pages
include the definitions leading up to the formula, and the proof that the formula can be
evaluated in time ∼ n⌈k/2⌉.
Acknowledgements. The first author was supported by NSERC-RGPIN-2018-04350 and by
the Chu Family Foundation (NYC). The third author was supported by the Natural Science
Foundation Grant No. DMS-2302664. This material is also based upon work supported by
the National Science Foundation under Grant No. DMS-1929284 while the fourth author was
in residence at the Institute for Computational and Experimental Research in Mathematics
in Providence, RI, during the Braids program. This project is partially sponsored by the
Provost Office of Elon University. We would like to thank ICERM for hosting the first and
third authors for a week long visit. Finally we thank A. Referee for their extremely valuable
comments.

2. Background

2.1. Gauss diagrams. A Gauss diagram of an n-crossing long knot diagram parametrized
by the interval I = (−1, 2n) ⊆ R is given by the interval I along with n decorated arrows
(equivalently, oriented perfect matchings of 2n points, where the arrows are the edges of the
matching). Each arrow corresponds to one of the n crossings of the knot and has endpoints
in I ∩ Z. The head of an arrow is at the point in I which parametrizes the lower strand of
the crossing and the tail of the arrow is at the point which parametrizes the upper strand
of the crossing (we assume that these points are in Z). Each arrow is decorated with a
sign corresponding to the sign of the crossing. We say that such a diagram is numbered by
[0, 2n)Z := [0, 2n) ∩ Z. Figure 1 (A) shows an example of a Gauss diagram. For a Gauss
diagram D, the quantity |D| is the number of arrows in D. Let GD = ⟨Gauss diagrams⟩
denote the Z-module of Z-linear combinations of Gauss diagrams, and let GDk denote the
subspace spanned by Gauss diagrams with k or fewer arrows.

Let D be a Gauss diagram with n arrows numbered by [0, 2n)Z. A k-arrow subdiagram of
D is a diagram consisting of I and a subset of k decorated arrows from D. A subdiagram
corresponds to a choice of k crossings in the knot diagram represented by the Gauss diagram
D. An example is shown in Figure 1(B). Notice that a subdiagram D′ of D keeps the original
numbering along the interval I and the 2k endpoints of D′ will be spread out amongst the
2n points in I. A k-arrow subdiagram of D is not a proper Gauss diagram because of this
numbering issue. To make a k-arrow subdiagram D′ into a Gauss diagram, we can apply
the forgetful map ψ to D′ which renumbers [0, 2n)Z monotonically to [0, 2k)Z, in essence
forgetting how D′ was realized as a subdiagram of D. We will call ψ(D′) a renumbered
subdiagram of D. An example is shown in Figure 1(C).

Given two disjoint subdiagrams E and F of a Gauss diagram D, with e = |E| and f = |F |,
we say that the pattern P = πD(E,F) of E and F within D is the 2e-element subset of
[0, 2(e+ f))Z numbering the ends of the images of the arrows of E within ψ(E ∪ F) (and so
the complementary subset [0, 2(e + f))Z \ P numbers the arrow ends of F). In the special
case where D = E ∪ F , we simply write P = π(E,F).

Conversely, if E and F are Gauss diagrams with e = |E| and f = |F | and P is an
appropriately-sized pattern (namely, P ⊂ [0, 2(e+ f))Z and |P | = 2e), then there is a unique
Gauss diagram D with |D| = e + f containing E and F as disjoint subdiagrams such that
πD(E,F) = P . We denote D = E#PF and say that D is the superimposition of E and F
with pattern P . We extend #P to a bilinear map #P : GDe×GDf → GDe+f . Two examples
are shown in Figure 2.

COMPUTING FINITE TYPE INVARIANTS EFFICIENTLY 3

-1 0

1
2

3

4
5

6

7
8 9 10

0 1 2 3 4 5 6 7 8 9

2 4 7 9

-

-

-
-

+

- +

←→

←→

(A)

(B)

(C)

−→ ψ

0 1 2 3

- +

Figure 1. (A) An example of the Gauss diagram of a long knot diagram. (B)
A 2-arrow subdiagram of a Gauss diagram. (C) The forgetful map ψ applied
to a subdiagram yielding a renumbered subdiagram.

0 1 0 1 2 3

P2 = {2, 3}

#P2 =
0 1 2 3 4 5

0 1 0 1 2 3

P1 = {0, 4}

#P1 =
0 1 2 3 4 5

Figure 2. Two examples of superimposing the same diagrams along different
patterns.

We denote by φk : {knot diagrams} → GDk the map which sends a knot diagram to the
sum of all of the renumbered subdiagrams of its Gauss diagram which have exactly k arrows.
Note that φk = ψ ◦ φ̄k where φ̄k sends a knot diagram to the sum of all of the subdiagrams
of its Gauss diagram which have exactly k arrows, and ψ renumbers each summand to make
it a Gauss diagram. Let φ≤k :=

∑k
i=1 φi be the map that sends a knot diagram to the sum of

all of the renumbered subdiagrams of its Gauss diagram which have at most k arrows. The

4 COMPUTING FINITE TYPE INVARIANTS EFFICIENTLY

maps φk and φ≤k are not invariants of knots but every finite type invariant factors through
φ≤k, as follows from the next theorem.

Theorem 2.1 (Goussarov-Polyak-Viro [GPV00], see also [Rou07]). A Q-valued knot invari-
ant ζ is of type k if and only if there is a linear functional ω on Q⊗GDk such that ζ = ω◦φ≤k.

We show that φ≤k can be computed in time ∼ n⌈k/2⌉. This result, combined with the above
theorem, proves that all finite type invariants can be computed in time ∼ n⌈k/2⌉, which is
the main result of this paper.

It is surprising that φ≤k can be computed in time ∼ n⌈k/2⌉ because, at first glance, it
would seem that one must require time ∼ nk. A Gauss diagram with n arrows has

∑k
i=1

(n
i

)
subdiagrams with k or fewer arrows. Because

(n
i

)
∼ ni, a Gauss diagram with n arrows has∑k

i=1
(n

i

)
∼
∑k

i=1 n
i ∼ nk subdiagrams with k or fewer arrows. So φ̄≤k evaluated on a knot

diagram with n crossings will be a sum of ∼ nk subdiagrams. Note that the outputs of φ̄k

and φk have the same number of summands, but φk will have repeated terms and φ̄k will not.
So where do the computational savings come from? The idea is to break the computation
of φ≤k into two parts, one of which can be quickly pre-computed in a look-up table. The
creation of this look-up table uses counting techniques taking advantage of dyadic intervals.
These techniques are completely self-contained, and unrelated to finite type invariants and
knot theory. In the next section, we describe these techniques that we will apply to prove
that that φ≤k can be computed in time ∼ n⌈k/2⌉.

3. Computational Preliminaries: Counting Techniques using Dyadic intervals

3.1. Counting with a look-up table. For the purpose of this paper, a look-up table is a
lexicographically-ordered list of (key 7→ value) entries, or more formally a lexicographically-
ordered associative array. Below, Theorem 3.1 shows how to use a look-up table to count
elements of a set inside n̄ℓ, where n̄ := [1, n]Z. While we will need a generalized version of
this theorem, the proof of Theorem 3.1 showcases nicely how dyadic intervals are used to get
computational savings.

Theorem 3.1. Let Q be an enumerated subset of n̄ℓ with |Q| = q = nf , where 0 ≤ f ≤ ℓ
(typically 0 < f < ℓ and so Q is “big” yet “much smaller” than n̄ℓ). In time ∼ q, a look-
up table of size ∼ q can be created so that computing |Q ∩ R| will take time ∼ 1 for any
rectangular box R ⊂ n̄ℓ.

The straightforward approach to this theorem would be to create a look-up table with key-
value pairs of the form (R 7→ |Q∩R|) for all possible rectangular boxes R. A rectangular box
in n̄ℓ is determined by choosing two interval endpoints in each coordinate of n̄ℓ, so there are
∼ n2ℓ possible rectangular boxes in n̄ℓ. This look-up table would take much longer than ∼ q
to create. The trick is to create a restricted look-up table using only rectangular boxes which
intersect Q non-trivially and whose sides are dyadic intervals. The structure is reminiscent
of the data structures quadtrees / octrees which are used in computer graphics.

To prove Theorem 3.1, let us first start with some preliminaries on dyadic intervals.

3.2. Dyadic intervals. For the purpose of this paper, a dyadic interval is a half-closed
interval of the form [2pq, 2p(q + 1))Z for p, q ∈ Z≥0. A dyadic interval can be expressed via a
binary expansion up to a certain accuracy, i.e. a fixed sequence of 0’s and 1’s followed by a
fixed number of ∗’s or ‘free’ entries, and the integers contained in the interval are all possible
completions of the expansions, i.e. all possible ways of replacing the ∗’s with 0’s and 1’s. For

COMPUTING FINITE TYPE INVARIANTS EFFICIENTLY 5

example [222, 223)Z = {8, 9, 10, 11} = {10002, 10012, 10102, 10112}, expressed in decimal and
binary expansion respectively. Using the binary expansion, every number in the interval is of
the form 10∗∗where the least significant two bits are free and the most significant two bits
are fixed to be 10. We write u for a dyadic interval where u is a binary sequence followed by
some number of ∗’s.

A dyadic interval u is maximal in (b, c)Z if u ⊂ (b, c)Z and any larger dyadic interval
containing u is not contained in (b, c)Z. Notice if two dyadic intervals overlap, then one is
contained in the other. Therefore, the maximal dyadic intervals of (b, c)Z are disjoint. Every
interval decomposes uniquely as a disjoint union of maximal dyadic intervals, as described in
the following elementary Lemma.

Lemma 3.2. For any interval (b, c)Z ⊂ Z≥0, there are at most 2 log2(c− b) maximal dyadic
intervals contained in (b, c)Z, and (b, c)Z is a disjoint union of its maximal dyadic intervals.

For a binary number, a truncation process can be used to compute dyadic intervals con-
taining that binary number.

Truncation process: Given a binary number x with m bits of accuracy, starting from right
to left, replacing one bit at a time with a ∗ generates a list of m dyadic intervals which contain
x. For example, let x = 7 = 001112 where m = 5, then the truncation process generates
the list of dyadic intervals {00111, 0011∗, 001∗∗, 00∗∗∗, 0∗∗∗∗}. If a number x (in decimal
notation) is at most ℓ, then the number of bits needed to describe x in binary is at most
log2(ℓ), and so x is contained in at most log2(ℓ) dyadic intervals coming from the truncation
process with log2(ℓ) bits of accuracy.

3.3. Proof and generalization of Theorem 3.1. We proceed with the proof of Theo-
rem 3.1, as well as its generalization, Proposition 3.3, which we will use in the proof of the
main theorem.

Proof of Theorem 3.1. A dyadic rectangular box in n̄ℓ is a product of ℓ dyadic intervals of
n̄. We describe a process to create a restricted look-up table of key-value pairs of the form
(Rd 7→ |Q ∩Rd|) for only Rd that are dyadic rectangle in n̄ℓ and such that |Q ∩Rd| > 0.

To create the table, run through the enumerated elements x ∈ Q. For each x, from
the truncation process described in Section 3.2, x is contained in at most (log2(n))ℓ dyadic
rectangular boxes Rd in n̄ℓ. In the table, increment the value for Rd by 1 for each such Rd

containing x, or create such an entry if it didn’t already exist. Since there are q elements in
Q, creating this table takes time ∼ q(log2(n))ℓ ∼ q, and there are ∼ q elements in the table.
Using standard binary sorting techniques, accessing and modifying values in the table takes
time ∼ log2 q ∼ 1.

A general non-dyadic rectangular box R in n̄ℓ is the disjoint union of at most (2 log2(n))ℓ ∼
1 maximal dyadic rectangular boxes, by Lemma 3.2. To count |Q ∩ R|, one retrieves the
values in the look-up table with key each maximal dyadic rectangular box in R, and then
sums together all those stored values to get |Q ∩ R|. Since retrieval takes time ∼ 1 and the
sum is over ∼ 1 elements, after the look-up table is completed, it takes time ∼ 1 to compute
|Q ∩R|.

□
Viewing |Q∩R| as the sum

∑
x∈Q∩R

1, Theorem 3.1 can be generalized, using almost exactly

the same proof, to compute weighted sums
∑

x∈Q∩R

θx where the weights θx are valued in some

6 COMPUTING FINITE TYPE INVARIANTS EFFICIENTLY

Z-module. This generalization is stated below. It is the version of Theorem 3.1 that will be
used to prove the main result in Section 4.

Proposition 3.3. Let Q be an enumerated subset of n̄ℓ with |Q| = q = nf , where 0 ≤ f ≤ ℓ.
Let M be a free Z-module of rank ∼ 1, and let θ : n̄ℓ → M be a map that is zero outside of
Q. Then, in time ∼ q, a look-up table of size ∼ q can be created so that computing

∑
R θ will

take time ∼ 1 for any rectangular box R ⊂ n̄ℓ. 1

4. Main Result

In this section, we state and prove the main theorem of this article. The strategy to quickly
compute φk on a diagram D is to view a k-arrow subdiagram of D as the superimposition of
two smaller subdiagrams E and F . The subdiagram E is placed inside D first, and instead of
placing F , a look-up table is created to count in how many ways F could have been placed.
Using Proposition 3.3, this look-up table can be computed and accessed very quickly, which
ultimately gives the computational savings for the final result.

Main Theorem. Finite type invariants of type k can be computed on an n-crossing knot in
time at most ∼ n⌈k/2⌉.

Proof. By Theorem 2.1, it suffices to show that φ≤k can be computed in time ∼ n⌈k/2⌉. Since
φ≤k =

∑k
i=1 φi, it suffices to prove that φk can be computed in time ∼ n⌈k/2⌉. This shows

that φ≤k can be computed in time ∼ k · n⌈k/2⌉ ∼ n⌈k/2⌉.
For a knot K with n crossings, let K be represented as a Gauss diagram with n arrows.

By definition, φk(K) is the sum of all renumbered subdiagrams with exactly k arrows,

φk(K) =
∑

D⊂K, |D|=k

ψ(D),

where D ⊂ K means D is a subdiagram of K.
Fixing a choice of e, f ∈ Z≥0 with e+ f = k, every k-arrow subdiagram D can be viewed

in
(k

e

)
ways as the superimposition of two smaller subdiagrams E and F of sizes e and f

respectively. Note that e, f, k ∼ 1. As discussed above, rather than breaking a specific k-arrow
subdiagram down as a superimposition, one can instead build up all k-arrow subdiagrams
by first choosing an e-arrow subdiagram E and then choosing an f -arrow subdiagram F
that lies in the complement of E in K. Summing over the possible choices of E, F , and
superimpositions gives the next formula2:

(1) φk(K) =
∑

D ⊂ K
|D| = k

ψ(D) =
(
k

e

)−1 ∑
E ⊂ K
|E| = e

∑
patterns

P

∑
F ⊂ K, |F | = f
πK(E,F) = P

ψ(E)#λψ(F)

1There is a small caveat to Proposition 3.3 which requires that in some basis for M , the coefficients of θ
must be computable in time ∼ 1 and their size must be ∼ 1, which may not always the case. However, for the
purposes of this paper and the application for which this proposition is used, this issue does not arise and so
we chose to leave this technical detail out of the statement.

2We note that all the scalars in this formula and in the formulas that follow are integers of magnitude at
most ∼ nk. Additions of such integers take time ∼ 1, and hence we need not worry about the time cost of
working with large integers.

COMPUTING FINITE TYPE INVARIANTS EFFICIENTLY 7

The sum above overcounts every k-arrow subdiagram D of K by a factor of
(k

e

)
as every

choice of splitting D into two pieces (i.e. a choice of E) occurs exactly once in the sum.
Hence we include the pre-factor

(k
e

)−1.
Define θK : ([0, 2n− 1]Z)f → GDf by

(F0, F1, · · · , F2f−1) 7→
{
ψ(F) if (F0, F1, · · · , F2f−1) are the ends of a subdiagram F ⊂ K
0 otherwise

Now, the innermost sum from Equation (1) can be rewritten as a sum of values of θK as
follows:

(2)
∑

F ⊂ K, |F | = f
πK(E,F) = P

ψ(E)#λψ(F) = ψ(E)#P

 ∑∏2f−1
i=0 [m−

i,E,P ,m+
i,E,P]

θK

 ,

where m−
i,E,P is the minimal possible place for the i’th arrow-end of a Gauss diagram F

within [0, 2n− 1]Z given that E along with F should make the pattern P , and m+
i,E,P is the

maximal such value. Both of these quantities are easily determined by E and P , though we
spare the reader the explicit formulas.

The upshot is that the sum on the right can be computed very quickly with a look-up table.
Proposition 3.3 applies by taking Q to be the set of all (F0, F1, · · · , F2f−1) ∈ ([0, 2n − 1]Z)f

that are the endpoints of a subdiagram of K. Here, |Q| =
(n

f

)
∼ nf and the conclusion from

Proposition is that a look-up table can be created in time ∼ nf so that computing the sum
on the righthand side of Equation (2) takes time ∼ 1.

Thus we arrive at our final equation,

(3) φk(K) =
(
k

e

)−1 ∑
E ⊂ K
|E| = e

∑
patterns

P

ψ(E)#P

 ∑∏2f−1
i=0 [m−

i,E,P ,m+
i,E,P]

θK

 .

To understand the computational complexity of Equation (3), we need to understand the
complexity of each sum. We already showed that the innermost sum can be computed in
time ∼ nf by building a look-up table from Proposition 3.3. For the middle sum, P can be
any subset of [0, 2(e+ f))Z of size 2e. There are

(2(e+f)
2e

)
=
(2k

2e

)
∼ 1 such subsets. That does

not add to the complexity of the total sum.
For the fixed choice of e + f = k, the outer sum in Equation (3) has at most ∼

(n
e

)
∼ ne

terms. Therefore, the total time of computing φk(K), which includes first creating the look-
up table and then computing the sum over all subdiagrams D ⊆ K of size k, is ∼ ne + nf .
This sum can be minimized for e = ⌈k

2⌉ and f = ⌊k
2⌋, in which case we get computation time

∼ 2n⌈ k
2 ⌉ ∼ n⌈ k

2 ⌉. □

Note that the lookup table within the proof of the main theorem is of size ∼ nf , where at
the end, f is set to be ⌊k

2⌋, and so our algorithm uses storage space ∼ n⌊ k
2 ⌋. If storage space

is limited we can set f differently and get the following:

8 COMPUTING FINITE TYPE INVARIANTS EFFICIENTLY

Main Theorem (space aware version). For any integer f ≤ k
2 , any finite type invariant of

type k can be computed on an n-crossing knot in time ∼ nk−f using storage space at most
∼ nf . □

References
[BL93] J. S. Birman and X.-S. Lin. Knot Polynomials and Vassiliev’s Invariants. Inventiones Mathe-

maticae, 111:225–270, 1993.
[BN95] D. Bar-Natan. On the Vassiliev Knot Invariants. Topology, 34:423–472, 1995.
[BNBNHS23] Dror Bar-Natan, Itai Bar-Natan, Iva Halacheva, and Nancy Scherich. Yarn Ball Knots and

Faster Computations. Journal of Applied and Computational Topology, 8, 10 2023.
[GPV00] M. Goussarov, M. Polyak, and O. Viro. Finite Type Invariants of Classical and Virtual Knots.

Topology, 39(5):1045–1068, 2000.
[Rou07] F. Roukema. Goussarov-Polyak-Viro Combinatorial Formulas for Finite Type Invariants. ArXiv

Preprint, arXiv:0711.4001, 2007.
[Vas90] V. A. Vassiliev. Cohomology of Knot Spaces. American Mathematical Society, Providence, RI,

1990.
[Vas92] V.A. Vassiliev. Complements of Discriminants of Smooth Maps: Topology and Applications,

volume 98 of Translations of Mathematical Monographs. American Mathematical Society, Prov-
idence, RI, 1992.

	1. Introduction
	2. Background
	2.1. Gauss diagrams

	3. Computational Preliminaries: Counting Techniques using Dyadic intervals
	3.1. Counting with a look-up table.
	3.2. Dyadic intervals
	3.3. Proof and generalization of Theorem 3.1

	4. Main Result
	References

