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Let K be a unital algebra over a field F with char F = 0, and [Why Care?
et I ¢ K be an “angmentation ideal”; so K/T ;E, F | lnabstract generality, gr A is a simplified version of & and
if it is quadratic it is as simple as it may be without being
killy. e In some concrete (somewhat generalized) knot theo
‘otic cases, A is a space of “universal Lie algebraic formulas”
uid the “primary approach” for proving (strong) quadratic

Definition. Say that K is quadratic if its associated graded
or K = @2 I"/I""! is a quadratic algebra. Alternatively,
let A = g(K) = {V = I/I*}/{Ry = ker(fiy : V@V —
1?/1%)) be t.h(, ‘quadratic approximation” to K (g is a lovely

. - L . " lity, constructing an appropriate homomorphism Z : K — A
functor). Then K is quadratic iff the obvious p: A — gr K | ° e PPt phs

becomes wonderful mathematics:

is an isomorphism. If G is a group, we say it is gquadratic if wKnots  and
its croup ring is. with its angmentation ideal. | Braids v-Knots w-Knots
/ he Overall Sirategy. Consider_the “singularity tower™ of Mottized  Lic Tinite dimensional Lic
Lﬂ‘&( (K, 1) (]l{‘t'vn("n.us e ;m(l@s (always) multiplication): | A | algebras [BN1] |Lie bialgebras [Hav] |algebras [BN3]
Etingof-Kazhdan Kashiwara-Vergne-
CoppEl Hertoopp MR el L K Associators quantization Alekseev-Torossian
Z | [Dri, BND| [EK. BN2| [KV, AT]
Ve care as im(p? = py oo py) = IP, so 1P/ =

. 2-Injectivity, A (one-sided infinite) sequence
im 0"/ im gL Hence we ask: J ‘ ( ) seq

[90"\@,. S Ky K, Ky=K

o How injective is this tower?

et ) 41 - - . .
o What's I'P/p(I'P70)? is “injective” if for all p = 0, kerd, = 0. It is “2-injective” if
Lemma., ‘r.plr.n’lu{!r:p-l—lj ~ (‘;)(‘r'_’}(?_)p - I,rls:p, JM_*a’ ﬂ?i;ﬂ_’\PF its “l-reduction

'low Chart.

m Pro L Koo e K d, K,

is injective; e, il for all p, ker(d, o 6,41) = kerd, 1. A pair

Thin S Tute |”11!-a“ (K, 1) is “2-injective” if its singularity tower is 2-injective.
 Poter | Crits — —rr - — —
- — by III“” riterion Proposition 2. If (K, 1) is 2-local and 2-injective, it i
roposition 1. The sequence adratic. .S'{"//l
N, = EB” 1“ Jel My I:;;_J'_l) e e, ppel P;-unlf. , S?n‘illg . at  the  I-reduced sﬁ‘quml('(
Pt p+1 iP P -
i - K, get +——= @r
s exact, where Ry = ker p: I — I; so (K, I) is “2-local”. '“”;f_‘_,j'f.‘k(m er . . " . 543
. ) . / 2 ~ & - ~ hyep g -
I'he Free Case. If J is an angmentation ideal in K = F =u(l5 ket o) (TP Fher iy, * But MiGoks (I/I7)%F, s

(;), define 4 : F —» F by a; v+ a; + e(a;). Then Jy := o(J)the above is (1/12)%7 /37 (1971 My - #7371 But that'y
is {w € F:degw > 0}. For Jy it is easy to check that 9, =fhe degree p piece of ¢(K).
1, = 0. and hence the same is true for every J. T'he X Lemma (inspired by [Hut]).

I'he General Case. If K = F'/(M} (where M is a vector space 0 . _Co EF 'g
of “moves™) and I € K, then I = J/{M) where J € F. Then Q& / = E
[P = P 5T (M) TP and we have B~ = g
HE m/l Xﬂ\ § 2

g l]:p—l - o g

11 A o = £

onta | T» e ’lf“l'ﬂ If the above diagram is Conway (=) exact, then its twc

. . . . on - . . . diagonals have the same “2-injectivity defect”.  That is,
e = Jjr NEERS. VARV E L p-1 — pp-1 .-'l (M T =) \] i

P> (M) ! J LT (M) T if Ap = B — Cy and A, - B — ) are exact, then|
So ker(p) = m, (,” (kermy_1)) = m (32 pp! (J o (M) J)) =ker(f o )/ ker oy == ker(Fy o ay )/ ker oy

1 o=l - ker(3 o) ~ .
Zﬂ'ﬂ (‘] g (M): } = ZI R I = =1 (‘H.U_." Proof. —mkf.,]_‘";m' --{}-@-) ker 81 Mim ey
Ry is simpler _lhuu_ may .‘ﬁ('f'lll! It's g2 = J oM — ker fp Nimay l“‘l'fﬁo;fn]
an “angmentation bimodule™ (IRs = - — - !
T2 ™ The Hutchings Criterion [Hut]. o

) = Rl thus wr = e(x)r = re(x) = ra i R o Ry . It
for 7 € K and r € Ry), and hence 12 _j_ g w\lhv singularity tower of (K, T) is ~.4 Ho
S M) ! 2 ——1I=J/(M) 2-injective iff on the right, ker(mo T I -

2= Ty - , - ) 10) = ker(d). That is iff every f’H\/” T

is &i st the av see R 5 S W O S

M, is simpler than may seem! In My ; =T TR o T “diagrammatic sy 2y h\ is also a . ~a Ve

the I factors may be replaced by V = I/1?. Henee “topological syzygy”.

p=1

‘hp_@"” I’Wrz(,uf M) @ VEr-i-l, (,ml(‘luqmn We need to know that (K.[) i

“syzygy complete” that every diagrammatic syzygy
lis also a lupuh)‘gll"dl svevey, that ker(w o d) = ker(i).
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Examples and Interpretations

The Pure Virtual Braid Group is Quadratic, IT

Dror Bar—Natan and Peter Lee in Oregon, August 2011
http:/ fww.math. toronto. edu/ - drortm/ Talks /Oregon- 1106/

{goes back to [Koh])
~ ’
= (X = /X

= (invariants of type p) =: V,

— = (| HH)

ker fig = {[t7, "] = 0 = [¢¥, % + t/%]) = (4T relations)

H/,
I

|Z: universal finite type invariant, the Kontsevich integral.
o7, s the group

[Example. K/
%

(I(_J"I-IHH—I ]w

d I Kohno

(IP/ Y =V, Vo Vo= (191

horizontal chord dia-
A=q(K) = (gr;unﬁ mod 47T ) -

T Tk Tl = O30 044
TijTgl = TR

{oij l<;,L;{'n}/

L. Kauffman
[Kan, KL|

of “pure virtual braids” (“braids when you look™,
“blunder braids™):

| i \‘_;'\k

T'he Main Theorem [Lee|. PuB,, is quadratic.
1, = q(PuB,,).

%zy

v_u

T4 =

[Grv) /
Goussarov-Polyak-Viro

1=X =X,

the “semi-virtual crossing”.

with ® = {3’,:_;' =0 —

v-hraids
\&11-]1 one 2
Qij)1<izj<n

)/ 6=
An =TV {[aij, ai] + [ai_jea.jk] + [a;':.-»ﬂ,;'k], CH = laij, ayl).

w=f + L+ L - - - i

.

‘H o(PB,,) is generated as a vector space by Cyj and

Yije =

Syzygy Complotoness, for Pul3,,, means:
@p Imp_j i JE2 T V.,:—w,
{&12 : m : MU;&,;; H

{612 Yass s ofzdno : -} — {a12ysasasg -}
s every relation between the y;;.’s and the clﬁ’;’s alsof
a relation between the Y,-,-;.."s and the C-” 's?

The grongs Py ot

Cenerators: e,

-

Felat jone

James Gillespie’s Sightline #2
(1984) is a syzvgy, and (ar-
guably) Toronto’s largest sculp-
ture, Find it next to University
of Toronto's Hart House,

Just for fun. zD projections

of reality

The set of fll])

BT

KiKij—K/Kie K/ Kz K/K34+

e w e e

An expansion £ is a choice of a

Crop
Rotate
Adjoin

¥
KK @Ky (Ko K K@ Ka /KD Ky Ke® K/ KeD «
Il Il
&3 ker( KKy K/ K3)

crop
rofate
adjoin
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