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Let A be a unital algebra over a field F with char F = 0, and Why Care?

et I C K be an “augmentation ideal”; so K/I — " 3 F e Inabstract generality, gr K is a simplified version of K and|

- : : : LI 3 N . . . . . . . . .
if it is quadratic it is as simple as it may be without being
silly. e In some concrete (somewhat generalized) knot theod
. retic cases, A is a space of “universal Lie algebraic formulas”

ot A = g(K) = (V = I/I))/(Ry = ker(fiz : V@V - el P e - *
P L ad the “primary approach” for proving (strong) quadratic-|
74 /I*)) be the “quadratic approximation” to K (q is a lovely 2

. i o . _fity. constructing an appropriate homomorphism 2 : K — A
functor). Then K is quadratic iff the obvious p: A — gr K |7 o e 1
. becomes wonderful mathematics:

s an isomorphism. If G is a group, we say it is quadratic if

Definition. Say that K is quadratic if its associated graded
or W = @: I7/17%) is a quadratic algebra. Alt(\rum.i\-'('ly.

S o . w-Knots  and
its group ring is, with its angmentation ideal. K1 Braids v-Knots woKnots
[Tie Overall Strategy. Consider the “singularity tower™ of Motrized  Lic Timite dimensional Lie
K, I) (here *” means g and g is (always) multiplication): | A| algebras [BN1] |Lie bialgebras [Hav] |algebras [BN3]
Etingof-Kazhdan Kashiwara-Vergne-
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We care as im(p” = pyo---op) = IP, so [P'/IPF
g [ im pP . Henee we ask:
e What's I /u(I'PT1)? e How injective is this tower? . y Ky p K, ) y . s Ky =K

A Lemma. [P /p(TP) ~ {UIz}“-}” = VP sot 771 [P — VEP,

Flow Chart. “

2-Injectivity, 1e-sided infinite) sequence

is “injective” if

A&. m f& Quadratid) fits “l-reductig

p =0, kerd, = 0. It is “2-injective” if

K, 5 Ky .
(& = po,) e E—JII — Wl B
h\ Peter | Criterion is injectife: fle. ifffor all p, ker(d, o d,41) = kerd,,1. A pair

5] - . v g . . e .
Proposition . The sequence K. 1) s e” if its singularity tower is 2-injective.

If (K, 1) is 2-local and 2-injective, it iy

R, = @) (191 Ry s pr-i-1) 2y o _toy -

is exact, where Ry := ker i : I — I so (K, 1) is “2-local”. Staring at  the  l-reduced  sequencd

The Free Case. ‘[l‘ J 1-5 an augmentation 1drc‘nl in K = JrF' = k[\;r»;‘ iy . K get _{if—l N
i), define o 1 F' — F by x; = x; + e(x;). Then Jy = (i T 2ep.
is {w e F:degw > 0}. For Jy it is easy to check that Ra Tppet) — RIPT ket But xaUP = = (I/I7)®", so

i, = 0, and hence the same is true for every .J. e is {IH?]ZJ"/Z (IZJ_L TRy [P ‘), But that’y
I'he General Case. If K = F/{M) (where M is a vector §hacctli®fiCeree p picce of g(K).
of “moves™) and I © K, then [ = J/{M) where J C F 2 he X Lemma (inspired by [Hut]).

[P = JP [3 JIL (M) JPT and we have Ao 5 _Co ;
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2
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| If the above diagram is Conway (=) exact, then its twe
-lrh// wz J ? ker ()= TF:J (ﬂ (ker TT}:—I)) = "rp (Z.ﬂ_ (S M) LT }) liagonals have the same “2-injectivity defect”. That is)|
)Q!V”OJ ¢ Z‘ﬂ'}, (J g {U} ) S IMa:T Z’-’:} N, il Ay = B — Cj and Ay — B — ) arc exact, then|
™ -11n])lu than may seem! It's g2 M I ker(/9; Okﬁ:lzf;lf(‘}l' ay f ker (/3 o C"ll}r'( ker ay.
1 abab il 5 ([N, = -1 Proof. W T ker Gy Mim ey
= ‘Hzf thusor = e(x)r = re(x) =ra |™ m — ker By Nimay = kerlfocas)
for + € K gamdr = Ro), and hence o F A/ ! o !
__3 rnj ;ﬁl ix ﬁy i) L I I=J/(M) The Hutchings Criterion [Hut[. n p—1
i ‘z . _2 ! . . Gl . Tpil The singularity tower of (K, I)is . Ho -
R, is rflmplor than may seem! In R, ; = sz cRy TP 2-injective iff on the right, ker(w o T » /
he [ factors may be replaced by V= I/I-. Hence 9) = ker(d). That is, iff every S SN
p—1 ] atic svzyv ,',| - =
. B o (LN e Pl diagrammatic syzygy” is also a pp ver
Ry = @ 4 @ mapp M) @V ’ “topological syzyey”
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Taim. 7(R,;) = R,;: namely, Conclusion. ~ We need to know that (I\ I) ig
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Examples and Interpretations

The Pure Virtual Braid Group is Quadratic, II

Dror Bar—Natan and Peter Lee in Oregon, August 2011
http:/fwww.math, toronto. edus - drorbn/ Talks/Oregon- 1108/

Fxample.

\
K = /\ I=<><=X_x>

(K/I"1)* = (invariants of type p) =: V,
)= (| HFH)

) = [tY, #%F 4 #7%]) = (47T relations)

)_

Z: universal finite type invariant, the Kontsevich mrvgrr\l

(PP =V, v, Vo= ()i = ¢

ker fiz = ([t", "] = (

horizontal chord dia-
grams mod 4T

A=q(K)= (

[Pul, 1s the group

T Tk = OOk Tij
TijThl = TpiTij

() : |<z7é;<n)/au

L. Kauffman

. - . »  [Kau KL
Sf “pure virtual braids” (“braids when you look™, [ KU

“blunder braids”):

I'he Main Theorem [Lee|. PoB,, is quadratic.

” (jr n B T ]
[GPV]
b’ Gonssarov-Polyak-Viro
with @ = a;; = g5 — 1 =2 =,
the “semi-virtual crossing”.
Vel {, I‘} v-hraids

mr.h one =
= \Bij/1<i#j<n

|

A = TV {aij, i) + laij aj] + o, aji), ) = [aij,ax)).

v =P+ L+ 2 - B - P -

(goes back to [Koh])

—Syzygy Completeness, for Pul3,, means:

NRo(PeB,) is generated as a vector space by Cp) and

YJ_,I!-' =

p—1
=1

™

B Ry BN g, v
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Is every relation between the y;;.’s and the c;‘ s also
a relation between the Yj;.’s and the Cz‘: 7

e

P— J— e~

—

e

Generators:

- >

Felations:

I,

James Gillespie's Sightline #2
(1951) is a syevgy, and (ar-
auably) Toronto's largest sculp-
ture. Find it next to University
of Toronto’s Hart. House,

gy syvimbols, with exactly one exception that may be either &

I'heorem S. Let D be the free associative algebra generated by
syvmbols agj. v and c;j, where 1 < 4,7,k < n are distinet
utegers. Let Dy be the part of D with only a;; symbaols anc
et Dy be the span of the monomials in D having only a;;

i jk OF A t;’; Let @ 0 Dy — Dy be the map defined by

Yijk [Gr'_;'fan.-] + [ﬂ-i_;" G_ﬂ.-] + [Gi.i.-\ﬂ_;'k:s
f;j- = laigag.

T'hen ker d is generated by a family of elements readable fron
the picture above and by a few similar but lesser families.
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Footnotes

1. Following a homonymous paper and thesis by Peter Lee [Lee|. All serious work here is his and was extremely
patiently l‘ﬁ)laimd by him to DBN. Page design by the latter.
0

2. Thessaob presented here is broken. Specifically, at the very end of the proof of the “general case” of Propo-
sition 1 the sum that makes up kerm,_; is interchaged with ,u_,_,l. This ig invalid; in general it is not true that
T-YU + V)= T‘l(U )+ T_I(V}_. when T is a linear transformation and U and V' are subspaces of its target
space. We thank Alexander Polishchuk for noting this gap. . _ . Vo / L N GICJ ‘) }'1(//?,
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