The Pure Virtual Braid Group is Quadratic¹

Let K be a unital algebra over a field \mathbb{F} with char $\mathbb{F} = 0$, and Why Care? let $I \subset K$ be an "augmentation ideal"; so $K/I \xrightarrow{\sim} \mathbb{F}$. • In abstract generality, gr K is a simplified version of K and Definition. Say that K is quadratic if its associated graded if it is quadratic it is as simple as it may be without being permitton. Say that K is quadratic if its associated graded gr $K = \bigoplus_{p=0}^{\infty} l^p/l^{p+1}$ is a quadratic algebra. Alternatively, silly. • In some concrete (somewhat generalized) knot theorem and the solution of the sol let $A = q(K) = \langle V = I/I^2 \rangle / \langle R_2 = \ker(\bar{\mu}_2 : V \otimes V \rightarrow I^2/I^3) \rangle$ retic cases, A is a space of "universal Lie algebraic formulas" and the "primary approach" for proving (strong) quadratic-functor). Then K is quadratic iff the obvious $\mu : A \rightarrow \operatorname{gr} K$ is an isomorphism. If G is a group, we say it is quadratic if u-Knots and

The Overall Strategy. Consider the "singularity tower" of (K, I) (here ":" means \otimes_K and μ is (always) multiplication):

its group ring is, with its augmentation ideal.

$$\cdots$$
 $I^{:p+1} \xrightarrow{\mu_{p+1}} I^{:p} \xrightarrow{\mu_p} I^{:p-1} \longrightarrow \cdots \longrightarrow K$

We care as $\operatorname{im}(\mu^p = \mu_1 \circ \cdots \circ \mu_p) = I^p$, so $I^p/I^{p+1} =$ im μ^p / im μ^{p+1} . Hence we ask:

• What's $I^{:p}/\mu(I^{:p+1})$? • How injective is this tower?

emma. $I^{:p}/\mu(I^{:p+1}) \simeq (I/I^2)^{\otimes p} = V^{\otimes p}$; set $\pi: I^{:p} \to V^{\otimes p}$.

$$\mathfrak{R}_p := \bigoplus_{i=1}^{p-1} \left(I^{:j-1} : \mathfrak{R}_2 : I^{:p-j-1} \right) \xrightarrow{\partial} I^{:p} \xrightarrow{\mu_p} I^{:p-j-1}$$

is exact, where $\mathfrak{R}_2 := \ker \mu : I^{:2} \to I$; so (K,I) is "2-local". The Free Case. If J is an augmentation ideal in $K = F = \{f \in F\}$ is $\{x_i\}$, define $\psi : F \to F$ by $x_i \mapsto x_i + \epsilon(x_i)$. Then $J_0 := \psi(J)$ for $J_0 := \psi$ is exact, where $\mathfrak{R}_2 := \ker \mu : I^{:2} \to I$; so (K,I) is "2-local". Proof

The General Case. If $K = F/\langle M \rangle$ (where M is a vector spacethe degree p piece of q(K). of "moves") and $I \subset K$, then $I = J/\langle M \rangle$ where $J \subset F$. Then The X Lemma (inspired by [Hut]). $I^{:p} = J^{:p} / \sum J^{:j-1} : \langle M \rangle : J^{:p-j}$ and we have

$$J^{:p} \xrightarrow{\mu_F} J^{:p-1}$$
 onto π_p $I^{:p-1} = J^{:p-1} / \sum J^{:p-1}$

augmentation bimodule ($I\mathfrak{R}_2=$ $0 = \Re_2 I$ thus $xr = \epsilon(x)r = r\epsilon(x) = rx$ for $x \in K$ and $r \in \mathfrak{R}_2$), and hence $I^{!2} \xrightarrow{\mu} I = J/\langle M \rangle$ The Hutchings Criterion [Hut]. \mathfrak{R}_p

 \mathfrak{R}_p is simpler than may seem! In $\mathfrak{R}_{p,j} = I^{:j-1} : \mathfrak{R}_2 : I^{:p-j-1}$ the I factors may be replaced by $V = I/I^2$. Hence

$$\mathfrak{R}_p \simeq \bigoplus_{i=1}^{p-1} V^{\oplus j-1} \otimes \pi_2(\mu_F^{-1}M) \otimes V^{\otimes p-j-1}.$$

Claim. $\pi(\mathfrak{R}_{p,j}) = R_{p,j}$; namely,

$$\pi (I^{:j-1}: \mathfrak{R}_2: I^{:p-j-1}) = V^{\otimes j-1} \otimes R_2 \otimes V^{\otimes p-j-1}$$

Dror Bar-Natan and Peter Lee in Oregon. August 2011 http://www.math.toronto.edu/~drorbn/Talks/Oregon-1108/

	u-Knots and		
K	Braids	v-Knots	w-Knots
	Metrized Lie		Finite dimensional Lie
A	algebras [BN1]	Lie bialgebras [Hav]	algebras [BN3]
		Etingof-Kazhdan	Kashiwara-Vergne-
	Associators	quantization	Alekseev-Torossian
Z	[Dri, BND]	[EK, BN2]	[KV, AT]

2-Injectivity A (one-sided infinite) sequence

$$\cdots \longrightarrow K_{p+1} \xrightarrow{f_{p+1}} K_p \xrightarrow{\delta_p} \cdots \longrightarrow K_0 = K$$

is "injective" if for all p > 0, ker $\delta_p = 0$. It is "2-injective" if

$$\cdots \longrightarrow \frac{K_{p+1}}{\ker \delta_{p+1}} \xrightarrow{\tilde{\delta}_{p+1}} \frac{K_p}{\ker \delta_p} \xrightarrow{\tilde{\delta}_p} \frac{\tilde{\delta}_p}{\ker \delta_p} \xrightarrow{K_{p-1}} \cdots \cdots$$

is injective; i.e. if for all p, $\ker(\delta_p \circ \delta_{p+1}) = \ker \delta_{p+1}$. A pair (K, I) is "injective" if its singularity tower is 2-injective.

 $\mathfrak{R}_p := \bigoplus_{j=1}^{p-1} \left(I^{:j-1} : \mathfrak{R}_2 : I^{:p-j-1} \right) \xrightarrow{\quad \partial \quad} I^{:p} \xrightarrow{\quad \mu_p \quad} I^{:p-1} \xrightarrow{\text{Proposition 2.}} \text{If } (K,I) \text{ is 2-local and 2-injective, it is 2-local and 2-injective, and 2-injec$

If the above diagram is Conway (\approx) exact, then its two So² $\ker(\mu) = \pi_p \left(\mu_F^{-1}(\ker \pi_{p-1})\right) = \pi_p \left(\sum \mu_F^{-1}(J^:\langle M \rangle : J^:)\right) = \text{diagonals have the same "2-injectivity defect". That is,}$ $\sum \pi_p \left(J^: : \mu_F^{-1}(M) : J^:\right) = \sum I^: : \Re_2 : I^: = : \sum_{j=1}^{p-1} \Re_{p,j}.$ if $A_0 \to B \to C_0$ and $A_1 \to B \to C_1$ are exact, then $A_1 \to A_2 \to A_3$ is simpler than may seem! It's $A_2 \to A_3$ is simpler than may seem! It's $A_3 \to A_4$ is $A_4 \to A_5$ in $A_5 \to A_5$ and $A_5 \to A_6$ in $A_5 \to A_6$ is $A_6 \to A_6$ in A_6

Proof. $\frac{\ker(\beta_1 \circ \alpha_0)}{\ker \alpha_0} \xrightarrow{\sim} \ker \beta_1 \cap \operatorname{im} \alpha_0$

$$= \ker \beta_0 \cap \operatorname{im} \alpha_1 \xleftarrow{\sim}_{\alpha_1} \frac{\ker(\beta_0 \circ \alpha_1)}{\ker \alpha_1}$$

The singularity tower of (K, I) is 2-injective iff on the right, $\ker(\pi \circ$ ∂) = ker(∂). That is, iff every "diagrammatic syzygy" is also a $I^{:p+1}$ "topological syzygy".

Conclusion. We need to know that (K, I) is "syzygy complete" — that every diagrammatic syzygy is also a topological syzygy, that $\ker(\pi \circ \partial) = \ker(\partial)$.

A. Thore should have been a second lemma here: Lemma 2 1. Under the right projection,

 $TT(ker M_2) = R_2$ 2. In the proper circumstances, $T(\ker M_{P}) = ZI^{\otimes j-1} \otimes R_{2} \otimes I^{\otimes p-j-1}$ B. Why "M" is enough there, rather than < M>, requires a butter explanation. C. If we rephrase this commutative linguams J:P_M= J. J:P-1 TO TO TOP-1

I'P M J. I'P-1 Than Mr is an isomorphism and the original Polishchyk issue disappears. The issue now is ther

Ker (J. J:P-1) I. I:P-1) = Ker (J:P-1) J:P1), and that's the same as SJ::<M>:J: CJ.J:1-1 and That's a much lighter issue; The only Noblem may com l from at+a-tata=0, and it probably Joesn't really come. Asile: If A,Bcim(F), Thin F-(A)+F-(B)=F-(A+B). prof: (1+ 2 ∈ f-(A)+f-(B) thin 2=f(x)+f(y) W/ XEA & YEB SO Z=F(X+y) W/ S+YEA+BD > if ZEF (A+B) then F(Z)=X+y W/ XEA kyEB so as Acim(F) & Bein(F), 7 x1, y, s.t. X = E(SG), $Y = E(Y_1)$, Huce F(Z-X,-Y,) = F(Z)-F(X,)-F(Y,)= x+y-x-y=0So Z-x,-y, Ekerf so JWEKERF S.t. Z=(x,+w)+y,. But then $F(x_1+w)=F(x_1)=x\in A=)x_1+w_1f^{-1}(A)$ & F(Y,) = y & B =) y, EF-1/B) So 7 F F - 1(B).

The Pure Virtual Braid Group is Quadratic, II Examples and Interpretations

Dror Bar-Natan and Peter Lee in Oregon, August 2011

 $(K/I^{p+1})^* = (\text{invariants of type } p) =: \mathcal{V}_p$

$$(I^p/I^{p+1})^\star = \mathcal{V}_p/\mathcal{V}_{p-1} \quad V = \langle t^{ij} | t^{ij} = t^{ji} \rangle = \left\langle \left| \ \middle| \ \middle| \ \middle| \right\rangle \right\rangle$$

$$\ker \bar{\mu}_2 = \langle [t^{ij}, t^{kl}] = 0 = [t^{ij}, t^{ik} + t^{jk}] \rangle = \langle 4\text{T relations} \rangle$$

Z: universal finite type invariant, the Kontsevich integral

 PvB_n is the group

The Main Theorem [Lee]. PvB_n is quadratic.

$$V = I/I^2 = \left\langle \begin{array}{c} \text{v-braids} \\ \text{with one } \times \end{array} \right\rangle / \left(\times = \times \right)$$

$$a_{24} =$$

 $A_n = TV/\langle [a_{ij}, a_{ik}] + [a_{ij}, a_{jk}] + [a_{ik}, a_{jk}], c_{kl}^{ij} = [a_{ij}, a_{kl}] \rangle,$

James Gillespie's Sightline #2 (1984) is a syzygy, and (arguably) Toronto's largest sculpture. Find it next to University of Toronto's Hart House

Syzygy Completeness, for PvB_n , means:

$$\mathfrak{R}_p = \bigoplus_{j=1}^{p-1} \mathfrak{R}_{p,j} \stackrel{\partial}{\longrightarrow} I^{:p} \stackrel{\pi}{\longrightarrow} V^{\otimes p}$$
$$\{\tilde{\sigma}_{12} : \underline{Y_{345}} : \tilde{\sigma}_{67} : \ldots\} \longrightarrow$$

$$\{\tilde{\sigma}_{12}: Y_{345}: \tilde{\sigma}_{67}: \ldots\} \longrightarrow \{a_{12}y_{345}a_{67}\ldots\}$$

Is every relation between the y_{ijk} 's and the c_{ij}^{ij} 's also a relation between the Y_{ijk} 's and the C_{kl}^{ij} 's?

Theorem S. Let D be the free associative algebra generated by symbols a_{ij} , y_{ijk} and c_{kl}^{ij} , where $1 \leq i, j, k, l \leq n$ are distinct integers. Let D_0 be the part of D with only a_{ij} symbols and let D_1 be the span of the monomials in D having only a_i . symbols, with exactly one exception that may be either a y_{ijk} or a c_{kl}^{ij} . Let $\partial: D_1 \to D_0$ be the map defined by

$$\begin{array}{ll} y_{ijk} & \mapsto & [a_{ij}, a_{ik}] + [a_{ij}, a_{jk}] + [a_{ik}, a_{jk}], \\ c^{ij}_{kl} & \mapsto & [a_{ij}, a_{kl}]. \end{array}$$

Then ker ∂ is generated by a family of elements readable from the picture above and by a few similar but lesser families.

Footnotes

- 1. Following a homonymous paper and thesis by Peter Lee [Lee]. All serious work here is his and was extremely patiently explained by him to DBN. Page design by the latter.
- 2. The proof presented here is broken. Specifically, at the very end of the proof of the "general case" of Proposition 1 the sum that makes up $\ker \pi_{p-1}$ is interchaged with μ_F^{-1} . This is invalid; in general it is not true that $T^{-1}(U+V)=T^{-1}(U)+T^{-1}(V)$, when T is a linear transformation and U and V are subspaces of its target space. We thank Alexander Polishchuk for noting this gap.

References

- [AT] A. Alekseev and C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld's associators, arXiv:0802.4300.
- [BN1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423-472.
- [BN2] D. Bar-Natan, DreamsFactsandAboutv-KnotsandEtingof-Kazhdan, talk presented at the Swiss 2011 conference. Video Knots and more at http://www.math.toronto.edu/~drorbn/Talks/SwissKnots-1105/.
- [BN3] D. Bar-Natan, Finite Type Invariants of W-Knotted Objects: From Alexander to Kashiwara and Vergne, paper and related files at http://www.math.toronto.edu/~drorbn/papers/WKO/.
- [BND] D. Bar-Natan, and Z. Dancso, Homomorphic Expansions for Knotted Trivalent Graphs, arXiv:1103.1896.
- [BEER] L. Bartholdi, B. Enriquez, P. Etingof, and E. Rains, Groups and Lie algebras corresponding to the Yang-Baxter equations, Journal of Algebra 305-2 (2006) 742-764, arXiv:math.RA/0509661.
- [Dri] V. G. Drinfel'd, Quasi-Hopf Algebras, Leningrad Math. J. 1 (1990) 1419–1457 and On Quasitriangular Quasi-Hopf Algebras and a Group Closely Connected with Gal(Q̄/Q), Leningrad Math. J. 2 (1991) 829– 860.
- [EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica, New Series 2 (1996) 1–41, arXiv:q-alg/9506005, and Quantization of Lie Bialgebras, II, Selecta Mathematica, New Series 4 (1998) 213–231, arXiv:q-alg/9701038.
- [GPV] M. Goussarov, M. Polyak, and O. Viro, Finite type invariants of classical and virtual knots, Topology 39 (2000) 1045–1068, arXiv:math.GT/9810073.
- [Hav] A. Haviv, Towards a diagrammatic analogue of the Reshetikhin-Turaev link invariants, Hebrew University PhD thesis, September 2002, arXiv:math.QA/0211031.
- [Hut] M. Hutchings, Integration of singular braid invariants and graph cohomology, Transactions of the AMS 350 (1998) 1791–1809.
- [KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyperfunctions, Invent. Math. 47 (1978) 249–272.
- [Kau] L. H. Kauffman, Virtual Knot Theory, European J. Comb. 20 (1999) 663–690, arXiv:math.GT/9811028.
- [KL] L. H. Kauffman and S. Lambropoulou, Virtual Braids, Fundamenta Mathematicae 184 (2005) 159–186, arXiv:math.GT/0407349.
- [Koh] T. Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier 37 (1987) 139–160.
- [Lee] P. Lee, The Pure Virtual Braid Group is Quadratic, in preparation. See links at http://www.math.toronto.edu/drorbn/Talks/Oregon-1108/.