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Abstract. We present a three dimensional realisation of the Goldman-Turaev
Lie biaglebra: we explain how arises from a low-degree Vassiliev quitient –
the emergent quotient – of tangles in a thickened punctutred disk, modulo
a Conway-like relation. Using this characterisation we construct Goldman-
Turaev homomorphic expansions (formality isomorphisms) from the Kontse-
vich integral.
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1. Introduction

In 1986, Goldman defined a Lie bracket [Gol86] on the space of homotopy
classes of free loops on a compact oriented surface. Shortly after in 1991, Turaev
defined a cobracket [Tur91] on the same space1. This bracket and cobracket make
the space of free loops into a Lie bialgebra – known as the Goldman-Turaev Lie
bialgebra – which forms the basis for the field of string topology [?] and has been
an object of study from many perspectives.

add referemnces:
chas-sullivan,
kashiwara-vergne, AN,
AT, Formality paper

In this paper we, describe a 3-dimensional lift of the Goldman-Turaev Lie
bialgebra into a space of tangles in a handlebody. We recover the bracket and
cobracket maps as projections of intuitive operations on tangles. We show the
Kontsevich integral is homomorphic with respect to these tangle operations. Our
main result is informally summarised as follows:
Main Result. Let T̃ denote the space of formal linear combinations of tangles
in a punctured disc cross an interval g:MpMp “ g:DpDp ˆ I. Projecting to the bottom
Dp ˆ 0, one obtains curves on a punctured disc, and the Goldman–Turaev opera-
tions on these curves are induced2 by the stacking and flipping operations on the
tangles. The Kontsevich integral is a homomorphic expansion for tangles in Mp,
and descends to a Goldman–Turaev homomorphic expansion on Dp.

This result is parallel to Massuyeau’s [Mas18], however, our approach to the co-
bracket is significantly different and simpler, hence, more likely to give insight into
the motivational application described below. Another related result is [?], which
constructs Goldman–Turaev expansions from the Khnizhnik-Zamolodchikov con-
nection, a geometric incarnation of the Kontsevich integral.

There are other papers
by Turaev and
Massuyeau-Turaev that
are not mentioned here.
There are also some
references that Yusuke
mentioned that we
should include

In more detail, we describe a space T̃ of formal linear combintations of framed
tangles in the handlebody Dp ˆ I and operations on this space, which induce
the Goldman-Turaev operations in the bottom projection to Dp ˆ t0u. The two
relevant operations on T̃ are simple and instinctive tangle operations: the commu-
tator associated to the stacking product, and the difference between a tangle and
its vertical flip. Passing to Conway skein quotients of T̃ , defined in Section 4.6,
the Goldman bracket arises from this commutator and the Turaev cobracked
from the difference between a tangle and its flip. We study the associated graded
spaces and operations, and show that the Kontsevich integral is a homomorphic
expansion for these tangles, in other words, intertwines the operations with their
associated graded counterparts. We show that therefore, the Kontsevich integral
descends to a homomorphic expansion for the Goldman-Turaev Lie bialgebra.
For the flipping operation and the Turaev cobracket, the precise statements are
subtle, and care needs to be taken with the technical details.

I have added a short
discussion on
"emmergent knots" that
is basically of a summary
of the first two
paragraphs Dror’s
appendix. I fell like this
discussion fits nicely here
after we introduce T̃ .
However, this is also
seems like a part of the
motivation and maybe
needs to go in the next
section–however it is not
related to the KV
discussion.

The Conway skein quotients of T̃ used to recover the Goldman Turaev Lie Bial-
gebra arise from “emergent" knots or tangles (See [Kun25] Appendix: Emergent

1Turaev’s version required factoring out by the constant loop; there is a lift to the full space
of homotopy classes of loops, given a framing on the surface [AKKN20].

2In a specific sense defined in Section 2
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knotted objects). Emergent knots are situated in between homotopy classes of
curves (where there is no notion of over or under strands, ´ =0, or “ 0)
and classical knots with the usual Reidemeister theory. Emergent knots satisfy
a familiar relation in finite type invariant theory “ 0. More concretely,
modding out T̃ by “ 0 declares two tangles the same if they differ by two
crossing changes. This quotient removes most, but not all, knotted information
of the tangles and the slightest of knot theory emerges.

1.1. Motivation. The Kashiwara–Vergne equations originally arose from the
study of convolutions on Lie groups [?]. The equations were reformulated al-
gebraically in terms of automorphisms of free Lie algebras [?], it this form they
are a refinement of the Baker-Campbell-Hausdorff formula for products of expo-
nentials of non-commuting variables.

Kashiwara–Vergne theory has multiple topological interpretations in which
Kashiwara–Vergne solutions correspond to certain invariants – called homomor-
phic expansions – of topological objects. The existence of a homomorphic expan-
sion is also called formality in the literature, this language is inspired by rational
homotopy theory and group theory [?].

One of these topological interpretations is due to the first two authors [BND17],
who showed that homomorphic expansions of welded foams – a class of 4-dimensional
tangles – are in one to one correspondence with solutions to the KV equa-
tions. Recently, a series of papers by Alekseev, Kawazumi, Kuno and Naef
[AKKN20,AKKN18b,AKKN18a] drew an analogous connection between KV solu-
tions and homomorphic expansions for the Goldman-Turaev Lie bialgebra for the
disc with two punctures (up to non-negligible differences in the technical details).
This correspondence was used to generalise the Kashiwara–Vergne equations via
considering different surfaces, including those of higher genus.

In other words, there is an intricate algebraic connection between four-dimensional
welded foams and the Goldman–Turaev Lie bi-algebra, which strongly suggests
that there is a topological connection as well. In addition to the inherent in-
terest in tangles in handlebodies, one goal for this paper is to work towards this
connection between the two-dimensional Goldman–Turaev Lie bialgebra and four-
dimesnional welded foams, by constructing a three-dimensional realisation of the
Goldman-Turaev Lie bialgebra, with homomorphic expansions which descend to
Goldman-Turaev expansions.

This is the other spot the
emergent knot discussion
could go. I have added it
here with a different
intro sentence

The three-dimensional setting of this paper is motivated from “emergent" knots
or tangles (See [Kun25] Appendix: Emergent knotted objects). Emergent knots
are situated in between homotopy classes of curves (where there is no notion of
over or under strands, ´ =0, or “ 0) and classical knots with the usual
Reidemeister theory. Emergent knots satisfy a familiar relation in finite type in-
variant theory “ 0. More concretely, modding out T̃ by “ 0 declares
two tangles the same if they differ by two crossing changes. This quotient removes
most, but not all, knotted information of the tangles and the slightest of knot
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theory emerges.

The paper is organised as follows: Section 2 gives a general algebraic framework
for how the Goldman–Turaev operations are induced by tangle operations. In
Section 3 we give a brief overview of the Kontsevich integral and the Goldman
Turaev Lie bialgebra. In Section 4, we define tangles in handlebodies, relevant
operations and Vassiliev filtrations. We identify the associated graded space of
tangles as a space of chord diagrams, and introduce the Conway skein quotient.
In Section 5, we identify the Goldman–Turaev Lie biaglebra in a low filtration
degree, and prove the main theorem.

Acknowledgements. We are grateful to Anton Alekseev, Gwenel Massuyeau, and
Yusuke Kuno for fruitful conversations. DBN was supported by NSERC RGPIN
262178 and RGPIN-2018-04350, and by The Chu Family Foundation (NYC). ZD
was partially supported by the ARC DECRA DE170101128. NS was supported
by the NSF under Grant No. DMS-1929284 while in residence at the Institute for
Computational and Experimental Research in Mathematics in Providence, RI,
during the Braids Program. We thank the Sydney Mathematical Research Insti-
tute and the University of Sydney for their hospitality, and funding for multiple
research visits.

2. Conceptual summary
sec:conceptsum

We induce the genus zero Goldman-Turaev operations from tangle operations,
in the spirit of “connecting homomorphisms”: this Section is a summary of the
basic approach. We provide some proofs which are not immediate and use the
words homomorphic expansions, and Goldman-Turaev operations without defini-
tion, only mentioning their basic properties which make this conceptual outline
coherent; the definitions follow in Section 3.

In the diagram (2.1), the top and bottom rows are exact and the right and
left vertical maps are zero, and therefore, by minor diagram chasing, the middle
vertical map λ induces a unique map η : C Ñ D, a degenerate case of a connecting
homomorphism. In our applications λ is a difference of two maps λ1 and λ2, whose
values differ in E but coincide in a quotient F .

eq:inducedconnhomeq:inducedconnhom (2.1)
A B C 0

0 D E F

0 λ“λ1´λ2 0

η
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In Section 5 we present two constructions which produce the Goldman bracket
and the Turaev cobracket, respectively, as induced homomorphisms η, from cor-
responding tangle operations λ1 and λ2. The following example is a schematic
version of what will become the argument for the Goldman bracket.

Example 2.1. Let A be an associative algebra, and let tLiu denote the lower
central series of A. That is, L1 :“ A, and Li`1 :“ rLi, As. Then the Li are Lie
ideals, and let Mi “ ALi “ LiA denote the two-sided ideal generated by Li. The
quotient A{M1 is the abelianisation of A, denoted by Aab. Then we have the
following diagram:

eq:SnakeExampleeq:SnakeExample (2.2)

0 K A
M2

b A
M2

Aab bAab 0

0 M1
M2

A
M2

Aab 0

0 r¨,¨s 0

η

Here λ is the algebra commutator, which is indeed the difference between two
maps: the multiplication (λ1) and the multiplication in the opposite order pλ2q.
The kernel K of the projection to Aab b Aab is generated by the subalgebras
!

M1
M2

b A
M2
, A
M2

b M1
M2

)

in A
M2

b A
M2

. The map η is a well defined commutator map

Aab bAab Ñ M1
M2

, given by ηpxb yq “ rx, ys mod M2. □

The goal of this paper is to construct homomorphic expansions (aka formality
isomorphisms) for the Goldman-Turaev Lie bialgebra from the Kontsevich inte-
gral. In outline, this follows from the naturality property of the construction
above, under the associated graded functor, as follows.

Given a short exact sequence

0 A B C 0,ι π

and a descending filtration on B

B “ B0 Ě B1 Ě B2 Ě ¨ ¨ ¨ Ě Bn Ě . . . ,

there is an induced filtration on A given by

A “ A0 Ě A1 Ě A2 Ě ¨ ¨ ¨ Ě An Ě . . . ,

where Ai “ ι´1pιAXBiq. Similarly, there is an induced filtration on C given by

C “ C0 Ě C1 Ě C2 Ě ¨ ¨ ¨ Ě Cn Ě . . .

where Ci “ πpBnq.

Lemma 2.2. If the rows of the diagram (2.1) are exact and filtered so that the
filtrations on the left and right are induced from the filtration in the middle, then
the induced map η is also filtered.
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Proof. Basic diagram chasing: given c P Cn, since Cn “ πpBnq, there is a b P Bn

such that πpbq “ c. Since λ is filtered, λpbq P En, and λpbq P ιpDq by exactness.
Since Dn “ ι´1pιpDqXEnq, we have that λpbq “ ιpdq for a d P Dn. By uniqueness
of the induced map, d “ ηpcq. □

The associated graded functor is a functor from the category of filtered algebras
(or vector spaces) to the category of graded algebras (or vector spaces). For a
filtered algebra

A “ A0 Ě A1 Ě A2 Ě ¨ ¨ ¨ Ě An Ě . . . ,

the (degree completed) associated graded algebra is defined to be

grA “ Π8
n“0A

n{An`1.

The associated graded map of a filtered map is defined in the natural way (as in
the proof of Lemma 2.3 below). In general, gr is not an exact functor, but it does
preserve exactness for the special class of filtered short exact sequences where the
filtrations on A and C are induced from the filtration on B:

lem:ExaxtGr Lemma 2.3. If in the filtered short exact sequence

0 A B C 0ι π

the filtrations on A and C are induced from the filtration on B, then the associated
graded sequence is also exact:

0 grA grB grC 0.
gr ι grπ

Proof. Since gr is a functor, we know that grπ ˝ gr ι “ 0, hence im gr ι Ď ker grπ.
It remains to show that ker grπ Ď im gr ι.

Let rbs P Bn{Bn`1, and assume that grπprbsq “ 0. Since grπprbsq “ rπpbqs P

Cn{Cn`1, we have grπprbsq “ 0 if and only if πpbq P Cn`1. As the filtration on
C is induced from B, we know that Cn`1 “ πpBn`1q. Thus, πpbq P πpBn`1q. Or
in other words, there exists x P Bn`1 such that πpbq “ πpxq. This implies that
πpb´ xq “ 0 and hence that b´ x P ιpAq by exactness.

Therefore, b “ x ` ιpaq for some x P Bn`1 and a P A. It follows that rbs “

rιpaqs “ gr ιprasq in Bn{Bn`1 and hence ker grπ Ď im gr ι as required. □

cor:gr_induced_is_unique Corollary 2.4. If the rows of the diagram in Equation 2.1 are exact, and the
filtrations on the left and right are induced from the filtration in the middle, then
the rows of the associated graded diagram are also exact, and the unique connecting
homomorphism is gr η.

(2.3)
0 grA grB grC 0

0 grD grE grF 0

0 grλ 0

gr η
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Proof. The exactness of the rows is Lemma 2.3. The induced map is gr η as gr η
makes the diagram commute, and the induced map is unique. □

An expansion for an algebraic structureX is a filtered homomorphism Z : X Ñ

grX (with special properties as explained in Section 3.1). Thus, if expansions
exist for each of the spaces A through F , we obtain a multi-cube:

eq:Cubeeq:Cube (2.4)

A B C 0

0 D E F

grA grB grC 0

0 grD grE grF

ZA λ ZB

ZC

η

ZD

grλ

gr η

ZE ZF

lem:Naturality Lemma 2.5. If, in the multi-cube (2.4) all vertical faces commute, then so does
the square:

eq:HomExpeq:HomExp (2.5)
D C

grD grC

ZD

η

ZC

gr η

Proof. Follows from the uniqueness of the induced maps. □

In Section 5.1, we will show how the Goldman bracket and Turaev cobracket
each arise as induced maps η, where λ “ λ1 ´ λ2 is a difference of tangle oper-
ations. Therefore the Kontsevich integral therefore induces an expansion for the
Goldman–Turaev operations, and the commutativity of the square (2.5) for each
operation is – by definition – the homomorphicity property of the expansion. This
homomorphicity is our main result. The non-trivial vertical face of the multi-cube
is the one containing λ, and the commutativity of this for each Goldman-Turaev
operation will follow from homomorphicity properties of the Kontsevich integral.
Namely, the Kontsevich integral (standing in for ZB and ZE) intertwines the ap-
propriate tangle operations λ0 and λ1 with their associated graded counterparts.
This is the idea behind the approach of this paper.
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3. Preliminaries: Homomorphic expansions and the
Goldman-Turaev Lie bialgebra

sec:Prelimssubsec:FramedKon
3.1. Homomorphic expansions and the framed Kontsevich integral. The
Kontsevich Integral is the knot theoretic prototype of a homomorphic expansion.
Homomorphic expansions (a.k.a. formality isomorphisms, well-behaved universal
finite type invariants) provide a connection between knot theory and quantum
algebra/Lie theory. We begin with a short review of homomorphic expansions
from an algebraic perspective, which is outlined – in a slightly different, finitely
presentated case – in [BND17, Section 2]. Kontsevich’s original construction
gives an invariant of unframed links; for a detailed introduction, we recommend
[CDM12, Section 8], or [Kon93,BN95,Dan10]. In this paper we work primarily
with framed links and tangles, thus we briefly review the framed versions of the
Vassiliev filtration and Kontsevich integral; for more detail see [CDM12, Sections
3.5 and 9.1] and [LM96].

sec:hom_exp
3.1.1. Homomorphic expansions. Let g:caLKK denote a given set of knots, links or tan-
gles in R3 (e.g., oriented knots), and allow formal linear combinations with coef-
ficients in C. For links and tangles, allow only linear combinations of embeddings
of the same skeleton3. The Vassiliev filtration (defined in terms of resolutions of
double points  “ !´") is a decreasing filtration on this linear extension:

CK “ K0 Ě K1 Ě K2 Ě ...

The degree completed associated graded space of CK with respect to the Vas-
siliev filtration is

A :“
ź

ně0

Kn{Kn`1.

An expansion is a filtered linear map Z : CK Ñ A, such that the associated
graded map of Z is the identity grZ “ idA.

Usually, K is equipped with additional operations: examples are knot con-
nected sum, tangle composition, strand orientation reversal, etc. Homomorphic
expansions are compatible with these operations, and thus allow for a study of K
via the more tractable associated graded spaces.

Specifically, an expansion is homomorphic with respect to an operation m, if it
intertwinesm with its associated graded operation on A. That is, Z˝m “ grm˝Z.
A crucial step towards making effective use of this machinery is to get a handle
on the space A in concrete terms: for example, in classical knot theory, A has a
combinatorial description as a space of chord diagrams [CDM12, Chapter 4].

There is a natural map ψ from chord diagrams with i chords to Ki{Ki`1,
defined by “contracting chords” as in Figure 1. It is not difficult to establish that

3The skeleton of a knotted object is the underlying combinatorial object. For example:
the skeleton of a link is the number of components; the skeleton of a braid is the underlying
permutation; the skeleton of a tangle is the number of strands, connectivity, and number of
circle components. In these contexts CK is a disjoint union of vector spaces, rather than a
single vector space.
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ÞÑ
ψ

Figure 1. Example of ψ mapping a chord diagram to a knot
with double points by contracting the chords. The right-hand
side represents a well-defined element in K3{K4.fig:psionchord

ψ is surjective. In the case of classical (oriented, unframed) knots, there are two
relations in the kernel of ψ: the 4-Term (4T) and Framing Independence (FI)
relations, shown in Figure 2. In fact, these two relations generate the kernel,
and ψ descends to an isomorphism on the quotient; this, however, is significantly
harder to prove.

0
FI
“0

4T
“´``´

Figure 2. The 4T and FI relations, understood as local relations:
the strand(s) are part(s) of the skeleton circle, and the skeleton
may support additional chords outside the picture shown.fig:4TFI

The key technique is to construct an expansion as in the following Lemma,
[BND17, Proposition 2.7]:

Lemma 3.1. [BND17] Let CK be a filtered vector space (or union of vectorlem:assocgradyoga
spaces), and A the associated graded space of CK. Let C be a “candidate model” for
A: a graded linear space equipped with a surjective homogeneous map ψ : C Ñ A.
If there exists a filtered map Z : CK Ñ C, such that ψ ˝ grZ “ idA, then ψ is an
isomorphism and ψ ˝ Z is an expansion for K.

CK C A C

A A

Z

ψ

grZ

ψ˝grZ“idA ψ
gr

In other words, once one finds a candidate model C for A, finding an expansion
valued in C also implies that ψ is an isomorphism. In classical Vassiliev theory, K
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is the space of oriented knots, C is the space of chord diagrams, and a C-valued
expansion is the Kontsevich integral [Kon93].

subsubsec:Framing
3.1.2. Framed theory. In this paper we work with framed links and tangles, so we
give a brief introduction to the framed version of the general theory summarised
in the previous section. For simplicity, we consider links for now.

Let g:claKK̃ denote the set of framed links in R3: that is, links along with a non-zero
section of the normal bundle. A link diagram is interpreted as a framed link using
the blackboard framing. The Reidemeister move R1 move changes the blackboard
framing, and by ommitting it, one obtains a Reidemeister theory for framed links.
In analogy with a double point, a framing change is defined to be the difference

:“ ´ .

The framed Vassiliev filtration is the descending filtration

K̃ “ K̃0 Ě K̃1 Ě K̃2 Ě ...

where g:tcalKiK̃i is linearly generated by knots with at least i double points or framing
changes. The degree completed associated graded space of K̃ with respect to the
framed Vassiliev filtration is

Ã :“
ź

ně0

K̃n{K̃n`1.

A natural first guess for a combinatorial description of Ã is in terms of chord

diagrams with “framing change markings” on the skeleton, graded by the num-
ber of chords and markings. There is a natural surjective graded map ψ̃ from
marked chord diagrams onto Ã, which is contracts chords as in the classical case,

and which replaces each marking with a framing change . The kernel of ψ̃
includes the 4T relation as before.

In place of the FI relation ( =0), a weaker relation arises from the equality

´ “ in K̃. In fact, “ ´ “ p ´ q`p ´ q, and ´ “ ´

modulo K̃2. In other words, the following relation is in the kernel of ψ̃:

“ 2 .

Therefore, it is not necessary to have dedicated notation for the framing change

markings, since “ 1
2 . The candidate model for the associated graded space is

simply chord diagrams modulo the 4T relation, and no FI relation. We denote
this space by C̃.

To show that ψ̃ : C̃ Ñ Ã is an isomorphism, it is enough to construct a C̃-valued
expansion and use Lemma 3.1. This C̃-valued expansion is the framed version Z̃
of the Kontsevich integral. For details of this construction see [CDM12, Section
9.1], or [LM96,Gor99].
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B0
B1 B2 B3

ξ

ν

Figure 3. D3 with an immersed loop from ‚ to ˚ with initial
tangent vector ξ and terminal tangent vector ´ξ. The path along
the boundary from ˚ to ‚ is ν.fig:DP

γ1 ¨ γ2

γ1 γ2

1 P π̃ γ γ´1

Figure 4. The group structure on π̃.fig:DPGroup

subsec:IntroGT
3.2. The Goldman-Turaev Lie bialgebra. In order to define the Goldman-
Turaev Lie bialgebra, we need to recall some basic definitions and notation.

Let g:DpDp denote p-punctured disc, with p`1 circle boundary components B0, B1, ..., Bp,
embedded in the complex plane so that B0 is the outer boundary, as in Figure 3.
In particular, the plane-embedding specifies a framing (trivialisation of the tan-
gent bundle) on Dp, and thus immersed loops in Dp are equipped with a notion
of rotation number.

Let g:piπ “ π1pDp, ˚q denote the fundamental group of Dp with basepoint ˚ P B0.
We denote by g:CpiCπ the group algebra of π.

We also need to consider based paths. Let ‚ and ˚ be two “nearby” basepoints
on B0 and g:xiξ be the direction of the inward pointing normal vector to B0 at ‚ and
˚. Let π̃ “ π̃‚˚ denote the set of regular homotopy classes of immersed curves
γ : pr0, 1s, 0, 1q Ñ pDp, ‚, ˚q, so that 9γp0q “ ξ, and 9γp1q “ ´ξ, as shown in
Figure 3. Note that the rotation number is invariant under regular homotopy.
Recall that g:tpiπ̃ is in fact a group, illustrated in Figure 4 and defined as follows:

(1) Let g:nuν denote the path from ‹ to ‚ along B0. The group product γ1 ¨ γ2 is
the smooth concatenation of γ1 with ν followed by γ2.
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(2) The group identity is the class of paths which, when composed with ν,
become contractible loops of rotation number zero.

(3) The inverse of γ is the concatenation ν γ ν˚ where the overline denotes the
reverse path, and ν˚ includes a negative twist (to ensure that the rotation
number of γ ¨ γ´1 is 0). The beginning and end of the path is adjusted in
an epsilon neighbourhood of the base points to have inward and outward
pointing tangent vectors, as in Figure 4.

Denote by g:CtpiCπ̃ the group algebra of π̃. There is a forgetful map π̃ Ñ π which
maps γ to the (non-regular) homotopy class of γ ν. This linearly extends to a
forgetful map Cπ̃ Ñ Cπ.

For an algebra A we denote by |A| the linear4 quotient A{rA,As, where rA,As

denotes the subspace spanned by commutators rx, ys “ xy ´ yx for x, y P A. We
denote the quotient (trace) map by | ¨ | : A Ñ |A|. In our context, g:aCpi|Cπ| has an
explicit description as the C-vector space generated by homotopy classes of free
loops in Dp. In a similar but more subtle fashion, g:abstCpi|Cπ̃| is spanned by regular
homotopy classes of immersed free loops, where |γ| denotes the class of γν as a
free immersed loop.

The Goldman–Turaev Lie bialgebra comes in two flavours: original and en-
hanced. The original construction of the Goldman bracket is a Lie bracket on |Cπ|.
However, the original Turaev cobracket is only well-defined on g:Cpba|Cπ| “ |Cπ|{C1,
the linear quotient by the homotopy class of the constant loop. The space |Cπ|

is a Lie bialgebra with this cobracket and the Goldman bracket, which descends
from |Cπ|. There is an enhancement [AKKN18b] of the cobracket, which pro-
motes it to |Cπ|, thereby making |Cπ| a Lie bialgebra under the Goldman bracket
and the enhanced cobracket. In [AKKN18b] this enhancement is necessary in
order to establish the relationship between the Goldman-Turaev Lie bialgebra
and Kashiwara–Vergne theory. To define the enhanced cobracket, a curve in |Cπ|

is lifted to an immersed curve with a fixed rotation number. Below we review
the definitions of the Goldman bracket and the enhanced version of the Turaev
cobracket.

The Goldman Bracket sums over smoothing intersections between two free
loops. For a free loop α in |Cπ| and a point q on α, denote by αq the loop α
based at q.

def:bracket Definition 3.2 (The Goldman bracket). Let α, β P |Cπ| be free loops with ho-
motopy representatives chosen so that there are only finitely many transverse dou-
ble intersections between α and β. The Goldman bracket g:Gbrackr¨, ¨sG : |Cπ| b |Cπ| Ñ

|Cπ| is given by

rα, βsG :“ ´
ÿ

qPαXβ

εq|αqβq|,

4Not to be confused with the abelianisation of A. In particular, |A| does not inherit an
algebra structure from A.
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p
9γp19γp2

µ
b

Figure 5. Example of the self intersection map µ where ϵp “ ´1.fig:defmu

where εq “ εp 9αq, 9βqq P t˘1u is the local intersection number of α and β at q,
αqβq is the concatenation of αq and βq, and the extension to |Cπ| is linear. Then
one easily checks that r¨, ¨sG is a Lie bracket on |Cπ|.

The sign here (with the
minus sign in front)
matches with AKKN
genus 0, but is the
opposite of AKKN higher
genus and Goldman’s
original definition. Our
current multiplication
and bracket matches the
sign here, so if we change
the sign then we should
change the stacking order
of our multiplication.

The original definition of the Turaev cobracket is similar, but uses self intersec-
tions of a curve in place of the intersections between two curves. Unfortunately, it
is not well-defined with respect to the Reidemeister 1 relation for free homotopy
curves, hence the need for the enhancement. We construct the (enhanced) co-
bracket via a self-intersection map for based curves, as in [AKKN18b, Section 5.2];
this definition lends itself well to direct comparison with the three-dimensional
operations of Section 5. For a based curve γ in Cπ, the idea is to “snip off” por-
tions of γ at self intersection points to get two curves, one of which is based and
the other free. Figure 5 shows an example.

def:mu Definition 3.3 (The self-intersection map). For γ P Cπ, let γ̃ P Cπ̃ denote a
path such that γ̃ν is homotopic to γ; and such that γ̃ has only transverse double
points, and rotpγ̃q “ 1{2 (hence, rotpγ̃νq “ 0). Let γ̃X γ̃ denote the set of double
points. The self intersection map g:muµ is defined as follows:

µ : Cπ Ñ |Cπ| b Cπ

µpγq “ ´
ÿ

pPγ̃Xγ̃

εp|γ̃tp1t
p
2
| b γ̃0tp1 γ̃t

p
21
,

where tp1 and tp2 are the first and second time parameter in r0, 1s where γ̃ goes
through p; where γ̃rs denotes the path traced by γ̃ from t “ r to t “ s; the sign
εp “ ε

´

9̃γptp1q, 9̃γptp2q

¯

P t˘1u is the local self-intersection number; and the formula
extends to Cπ linearly.

The Turaev cobracket is obtained from µ by closing off the path component
and making the tensor product alternating: this descends to a map on |Cπ|, as
follows.

def:cobrac Definition 3.4. [The Turaev co-bracket] The Turaev cobracket g:delδ is the unique
linear map which makes the following diagram commute, where g:altAltpx b yq “

xby´ybx “ x^y, and g:deltildeδ̃ denotes the composition of µ with closure, alternation
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and a framing correction, as shown:

γ P Cπ |Cπ| b Cπ |Cπ| b |Cπ|

|Cπ| ^ |Cπ|

|Cπ| |Cπ| ^ |Cπ|

µ

| ¨ |
δ̃

1 b | ¨ |

Alt

`|γ| ^ 1

δ

sec:gr_bialgebra
3.3. Associated graded Goldman-Turaev Lie bialgebra. There I-adic fil-
tration on Cπ is the filtration by powers of the augmentation ideal g:II “ xtα ´

1uαPπy:
Cπ “ I0 Ě I Ě I2 Ě ...

By the 1930’s work of Magnus [Mag35], the associated graded algebra of Cπ with
respect to this filtration is the degree completed free algebra g:FAFA “ FAxx1, ¨ ¨ ¨ , xpy:

Proposition 3.5. Given the set of standard generators tγiu
p
i“1 for π, there is

an isomorphism of algebras grCπ Ñ FA and the exponential expansion φpγ˘1
i q “

e˘xi is a homomorphic expansion.

The I-adic filtration of Cπ descends to a filtration on |Cπ|:

|Cπ| “ |I0| Ě |I| Ě |I2| Ě ...

The completed associated graded vector space for |Cπ| with respect to this filtra-
tion is, by definition

g:grCpigr |Cπ| “

8
ź

n“0

|In|{|In`1|.

There is an isomorphism gr |Cπ| – |FA |, where g:absFA|FA | denotes the linear quotient
|FA | “ FA {rFA,FAs, and the exponential expansion descends to a homomorphic
expansion for |Cπ|. The vector space |FA | is spanned by cyclic words in letters
x1, ¨ ¨ ¨ , xp, that is, words modulo cyclic permutations of the letters.

Therefore, |FA | carries the structure of a Lie bialgebra under grr¨, ¨sG and gr δ
[AKKN18a, Section 3]. Note that the Goldman bracket and the Turaev co-bracket
are not strictly filtered maps, as they both shift filtered degree down by one5. For
example, if x P |Ir| and y P |Is|, then rx, ysG P |Ir`s´1|. Correspondingly, the
associated graded operations are maps of degree ´1.

Figure 6 shows a schematic calculation of the graded Goldman bracket, with
cyclic words represented diagrammatically as letters along a circle. The graded
Goldman bracket sums over matching pairs of letters in z and w, joins the circles
at the matching letter, and takes the difference of the two ways of including

5In [AKKN18a, Sections 3.3, 3.4] the down-shifts are by up to two filtered degrees, as the
generating curves around genera and those around boundary components carry different weights.
In our genus zero setting this translates to a degree shift of ´1.
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x x

grG, =
ř

matching
pairs

´
x

x

Figure 6. A schematic diagrammatic example of the graded
Goldman bracket.fig:grbracket

x x

x x

µgr

ř

pairing
cuts

Figure 7. A schematic diagrammatic example of the graded Self-
intersection map, grµ.fig:grmu

only one copy of the letter in the new cyclic word. Stated algebraically, this is
summarised as follows:

Proposition 3.6. [AKKN18a, Section 3.3] Let z “ |z1 ¨ ¨ ¨ zl| and w “ |w1 ¨ ¨ ¨wm|prop:gr_bracket_def
be two cyclic words in |FA |. The graded Goldman bracket

gr pr´,´sGq “ g:grGbracr´,´sgrG : |FA | b |FA | Ñ |FA |

is given by:

rz, wsgrG “
ÿ

j,k

δzj ,wk
p|w1 . . . wk´1zj`1 . . . zlz1 . . . zjwk`1 . . . wm|´

|w1 . . . wk´1zj . . . zlz1 . . . zj´1wk`1 . . . wm|q,

where δzj ,wk
is the Kronecker delta.

Figure 7 shows a schematic diagrammatic calculation of the graded self-intersection
map µgr, as a sum over pairing cuts. A pairing cut identifies two matching letters
in a word, and splits the word along a chord connecting these matching letters.
The graded self-intersection map outputs the tensor product of the resulting cyclic
word and the remainder of the associative word. (The framing term |γ| ^1 in the
definition of δ does not contribute to the associated graded cobracket, since it is
in filtered degree 0.) In summary:

prop:gr_mu Proposition 3.7. [AKKN18a, Section 3.4] Let w “ w1 . . . wm P Asp. The
graded self-intersection map

grpµq “ g:grmuµgr : FA Ñ |FA | b FA
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A.

x

x
pairing
cut

x x

B.

x

x

δgr ř

pairing
cuts

x x

Figure 8. (A.) An example pairing cut of a cyclic word. (B.)
An example of the graded Turaev cobracket as a sum over pairing
cuts of a cyclic word.fig:paircut

is given by:

µgrpwq “
ÿ

jăk

δwj ,wk
p|wj . . . wk´1| b w1 . . . wj´1wk`1...wm´

|wj`1 . . . wk´1| b w1 . . . wjwk`1 . . . wmq,

where δwj ,wk
denotes the Kronecker delta.

Figure 8(A.) shows a schematic diagrammatic definition of the graded Turaev
co-bracket, again as a sum over pairing cuts. A pairing cut in a cyclic word
identifies a pair of coinciding letters, and cuts the cycle into two cycles along
the chord connecting the matching letters. To obtain the cobracket, one takes
a sum of wedge products of the resulting split cyclic words, adding one copy of
the coinciding letter to either side, as shown in Figure 8(B.) and expressed in
formulas below:

prop:gr_del Proposition 3.8. [AKKN18a, Section 3.4] Let w “ w1 . . . wm P |Asp|. The
graded Turaev cobracket

grpδq “ g:grdelδgr : |FA | Ñ |FA | ^ |FA |

is given by

δgrpwq “
ÿ

jăk

δwj ,wk
p|wj . . . wk´1| ^ |wk`1 . . . wmw1 . . . wj´1|`

|wk . . . wmw1 . . . wj´1| ^ |wj`1 . . . wk´1|q,

where δwj ,wk
denotes the Kronecker delta6.

6Apologies for the notation clash.
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Figure 9. An example of a tangle in M3, drawn first in a han-
dlebody, then in a cube with poles, and lastly as a tangle diagram
projected to the back wall of the cube.fig:polestudio

4. Expansions for tangles in handlebodies
sec:TangleSetUpsec:framed_tangles

4.1. Framed oriented tangles. This section introduces the space g:ctTCT̃ of framed,
oriented tangles in a genus p handlebody, with formal linear combinations. Our
main result – proven in Section 5 – is that homomorphic expansions on CT̃ induce
homomorphic expansions on the Goldman-Turaev Lie biagebra.

Let g:MpMp denote the manifold Dp ˆ I where Dp is a disc in the complex plane
with p points removed. While Mp is not a compact manifold, knot theory in
Mp is equivalent to knot theory in a genus p handlebody. For the purpose of the
Kontsevich integral, we identify Dp with a unit square r0, 1s`r0, is in the complex
plane with p points removed, so Mp can be drawn as a cube with p vertical lines
removed; we call these lines poles, as shown in the middle in Figure 9. We refer
to Dp ˆ t0u as the “floor” or “bottom”, and Dp ˆ t1u as the “ceiling” or “top”. The
“back wall” is the face ri, i` 1s ˆ r0, 1s. We refer to the i P C direction as North.

def:tangle Definition 4.1. An oriented tangle T in Mp is an embedding of an oriented
compact 1-manifold

pS, BSq ãÑ pMp, Dp ˆ t0u YDp ˆ t1uq.

The interior of S lies in the interior of Mp, and the boundary points of S are
mapped to the top or bottom. Oriented tangles in Mp are considered up to
ambient isotopy fixing the boundary. We denote the set of isotopy classes by T .
An example is shown in Figure 9.

def:framed_tangles Definition 4.2. A framing for an oriented tangle T in Mp is a continuous choice
of unit normal vector at each point of T , which is fixed pointing North at the
boundary points. Framed oriented tangles inMp are also considered up to ambient
isotopy fixing the boundary. We denote the set of isotopy classes of framed
oriented tangles by g:tTT̃ .

Henceforth, any tangle is assumed to be framed and oriented unless otherwise
stated. The skeleton of a tangle is the underlying combinatorial information with
the topology forgotten:
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p1, 0q p5, 0q p1, 0q p5, 0q

Figure 10. On the left is a tangle in M2, and on the
right is schematic diagram of the skeleton of the tan-
gle. The skeleton of the tangle is the combinatorial data
given by the following set of order pairs and the integer 1:
trpp2, 0q, 0q, pp1, 0q, 0qqs, rpp3, 0q, 0q, p4, 0q, 0qqs, rpp5, 0q, 1q, p5, 0q, 0qqs, 1u

.fig:skeleton

def:skeleton Definition 4.3. The skeleton σpT q of a tangle T “ pS ãÑ Mpq – see Figure 10 –
is the set of tangle endpoints Pbot Ď Dp ˆ t0u and Ptop Ď Dp ˆ t1u, along with

(1) A partition of PbotYPtop into ordered pairs given by the oriented intervals
of S.

(2) A non-negative integer k: the number of circles in S.

The skeleton of a framed tangle is the same as the skeleton of the underlying
unframed tangle. The set of framed tangles in Mp with skeleton S is denoted
T̃ pSq. For example, T̃ p q is the set of framed knots in Mp.

The linear extension of T̃ pSq, denoted CT̃ pSq, is the vector space of C-linear
combinations of tangles in T̃ pSq. We denote by CT̃ the disjoint union \S T̃ pSq

over all skeleta S. Tangles with different skeleta cannot be linearly combined.
One may represent tangles in Mp using tangle diagrams in (at least) two dif-

ferent ways: by projecting to the back wall of Mp or to the floor.
Projecting to the back wall, an ℓ-component tangle in Mp can be diagrammat-

ically represented as a tangle diagram with p straight vertical poles, and ℓ tangle
strands of circle and interval components. The strands pass over (in front of) and
under (behind) the poles and other strands, as shown on the right in Figure 9.
The poles are oriented upwards. By Reidemeister’s theorem, T̃ is in bijection
with such diagrams modulo the Reidemeister moves R2 and R3, and the framed
version of R1.

By projecting instead to the floor Dp ˆ t0u, a tangle in Mp is represented by a
tangle diagram in Dp. The R2 and R3 moves continue to apply. The endpoints
of the tangle are fixed: bottom endpoints are denoted by dots, top endpoints are
denoted by stars. Strands of the tangle diagram can pass over bottom endpoints,
or under top endpoints, as shown in Figure 11. However, the strands cannot pass
across the punctures in Dp.
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ÝÑ

“ “

Figure 11. An example of a tangle in M3 projected to the bot-
tom floor of the cube. Strands of a tangle diagram can pass over
bottom endpoints (dot) or under top endpoints (star).fig:BottomDiagram

sec:opsonT
4.2. Operations on T̃ . There are several useful operations defined on T̃ . These
operations extend linearly to CT̃ , and are used in Section 5 to relate quotients of
CT̃ to the Goldman-Turaev Lie bialgebra.

‚ Stacking product: Given tangles T1, T2 P Mp, if the top endpoints of σpT1q

coincide with the bottom endpoints of σpT2q in Dp, and the orientations
on the strands of T1 and T2 agree, then the product T1T2 is the tangle
obtained by stacking T2 on top of T1.

‚ Strand addition: The strand addition operation adds a non-interacting
additional strand to a tangle T at a point q P Dp to get a new tangle
T\q Ò. More precisely, pick a contractible U Ď Dp such that T is con-
tained entirely in U ˆ r0, 1s and a point q P Dp outside of U . The tangle
T\q Ò is T together with an upward-oriented vertical strand q ˆ I at q.

‚ Strand orientation switch: This operation reverses the orientation of a
given strand of the tangle.

‚ Flip: Given a tangle T in Mp, the flip of a tangle T in Mp, denoted
g:fliT 7, is the mirror image of T with respect to the ceiling, as shown in
Figure 12. When T is flipped, each top boundary point pq, 1q becomes
a bottom boundary point pq, 0q, and vice versa. The orientations and
framing of the strands of T are reflected along with the strands. However,
the orientations of the poles remain ascending. Equivalently, the flip
operation can be defined as reversing the parametrisation of I in Mp –

Dp ˆ I. This, in effect, flips the orientation of the poles but changes
nothing else.

In Section 5.1, we show that the stacking commutator of tangles, given by
rT1, T2s “ T1T2 ´T2T1, induces to the Goldman bracket in the sense of Section 2.
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7
ÝÑ

Figure 12. A tangle in M2 and its flipfig:flip

In Section 5.2 a similar but more subtle argument relates the flip operation to
the Turaev cobracket.

sec:t-filtration
4.3. The t-filtration on T̃ and the associated graded Ã. In setting up a
theory of Vassiliev invariants for T̃ , there are different filtrations to consider. In
line with classical notation of Vassiliev invariants, we denote by a double point
the difference between an over-crossing and an under-crossing:

“ ´ .

Double points, however, come in two varieties: pole-strand, if the crossing occurs
between a pole and a tangle strand, and strand-strand, if the crossing occurs
between two tangle strands. As the poles are fixed, they never cross each other,
hence, there are no pole-pole double points.

The main filtration we consider on CT̃ is the filtration by the total number of
double points of either type, as well as strand framing changes (as in Section 3.1).
We call this the total filtration, or t-filtration for short, and write it as

CT̃ “ T̃0 Ě T̃1 Ě T̃2 Ě T̃3 Ě ¨ ¨ ¨

where g:tTtT̃t is the set of linear combinations of framed tangle diagrams with at least
t total double points and strand framing changes. In spirit, this filtration comes
from the diagrammatic view of projecting to the back wall of the cube.

Dror thinks we should
remove the last sentence The associated graded space of CT̃ with respect to the total filtration is

g:tAÃ :“ grCT̃ “
ź

tě0

T̃t{T̃t`1.

The degree t component of Ã is g:tAtÃt :“ T̃t{T̃t`1.
As in classical Vassiliev theory (cf. section 3.1), the associated graded space Ã

has a combinatorial description in terms of chord diagrams.

Definition 4.4. A chord diagram on a tangle skeleton is an even number of
marked points on the poles and skeleton strands, up to orientation preserving
diffeomorphism, along with a perfect matching on the marked points – that is,
a partition of marked points into unordered pairs. In diagrams, the pairs are
connected by a chord, indicated by a dashed line, as in Figure 13.
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Figure 13. Two chord diagrams: an admissible one (left), and a
non-admissible one (right) that does contain a pole-pole chord.fig:AdmissibleNonAdmissible

“ 0+ ´ ´

Figure 14. The 4T relation, which is admissible if at most one
of the three skeleton components is a pole.fig:Admissible 4T

def:admissible Definition 4.5. A chord diagram is admissible if all chords connect strands to
strands, or strands to poles, but there are no pole-pole chords. See Figure 13 for
examples.

def:cdspace Definition 4.6. The space g:DsDpSq of admissible chord diagrams on a skeleton S is
the space of C-linear combinations of admissible chord diagrams on the skeleton
S, modulo admissible 4T relations, shown in Figure 14. Admissible 4T relations
are 4T relations where all four terms are admissible7. That is,

DpSq “
Cxadmissible chord diagrams on S

D

␣

admissible 4T relationsu

The space DpSq is a graded vector space, where the degree is given by the number
of chords. Denote the degree t component of DpSq by g:DstDtpSq. Let g:DD denote
the disjoint union \SDpSq, and denote the degree t component of D by g:DtDt “

\SDtpSq.

The well-known map g:psiψ : D Ñ Ã from classical Vassiliev theory is defined as
follows. In degree t, ψt : Dt Ñ T̃t{T̃t`1, “contracts” the t chords to double points,
as shown in Figure 15. This may create other crossings, but modulo T̃t`1 the
over/under information at these crossings does not matter.

lem:psi Lemma 4.7. The map ψ is well-defined and surjective.

Proof. To show ψ is well-defined, it suffices to show that admissible 4T relations
in Dt are in the kernel of ψ. This is the standard “lasso trick” recalled in Figure 16
. For surjectivity, recall from Section 3.1.2 that a framing change in Ã is half of

citation needed

7Equivalently, a 4T relation is admissible if at most one of the three skeleton components
involved is a pole.
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ÞÑ
ψ

Figure 15. Example of ψ with the right hand side viewed as an
element of T̃3{T̃4. Different choices of over or under crossings with
the poles only differ by elements of T̃4.fig:psi

ψ ´ ` ` ´ “ ´ ` ` ´

“ ´ “ 0

Figure 16. Showing that ψ : D Ñ Ã is well defined. The figure
is understood locally: in degree t the chord diagrams have t ´ 2
other chords elsewhere, and correspondingly the tangles have t´2
other double points elsewhere.fig:psicomputation

chord. So, both framing changes and double points are in the image of ψ, and
thus ψ is surjective. □

According to Lemma 3.1, in order to show that it ψ is an isomorphism, one
needs to find an expansion valued in D.

thm:Zwelldefined Lemma 4.8. The framed Kontsevich integral Z : CT̃ Ñ D satisfies the condi-
tions of Lemma 3.1: it is filtered, and ψ ˝ grZ “ idÃ.

Proof. This is a variant of a standard fact [Kon93]; one detailed explanation is
in [BN95, Section 4.3]. A small point to verify is that the image of Z on an element
of CT̃ is an admissible chord diagram. This is immediate from the definition of
the Kontsevich integral: the poles are parallel, hence the coefficient of a chord
diagram with a pole-pole chord is computed by integrating zero. The main part,
that ψ ˝ grZ “ idÃ, is done as in [BN95, Section 4.4.2, Thm 1 part (3)]. □

The next corollary is then immediate from Lemma 3.1:

cor:grcd Corollary 4.9. The map ψ : D Ñ Ã is an isomorphism, and Z is an expansion
for T̃ .
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7
p´1q3

Figure 17. An example chord diagram and its flip.fig:chorddiagoperations

After identifying Ã with D, the degree t component of Ã, Ãt “ T̃t{T̃t`1, consists
of all admissible chord diagrams in Ã with exactly t chords.

For a skeleton S, we denote by g:tASÃpSq the space of admissible chord diagrams
on the skeleton S, so ÃpSq is the associated graded vector space of CT̃ pSq. For
example, Ãp q is the associated graded vector space of the space of knots in Mp.

4.4. Operations on Ã. The tangle operations stacking, strand addition, strand
orientation switch, and flip on T̃ induce associated graded operations by the same
names on Ã. In view of Corollary 4.9, we give descriptions of these operations
using chord diagrams.

The operation stacking is given by concatenating the skeleta of two chord
diagrams (as long as they have the same number of poles, and the top endpoints
of one match the bottom endpoints of the other, including orientations).

The associated graded strand addition operation adds a vertical skeleton strand
to a chord diagram. The new strand has no chord endings.

The associated graded strand orientation switch for strand e switches the ori-
entation of the strand e, and multiplies each chord diagram with p´1q to the
power of the number of chord endings on e. The sign arises from the fact that
reversing the orientation of e changes the signs of double points between e and
any other distinct strand or pole.

The associated graded operation flip, denoted by 7, reflects a chord diagram
with respect to a “mirror on the ceiling”; then reverses the orientations of the
poles so that they are oriented upwards, as in see Figure 17; and multiplies by
a factor of p´1qm, where m is the total number of chord endings on the poles.
The factor of p´1qm arises from the pole orientation reversals, as this changes the
signs of any pole-strand double points. 17.

The following proposition is straightforward from the definition of Z.

prop:Zhomom Proposition 4.10. The Kontsevich integral Z intertwines stacking, strand addi-
tions, orientation reversals and flips with their associated graded operations. □

sec:s-sfiltration
4.5. The s-filtration on T̃ and Ã. Recall from Section 4.3 that the total filtra-
tion on CT̃ is given by strand framing changes and double points between strands
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with poles and strands with strands. In this section we introduce a second fil-
tration on CT̃ , given by strand framing changes, and only strand-strand double
points. We call this the strand filtration, or simply s-filtration.

We use subscripts for the s-filtration:

CT̃ “ T̃ 0 Ě T̃ 1 Ě T̃ 2 Ě T̃ 3 Ě ¨ ¨ ¨ ,

where g:tTsT̃ s Ď CT̃ is spanned by tangles with at least s strand framing changes or
strand double points.

Remark 4.11. The associated graded structure of CT̃ with respect to the s-
filtration was studied by Habiro and Massuyeau in [HM21], as part of their work
on bottom tangles8. Yet we do not apply the associated graded functor to the s-
filtration, but rather, quotient only by T̃ 1 and T̃ 2 to identify the Goldman-Turaev
spaces and operations in Section 5.

this might be a good
place to add a remark
about how emergent
knots arise in this
context.

In turn, the s-filtration induces a filtration on Ã, as follows. Let g:tTstT̃ s
t denote

T̃t X T̃ s: that is, the linear span of tangles in CT̃ , which that have at least t
double points or framing changes, at least s of which are strand-strand double
points or framing changes.

def:filtrationQuotientNotation Definition 4.12. Denote by g:tAtgeqsÃěs the s-filtered component of Ã:

Ãěs :“
ź

T̃ s
t {T̃ s

t`1.

Explicitly, Ãěs is spanned by chord diagrams with at least s strand-strand chords.

For strand-strand chords we will use the shorthand word s-chords. Note that
the number of s-chords is only a filtration, not itself grading on Ã, as the 4T
relation is not homogeneous with respect to the number of s-chords.

prop:ZrespectsS Proposition 4.13. The Kontsevich integral Z is a filtered map with respect to
the s-filtration.

Proof. This is a close analogue of Theorem 4.8. As strand-strand double points
correspond to strand-strand chords via the identification ψ of the associated
graded space with chord diagrams, the proof translates verbatim from [BN95, Sec-
tion 4.3]. □

sec:Conway
4.6. The Conway quotient. In this section we introduce the last necessary
ingredient for identifying the Goldman-Turaev operations: the Conway quotient
of CT̃ . This is essentially the Conway skein module of tangles in Mp, but without
fixing the value of the unknot. We show that the Kontsevich integral descends to
the Conway quotient.

8Projecting to the bottom of the cube rather than the back wall makes the strand filtration
the natural Vassiliev filtration to consider.
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def:conway Definition 4.14. The Conway quotient of CT̃ , denoted g:CtnabCT̃∇, is given by

CT̃∇ :“ CT̃ JaK
M

´ “ pe
a
2 ´ e´a

2 q ,

where g:aa is a formal variable of t and s degree 1, and the skein relation is restricted
to strand-strand crossings. We use the shorthand g:bb :“ e

a
2 ´ e´a

2 .

The t and s filtrations on CT̃ induce filtrations on CT̃∇. Let g:tTnabsT̃ s
∇ denote the

s-filtered component in the s-filtration of CT̃∇. Let g:tTnabtT̃ ∇,t denote the t-filtered
component in the total filtration of CT̃∇, and g:tAnabÃ∇ :“ grt CT̃∇ “

ś

T̃∇,t{T̃∇,t`1

denote the associated graded algebra of CT̃∇ with respect the total filtration. Let
g:tanabtÃ∇,t denote the degree t component of Ã∇, g:tAnabsÃs

∇ be the s-th filtered component, and
g:tAnabtsÃs
∇,t “ Ã∇,t X Ãs

∇. We now show that Ã∇ has a chord diagrammatic description
similar to Corollary 4.9. Recall that D is the space of chord diagrams on tangle
skeleta, modulo admissible 4T relations.

def:D_con Definition 4.15. The conway quotient of D is given by

g:DnabD∇ :“ DJaK
N

“ a , “ a

where the new relations are restricted to chords on strand skeleton components
(not poles).

Note that the two new relations in D∇ are equivalent, shown in both combina-
tions of orientations for convenience. Furthermore, the relations are homogeneous
(respect the t-grading) on D, and therefore D∇ is also graded by the sum of the
total number of chords and the exponent of a. The next theorem shows that
Ã∇ – D∇: this essentially follows from the results of [LM95]. For completeness
we present a direct proof.

thm:Z_conway Theorem 4.16. The isomorphism ψ descends to an isomorphism ψ∇ : Ã∇ – D∇,
and the Kontsevich integral descends to an expansion g:ZnabZ∇ : CT̃∇ Ñ D∇.

Proof. First we show that ψ descends to a surjective graded map ψ : D∇ Ñ Ã∇.
To show that ψ is well-defined, we need to show that the Conway relations in D∇

is in the kernel. We verify one of the two equivalent relations:

ψ
´

´ a
¯

“ ´ a “ a ´ a “ 0.

Next, we verify that the Kontsevich integral Z descends to a map CT̃∇ Ñ Ã∇

by verifying the relations in CT̃∇. We do this first at the level of tangles with two
bottom and two top endpoints (directly above). Recall that the Kontsevich inte-
gral is invariant under both total horizontal and total vertical rescaling, and hence
well-defined for such two-two tangles without specifying the distance between the
endpoints.

Recall that

Zp q “

´

e
C
2

¯

¨ , and Zp q “

´

e´C
2

¯

¨ ,
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where C denotes a chord, the exponential is interpreted formally as a power series
with the stacking multiplication, as shown in the first equality below. Using the
Conway relation, we compute:

Ck “ k
∇
“ ak k “ akp qk “

$

’

&

’

%

ak , if k is even

ak , if k is odd

Now applying Z to the left hand side of the Conway relation, we obtain

Zp q ´ Zp q “ pe
C
2 ´ e

´C
2 q

“

8
ÿ

k“0

ˆ

Ck

2kk!
´

p´1qkCk

2kk!

˙

“

8
ÿ

k“0

C2k`1

22kp2k ` 1q!

“

8
ÿ

k“0

a2k`1

22kp2k ` 1q!
“

8
ÿ

k“0

a2k`1

22kp2k ` 1q!

“ pe
a
2 ´ e´a

2 q

“ Z
´

pe
a
2 ´ e´a

2 q

¯

.

To see that the local verification above is sufficient, one needs to recall more
about the Kontsevich integral. Namely, Z is multiplicative with respect to the
stacking composition of tangles (with fixed endpoints), and asympototically com-
mutes with “distant disjoint unions”, and these two facts imply the global equality
(in fact, they lead to a combinatorial construction of Z for parenthesised tangles).
For details see [CDM12, Chapter 8].

Therefore, by Lemma 3.1, Z is a (homomorphic) expansion for CT̃∇ and ψ :

D∇ Ñ Ã∇ is an isomorphism. □

Let g:iι denote the composition of the natural embedding with the Conway quo-
tient map

ι : CT̃ Ñ CT̃ JaK Ñ CT̃∇.

The map ι is not injective, see for example Figure 18. However, it is surjective:
all C-linear combinations of tangles are in the image, and given a tangle T , bkT
is equal in CT̃∇ to a tangle with k double points, which is, in turn, a C-linear
combination of tangles.

def:conway_skel Definition 4.17. For skeleton S, let g:CtnabSCT̃∇pSq denote the image ιpCT̃ pSqq.

Note that while the skeleton fibration of CT̃ is a partition into disjoint fibers
CT̃ pSq, this is no longer true in CT̃∇ due to the non-injectivity of ι. For example,
the middle term of the equality in Figure 18 lies in both CT̃∇p q and CT̃∇p q.
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“ b ¨ p q “

P

CT̃∇p q

P

P CT̃∇p q

Figure 18. The map ι is not injective: The left hand side and
the right hand side are both elements of CT̃ , and equal in CT̃∇.
Skeleta in the Conway quotient are not a partition.fig:ConwaySkel

We will identify the Goldman-Turaev Lie bialebra in low-degree quotients of
the s-filtration of CT̃∇. The next few propositions establish the necessary under-
standing of these quotients. Denote by g:tTnabnT̃ {n the quotient T̃ {T̃ n, and similarly for
the Conway quotients, g:tTnabnT̃ {n

∇ denotes CT̃∇{T̃ n
∇ .

prop:nonabneeded Proposition 4.18. The map ι descends to a canonical isomorphism T̃ {1
∇ – T̃ {1.

Proof. The Conway relation applies only in s-filtered degree one and higher, and
hence has no effect on T̃ {1. □

In light of this, we write only T̃ {1, rather than T̃ {1
∇ . Now let g:tT1/2T̃ 1{2 denote T̃ 1{T̃ 2,

and g:tTnab1/2T̃ 1{2
∇ denote T̃ 1

∇{T̃ 2
∇ .

Finally, we establish a key technical result about low s-degree quotients of the
Conway quotient:

prop:divbybexists Proposition 4.19. The C-linear map given by post-composing ι with multiplica-
tion9 by b,

g:bhatpb : T̃ {1 Ñ T̃ {2
∇

is injective, and its image is T̃ 1{2
∇ .

Proof. We first prove that the image of pb is T̃ 1{2
∇ . The quotient T̃ {1 is spanned

by cosets of tangles T . It is immediate that the image of pb is contained in T̃ 1{2,
as pbpT q “ bT represents an element in T̃ 1.

Conversely, any element y P T̃ 1{2 is (non-uniquely) represented as a sum of
the form

řk
i“1 Ti ` b

řl
j“1 T

1
j , where Ti are tangles with one double point each,

and T 1
j are arbitrary tangles. Then, by the Conway relation, each Ti “ b ¨ TCi ,

where TCi denotes the tangle where the double point in Ti has been smoothed.
Thus, y “ b

´

řk
i“1 T

C
i `

řl
j“1 T

1
j

¯

, and therefore y is in the image of pb, and pb is

surjective onto T̃ 1{2
∇ .

To prove the injectivity of pb, we construct a one-sided inverse: a “division by
b” map g:bcheckqb on T̃ {2

∇ , as follows.

9In physics, multiplication by a variable b is denoted pb. Inspired by this notation, we will
denote division by b by qb.
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For a tangle diagram DT (representing a tangle T ) and a crossing x of DT , let
ϵpxq P t˘1u be the sign of x, and DT |xÑa

be the diagram DT with x replaced
by a smoothing. We first define a map qb from the free Crbs-module spanned by
tangle diagrams, to T̃ {1, as the linear extension of the following:

bkDT
qb

ÞÑ 0 if k ě 2,

bDT
qb

ÞÑ DT ,

DT
qb

ÞÑ
1

2

ÿ

x crossing of T

ϵpxqDT |xÑa
.

We claim that this descends to a well defined map qb : T̃ {2
∇ Ñ T̃ {1. It is

straightforward to check that the Reidemeister moves are in the kernel of qb. We
also need to verify that T̃ 2

∇ and the Conway relation are in the kernel.
An element of T̃ 2

∇ can be represented as a sum of terms bkDT P T̃ 2
∇ , where DT

is a tangle diagram with or without double points. If k ě 2 then qbpbkDT q “ 0.
If k “ 1, then DT has a double point, so qbpbDT q “ DT is zero in T̃ {1. If k “ 0,
then DT has at least two double points. Smoothing a crossing interferes with at
most one of the double points, so qbpDT q can be written as a sum of terms with
at least one double point each. Hence qbpDT q P T̃ 1 as well.

To show that the Conway relation vanishes, note that qbp q “ qbp! ´ "q is a
sum with two types of terms: those which smooth a crossing that is a part of the
double point, and those which smooth a crossing that is not. In the latter case,
the double points are unchanged, so these terms are in T̃ 1

∇ . From the terms where
the crossings forming the double point are smoothed, we get

qb
`

´
˘

“
1

2
´ p´1q

1

2
“ “ qb

`

b
˘

,

as the Conway relation requires. Thus, qb is well-defined on T̃ {2
∇ .

Finally, qb is clearly a one-sided inverse for pb, and therefore, pb is injective. □

cor:divbyb Corollary 4.20. The map pb : T̃ {1 Ñ T̃ 1{2
∇ is a C-linear isomorphism with inverse

qb : T̃ 1{2
∇ Ñ T̃ {1.

Notice that both pb and qb shift the filtered degrees. The Goldman-bracket and
Turaev cobracket are also degree-shifting, and these shifts will be realised by pb

and qb. The following fact in particular will be important in the construction of
the Goldman bracket:

lem:mbOnCircle Lemma 4.21. The map pb restricts to an injective C-linear map
pb : T̃ {1p q Ñ T̃ 1{2

∇ p q.

Proof. Elements of T̃ {1 are linearly generated by the cosets of knots. Given a
knot K, bK is equal in T̃ 1{2 to a difference of two two-component links, by a
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single use of the Conway relation. Hence, the codomain is T̃ 1{2p q. Injectivity
is inherited from pb on T̃ {1. □

Note that this restriction of pb is not surjective to T̃ 1{2p q, for example, two-
component links with a double point involving only one component are not in the
image.

We introduce the same notation on the associated graded side:

def:Anot Definition 4.22. Ã∇ is the quotient of ÃJaK by the chord diagram Conway
relation. For a skeleton S, let g:tAnabSÃ∇pSq denote the image gr ιpÃpSqq. Also, let
g:AslashsÃ{s :“ Ã{Ãěs and g:AnabslashsÃ{s

∇ :“ Ã∇{Ãěs
∇ .

By a straightforward calculation of the degree shifting associated graded maps
we obtain:

rem:grdivbyb Proposition 4.23. The associated graded map of pb is an isomorphism grpb “

pa : Ã{1 Ñ Ã1{2, which multiplies chord diagrams by a. The inverse is the iso-
morphism grqb “ qa : Ã1{2 Ñ Ã{1. The isomorphism qa divides by ‘a’ if a factor
of ‘a’ is available; otherwise uses the Conway relation to smooth an s-s chord
and obtain a factor of ‘a’ first. Furthermore, pa restricts to an injective map
pa : Ã{1p q Ñ Ã1{2p q. □

Do we need ∇’s on the
A’s here? If not, then
mabye we need a remark
about why we dont.

check what happens with
framed R1 when we mod
out by the first step of
the s-filtration...

5. Identifying the Goldman-Turaev Lie bialgebra
sec:IdentifyingGTinCON

In this section we establish our main results: we identify the Goldman-Turaev
Lie bialgebra in the low s-filtered degree quotients of CT̃ , and show that the
Kontsevich integral induces a homomorphic expansion. The arguments follow
the outline summarized in Section 2, and obtain the Goldman bracket and the
self-intersection map µ as induced operations. In turn, the homomorphicity of
the Kontsevich integral follows from the naturality of the construction.

sec:identifybracketinCON
5.1. The Goldman Bracket. Recall from Section 3.2 that Dp denotes the p-
punctured disc, π is its fundamental group, and |Cπ| is the linear quotient |Cπ| :“
Cπ{rCπ,Cπs, which is linearly generated by homotopy classes of free loops in Dp.
The Goldman bracket (Definition 3.2) is a lie bracket r¨, ¨sG : |Cπ| b |Cπ| Ñ |Cπ|.
We start by identifying |Cπ| in a low degree quotient of CT̃ p q through a map β
induced by the bottom projection.

prop:BotProj Proposition 5.1. The bottom projection Mp Ñ Dp ˆ t0u induces a surjective
filtered map

g:betaβ : CT̃ p q Ñ |Cπ|.

Proof. By the framed Reidemeister Theorem, framed knots in CT̃ p q are faith-
fully represented by knot diagrams in Dpˆt0u – regular projections to the bottom
with over/under information – modulo the framed Reidemeister moves (weak R1,
R2, and R3). Diagrammatically, the bottom projection forgets the over/under
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*

γ1 γ2 γp

Figure 19. The standard generating curves of π.fig:GenCurves

* *
1 2

1 2 1 2
β

|ÝÑ ´

´γ1γ
´1
2 γ1

“ γ1pγ
´1
2 ´ 1q P I

Figure 20. Example calculation demonstrating that β is a fil-
tered map.fig:BetaFiltered

information, in other words, imposes the relation ! “ ". The images of the Rei-
demeister moves follow from the corresponding moves generating homotopies of
immersed free loops, hence β is well-defined. The projection is clearly surjective
as any loop can be lifted to a framed knot by introducing arbitrary under/over
information at the crossings and imposing the blackboard framing.

The statement that β is filtered means that step k of the the Vassiliev t-
filtration in CT̃ p q projects to step k of the filtration on |Cπ| induced by the
I-adic filtration of π. Note that strand-strand double points and framing changes
are in the kernel of β, thus, we only have something to prove for knots with k
strand-pole double points.

Let γ1, ..., γp denote the standard generators of π as in Figure 19. A knot
K P CT̃ p q maps to a free loop in |Cπ|, whose conjugacy class in π is represented
as a word in the generators γi. A pole-stand double point on pole j maps to a
difference between two curves passing on either side of the j’th puncture (as in
Figure 20). Therefore, one of the words in Cπ representing these curves can be
obtained from the other by inserting a single letter γ˘1

j . The double point, which
represents the difference, thus maps to a product with a factor of pγ˘1

j ´ 1q, and
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a knot with k pole-strand double points maps to a product with k factors of the
form pγ˘1

j ´ 1q. This is by definition an element in Ik. □

prop:kerbeta Proposition 5.2. The kernel of β is T̃ 1p q, and thus, β descends to a filtered
linear isomorphism β : T̃ {1p q Ñ |Cπ|.
Proof. Two framed knots in CT̃ p q project to the same loop in |Cπ| if and only
if they differ by framing changes and (strand-strand) crossing changes, which
generate exactly the step 1 of the s-filtration, that is, T̃ 1p q. □

Recall that Ã denotes the (degree completed) associated graded space of CT̃
with respect to the t-filtration. described as the space of admissible chord dia-
grams on a circle skeleton, as in Definition 4.6. The s-filtration on CT̃ induces a
corresponding s-filtration on Ã, and Ãěip q denotes the i-th s-filtered component
of Ãp q. We also denote Ã{ip q “ Ãp q{Ãěip q.

Recall from Section 3.2 that the associated graded vector space of |Cπ| is |FA |,
where FA “ FAxx1, ¨ ¨ ¨ , xpy denotes the free associative algebra over C, and the
linear quotient |FA | “ FA {rFA,FAs is the graded C-vector space generated by
cyclic words in the letters x1, ..., xp. The graded Goldman bracket is a map
r´,´sgrG : |FA | b |FA | Ñ |FA |, as defined in Proposition 3.6. Denote the
degree completions of FA and |FA | by g:hatASxFA and g:hatasbAs|xFA|. By applying the associated
graded functor to β, we identify |xFA| as follows:

prop:gr_beta Proposition 5.3. The associated graded map grβ : Ãp q Ñ |xFA| has kernel
Ãě1p q. Hence, grβ descends to an isomorphism grβ : Ã{1p q Ñ |xFA|.

Proof. The statement follows from applying the associated graded functor to the
filtered short exact sequence

0 T̃ 1p q T̃ p q |Cπ| 0.
β

The filtrations on T̃ 1p q and |Cπ| are induced from the filtration on T̃ p q, as in
Lemma 2.3, therefore the associated graded sequence is also exact. □

rem:ChorsOnPoles Remark 5.4. In Ã{1p q chord diagrams with any strand-strand chords are zero.
Thus, Ã{1p q is spanned by chord diagrams on poles and a single circle strand,
with strand-pole chords only: for an example see the left of Figure 21. Note also
that all admissible 4T relations involve a strand-strand chord, and are zero in
Ã{1. This means that chord endings on the poles commute, and there are no
further relations. Such a chord diagram corresponds naturally to a cyclic word
by labeling the poles with x1, ..., xp and reading along the circle skeleton, as on
the right of Figure 21. Indeed, this is an isomorphism, and gives the explicit
description of grβ.

Having identified the domain of the Goldman Bracket, |Cπ|b |Cπ|, as T̃ {1p qb

T̃ {1p q through the identification β, we can now show that the Goldman bracket
is induced – in the sense of Section 2 – by the stacking commutator on CT̃ .



32 D. BAR-NATAN, Z. DANCSO, T. HOGAN, J. LIU, AND N. SCHERICH

1 2 3

|ÝÑ |x23x
2x21x2x3| P |FA |

Figure 21. An example demonstrating how chord diagrams with
no strand-strand chords can be read as cyclic words in |FA |.fig:CycWord

0 Ker T̃ {2
∇ p q b T̃ {2

∇ p q T̃ {1p q b T̃ {1p q 0

0 T̃ 1{2
∇ p q T̃ {2

∇ p q T̃ {1p q 0

T̃ {1p q

0 0

η̂

η

λ

pb

Figure 22. Recovering the Goldman bracket. The horizontal
maps are the natural quotient and inclusion maps, and Ker de-
notes the kernel of the consecutive projection. The map pb denotes
multiplication by b (Lemma 4.21).fig:Snakeforbracket

thm:bracketsnake Theorem 5.5. Let g:lambda1λ1 : T̃ {2
∇ p q b T̃ {2

∇ p q Ñ T̃ {2
∇ p q denote the stacking product.

Let g:lambda2λ2 denote the opposite product given by λ2pK1,K2q “ K2K1. The stacking
commutator g:lambdaλ “ λ1 ´ λ2 induces a unique map η̂ : T̃ {1p q b T̃ {1p q Ñ T̃ {1p q,
in the sense of the commutative diagram in Figure 22. The map g:etahatη̂ coincides with
the Goldman bracket on |Cπ| via the identification β : T̃ {1p q

–
ÝÑ |Cπ|, that is,

r´,´sG “ β ˝ η̂ ˝ pβ´1 b β´1q.

Proof. The vector space T̃ {2
∇ p q is generated by the equivalence classes of knots

in Mp. For K1,K2 P T̃ , we abuse notation and denote by K1 b K2 the class of
K1 bK2 in T̃ {2

∇ p q b T̃ {2
∇ p q. The stacking commutator λpK1 bK2q “ K1K2 ´

K2K1 is the difference between placing K2 above or below K1 in Dp ˆ I.
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We first show that the right hand square of Figure 22 commutes. Regularly
project K1, K2 and their stacking products to the bottom Dp to obtain knot
diagrams D1 and D2, and link diagrams D1D2 and D2D1. A mixed crossing of a
link diagram be a crossing where the two strands belong to speparate components.
Notice that D2D1 is precisely D1D2 with all mixed crossings flipped.

Number the mixed crossings of D1D2 from 1 to r, and let Li denote the link
diagram where the first i mixed crossings have been flipped. Specifically, L0 “

D1D2 and Lr “ D2D1 Then L0 ´ Lr “ D1D2 ´ D2D1 can be written as a
telescopic sum:

eq:Telescopeeq:Telescope (5.1) D1D2 ´D2D1 “ pL0 ´ L1q ` pL1 ´ L2q ` ...` pLr´1 ´ Lrq.

In the sum, each term in parenthesis is a two-component link with a single mixed
double point, with a sign (the crossing sign of the i-th mixed crossing). Thus,
λpK1,K2q P T̃ 1

∇ , and maps to zero in T̃ {1
∇ . Hence, the right hand square commutes.

We now turn to the left square of the diagram. The kernel of the projection
map

T̃ {2
∇ p q b T̃ {2

∇ p q Ñ T̃ {1
∇ p q b T̃ {1

∇ p q

is generated by T̃ 1{2
∇ p qbT̃ {2

∇ p q and T̃ {2
∇ p qbT̃ 1{2

∇ p q. Suppose that K1bK2 is
in T̃ 1{2

∇ p qb T̃ {2
∇ p q; without loss of generality assume that K1 is a knot with one

double point. Then, by Equation 5.1, λpK1 bK2q can be written as a telescopic
sum of links with two double points each, hence it is zero in T̃ {2

∇ p q. Therefore,
the left square commutes.

As in Section 2, then λ induces a unique map

η : T̃ {1p q b T̃ {1p q Ñ T̃ 1{2
∇ p q.

We can now identify η as the Goldman bracket. The isomorphism β gives
T̃ {1p q – |Cπ| (Proposition 5.2) identifies the domain of η with the domain of the
Goldman bracket. We will argue that the image of η also lies in in T̃ {1p q – |Cπ|.

By Equation (5.1), λpK1,K2q can be written a sum of r terms, each with one
mixed double point. Applying the Conway relation to each of the r terms of the
telescopic sum by smoothing the mixed double points changes the skeletons from
two circles to one circle, and introduces a factor of b:

eq:ConwayTeleq:ConwayTel (5.2) λpK1 bK2q “ D1D2 ´D2D1
∇
“ bpϵ1Ks1 ` ϵ2Ks2 ` ...` ϵrKsrq.

HereKsi denotes the knot obtained from Li´1´Li by smoothing the mixed double
point (which is obtained from the i-th mixed crossing), and ϵi is the sign of the
i-th mixed crossing. That is, λpK1,K2q P bT̃ {2

∇ p q. In other words, η factors
through T̃ {1p q, which embeds in T̃ 1{2

∇ p , q via the multiplication by b map pb,
by Lemma 4.21. Hence, we obtain the map η̂ : T̃ {1p q b T̃ {1p q Ñ T̃ {1p q, as
needed.

Finally, we check that η̂ coincides with the Golman bracket via the identifica-
tion β. For curves γ1 b γ2 P T̃ {1p q b T̃ {1p q, let K1 b K2 P T̃ {2

∇ p q b T̃ {2
∇ p q
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∇
b

Figure 23. Example commutator bracket computation. The first
equality is true after canceling terms in a telescoping expansion of
the double points.fig:combracket

0 Ker Ã{2
∇ p q b Ã{2

∇ p q Ã{1p q b Ã{1p q 0

0 Ã1{2
∇ p q Ã{2

∇ p q Ã{1
∇ p q 0

Ã{1p q

0 0

gr η̂

gr η

grλ

Figure 24. Recovering the graded Goldman bracket by applying
the associated graded functor to the commutative diagram of Fig-
ure 22.fig:Snakefor_gr_bracket

be an arbitrary pre-image (vertical lift) of γ1 b γ2. Then

ηpγ1 b γ2q “
λpK1 bK2q

b
P T̃ {1p q,

where we use the notation 1
b to mean composition with qb. The Goldman bracket

(Definition 3.2) is precisely a sum of smoothings of the mixed crossings of γ1 and
γ2. The only thing to check is that the crossing signs coincide with the negative
signs of the local coordinate systems in the Goldman bracket definition, which is
indeed the case. See Figure 23 for an example. □

Recall that the graded Goldman bracket (Proposition 3.6) is a linear map
r´,´sgrG : |FA |b|FA | Ñ |FA |, and by Proposition 5.3 we have an identification
grβ : |FA |

–
ÝÑ Ã{1p q. Applying the associated graded functor – with respect

to the total filtration – to the diagram in Figure 22, we obtain the commutative
diagram in Figure 24 and recover the graded Goldman bracket:
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cor:snakefor_gr_bracket Corollary 5.6. The diagram in Figure 24 commutes, the rows are exact, gr η is
the induced connecting homomorphism, and gr η̂ agrees with the associated graded
Goldman bracket via the identification grβ : Ã{1p q

–
ÝÑ |FA |. In other words,

grr¨, ¨sG “ grβ ˝ gr η̂ ˝ pgrβ´1 b grβ´1q.

Proof. All arrows in the diagram in Figure 22 are filtered maps with respect to the
total filtration; the rows are exact; and the total filtrations on the left and right
hand sides are induced from the total filtration in the middle. Hence, Corollary
2.4 applies, and hence the gr functor gives a commutative diagram with exact
rows, as in Figure 24. By the uniqueness of the connecting homomorphism, we
know that it is gr η. By the functoriality of the associated graded, the graded
Goldman bracket is given by

grr¨, ¨sG “ grβ ˝ gr η̂ ˝ pgrβ´1 b grβ´1q.

□

ex:grGoldman Example 5.7. While the Corollary 5.6 follows from abstract considerations, let
us demonstrate the on an example the explicit calculation of the graded bracket.
Recall from Remark 5.4 that in Ã{1 chord endings on the poles commute. The
identification grβ works by assigning a letter x1, ..., xp to each pole, and reading
off the cyclic word given by the chords along the circle skeleton component, as in
Figure 21.

We compute the graded bracket of the words |x1x22| and |x2x
2
3|, via grβ. The

two cyclic words correspond to chord diagrams in Ã{1p q, which we then consider
in (lift to) Ã{2

∇ p q. The map grλ is the stacking commutator of these diagrams,
as shown in Figure 25. This lies in Ã1{2

∇ p q, which is easiest to see via applying
a 4T relation for the letter coincidence x2, as shown in Figure 25. In turn, via an
application of the Conway relation, it is easy to see that the element of Ã{1p q

which maps to this via multiplication by b is |x21x2x
2
3|´|x21x

2
3x2|. This is precisely

the value of the graded Goldman bracket: compare also with Figure 6.

thm:Cube_for_bracket Theorem 5.8. The Kontsevich integral descends to a homomorphic expansion
for the Goldman bracket, that is, the following diagram commutes:

|Cπ| |Cπ| b |Cπ|

|xFA| |xFA| b |xFA|

Z{1

r¨,¨sG

Z{1bZ{1

grr¨,¨sG

Proof. The Kontsevich integral is homomorphic with respect to the stacking prod-
uct (Proposition 4.10). Since λ, the key ingredient in our construction of r¨, ¨sG,
is the difference between the stacking product and its opposite product, Z is
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4T

∇
b

Figure 25. Example calculation for the diagrammatic realisation
of the graded Goldman bracket.fig:GradedBracket

homomorphic with respect to λ, thus the following square commutes:

T̃ {2
∇ p q b T̃ {2

∇ p q

T̃ {2
∇ p q

Ã{2
∇ p q b Ã{2

∇ p q

Ã{2
∇ p q

λ
Z{2bZ{2

Z{2

grλ

Hence, we know that that the entire multi-cube (5.3) is commutative: all other
faces follow from Theorem 5.5, Corollary 5.6, the fact that Z is a filtered map
with respect to the s-filtration (Proposition 4.13):

eq:BracketMultiCubeeq:BracketMultiCube (5.3)
Ker T̃ {2

∇ p q b T̃ {2
∇ p q T̃ {1p q b T̃ {1p q

T̃ 1{2
∇ p q T̃ {2

∇ p q T̃ {1p q

Ker Ã{2
∇ p q b Ã{2

∇ p q Ã{1p q b Ã{1p q

Ã1{2
∇ p q Ã{2

∇ p q Ã{1p q

0 Z1{2bZ1{2 λ Z{2bZ{2

Z{1bZ{1

0

Z1{2

0 grλ 0

Z{2 Z{1

Hence, using the naturality of the induced map construction (Lemma 2.5 and
the diagram (2.4)), we then know that the middle square of (5.4) commutes:
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eq:EtaSquareeq:EtaSquare (5.4)

T̃ {1p q

T̃ 1{2
∇ p q T̃ {1p q b T̃ {1p q

Ã1{2
∇ p q Ã{1p q b Ã{1p q

Ã{1p q

Z{1 Z1{2 Z{1bZ{1

η

η̂

gr η

gr η̂

Since all other faces of the diagram (5.4) are commutative by definition, the out-
side square also commutes. In turn, this is the middle square of the diagram (5.5):

eq:KIntBracketeq:KIntBracket (5.5)

|Cπ| T̃ {1p q T̃ {1p q b T̃ {1p q |Cπ| b |Cπ|

|xFA| Ã{1p q Ã{1p q b Ã{1p q |xFA| b |xFA|

Z{1

–

β

Z{1

η̂

Z{1bZ{1

–

β´1bβ´1

r¨,¨sG

Z{1bZ{1

–

grβ gr η̂

–

grβ´1bgrβ´1

grr¨,¨sG

Once again, all other faces of (5.5) are commutative: by Theorem 5.5 and Corol-
lary 5.6 at the top and bottom; and otherwise by definition. Hence, the outside
square commutes, and this is the statement of the theorem. □

sec:cobracketinCON
5.2. The Tureav co-bracket. In Section 3.2 we reviewed the definition of the
Turaev cobracket on |Cπ| via the map µ : Cπ̃ Ñ |Cπ|b Cπ, which required choos-
ing a rotation number 1{2 representative for curves in Cπ̃. The knot-theoretic
version for the cobracket lifts this construction.

We start by interpreting Cπ̃ in the context of tangles. Let g:botskeldenote an interval
skeleton component where both endpoints are on the bottom Dp ˆ t0u. We call
a tangle with skeleton a bottom tangle. We mark the endpoints of the interval
by ‚ and ˚, as in Figure 26. Furthermore, we denote by T̃ p k ℓ

q tangles with
k circle skeleton components, and ℓ bottom intervals.

We extend the projection map β (Proposition 5.1) to such tangles to obtain an
isomorphism similar to Corollary 5.1:

prop:ascispi Proposition 5.9. The natural bottom projection, post-composed with closing up
open paths by concatenation with paths ν from the endpoint to the starting point
along the boundary (as in Section 3.2) gives a filtered linear map

β : CT̃∇p k ℓ
q Ñ |Cπ|bk b Cπbℓ
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has kernel T̃ ě1
∇ p k ℓ

q, hence descends to a filtered isomorphism

β : T̃ {1p k ℓ
q

–
ÝÑ |Cπ|bk b Cπbℓ.

Proof. The proof is identical to the proof of Proposition 5.1, aside from the minor
issue of base points. In the bottom projection, a tangle strand from ‚ to ˚ projects
to a homotopy class of a path from ‚ to ˚ in Dp. Such paths are in bijection with
Cπ via composition with a path ν along the boundary from ˚ to ‚. □

By straightforward inspection of the associated graded map, we obtain:

prop:gr_beta_bot_tangle Proposition 5.10. The associated graded map

grβ : Ãp k ℓ
q Ñ |FA |bk b FAbℓ

has kernel Ãě1p q, hence, grβ descends to a graded isomorphism

grβ : Ã{1p k ℓ
q

–
ÝÑ |FA |bk b FAbℓ .

In particular, we have grβ : Ã{1p q
–
ÝÑ FA .

We also extend the statements about multiplication and division by b to the
context of mixed skeleta:

prop:qbonbottomtangles Proposition 5.11. The map pb descends to C-linear isomorphism

pb : T̃ {1
∇ p q

–
ÝÑ T̃ 1{2

∇ p q,

with inverse map given by qb, division by b.

Proof. From Corollary 4.20, we know pb is a C-linear isomorphism T̃ {1
∇

–
ÝÑ T̃ 1{2

∇ ,
so we only need to address the change in skeleton. The quotient T̃ {1

∇ p q is
generated by classes of tangle diagrams D with skeleton consisting of one circle
and one bottom-to-bottom interval component. After multiplication by b, b ¨ D
is equivalent via the Conway relation to a tangle with one double point in T̃ p q,
as the un-smoothing combines the two skeleton components. □

Next, we recover the self intersection map µ, in the context of tangles, as the
connecting homomorphism induced from the difference between two ways to lift
a bottom tangle.

Let ‚ and ˚ be two “nearby” points on the boundary of Dp, that is, ˚ is ob-
tained by shifting ‚ slightly forwards along the boundary orientation, as shown
in Figure 26. We will obtain a homomorphic expansion for the Turaev cobracket
by computing the Kontsevich integrals of one-strand tangles which start at ‚ and
end at ˚. For this purpose, we will assume that ‚ and ˚ are arbitrarily close:
technically, we take the limit of Kontsevich integrals as ˚ approaches ‚ backwards
along the boundary. We suppress this in the notation, and write simply g:ZTZpT q

when we mean lim
‚Ð˚

ZpT q.
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ascending descending neither

Figure 26. A curve in Cπ lifted to ascending, descending, and
neither ascending nor descending bottom tangles. The three tan-
gles are equivalent in T̃ {1, but distinct in T̃ .fig:ascending

def:asc+desc Definition 5.12. An embedding

T : pI, t0, 1uq ãÑ pMp, t‚, ˚uq

(representing a bottom tangle) is called ascending if it first ascends monotonically
from ‚, and then goes straight down to ˚. More precisely, if pz, sq is a global
coordinate system for Mp “ Dp ˆ I, then T is an ascending tangle if there exists
c P p0, 1q such that when t P p0, cq, the d

ds component of 9T is positive; when
t P pc ` ϵ, 1q, 9T is a negative constant multiple of d

ds ; and when t P pc, c ` ϵq, T
smoothly transitions through a maximum.

Likewise, an embedding T is descending if it first goes straight up from ‚,
then monotonically descends to ˚. This can also be made precise as above. See
Figure 26 for examples.

Definition 5.13. An ascending tangle is a bottom tangle in Mp whose ambient
isotopy class has an ascending embedding. Similarly, a descending tangle is a
bottom tangle in Mp whose ambient isotopy class has a descending embedding.

In the bottom projection, an ascending embedding will traverse each of its
crossings on the under strand first, and on the over strand later. A descending
embedding will traverse each crossing on the over strand first.

To recover µ, we need to define framed versions of the ascending and descending
lifts. Given a curve γ in the fundamental group π “ π1pDp, ˚q, γ has a unique
lift γ̃ in π̃ “ π̃‚˚ with the property that γ̃ ¨ ν has rotation number zero, where
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ascending
writhe =1

descending
writhe =1

γ̃

λdpγq

λapγq

Figure 27. The framed ascending and descending lifts of a curve.fig:FramedAscDesc

ν is a path along the boundary from ˚ to ‚, as in Figure 3. Thus, the curve γ̃
lifts to a well-defined (up to isotopy) framed ascending tangle, where the framing
is set to the blackboard framing. Denote this framed ascending lift by g:lambdaaλapγq.
To draw λapγq in the bottom projection, one chooses the over and understands
at every self intersection of γ so that each of the crossings are under-first: see
Figure 27. Note that in this process punctures are irrelevant, and in the plane
there is only one regular homotopy class of rotation number zero curves; therefore,
the resulting framed tangle λapγq will always have writhe 1 after connecting the
endpoints along the boundary. When using different projection planes such as the
back wall, one must take care to preserve the framed isotopy class of λapγq that
λapγq: in other words, we ensure that ascending lifts always have writhe 1. In
the back projection, this means there is a small positive kink along the otherwise
non-crossing ascending lift: see on the top right in Figure 27.

The natural descending lift of a rotation number 0 curve has writhe ´1, how-
ever, the difference of the lifts induces µ only if the framings agree. Hence, we
set the writhe to `1 by convention. In the bottom projection, this manifests as
two small positive “correction kinks” near the end of the curve, as in Figure 27.
In the back wall projection, this is not needed, as shown in the bottom right of
the same figure. We denote the framed descending lift of γ by g:lamdadλdpγq.

Diagrammatically, in the bottom projection one obtains the descending lift
from the ascending lift by changing all (strand-strand) crossings of the original
curve, and one further crossing change for the framing correction, as shown in
Figure 28.
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ascending

“

descending

Figure 28. The framing correction of the descending lift is
achieved by a single crossing change on the ascending lift, fol-
lowing a framed isotopy.fig:asc_to_desc_by_xing_change

Via the isomorphism β, λa and λd can be seen as maps T̃ {1p q Ñ T̃ {2p q.
Let g:lambdabarλ̄ : T̃ {1p q Ñ T̃ {2p q denote the difference

λ̄pγq “ λapγq ´ λdpγq.

We are now ready to recover the self-intersection map µ : Cπ Ñ |Cπ| b Cπ

(from Definition 3.3). Let g:qq be the projection map from T̃ {2
∇ p q to T̃ {1p q

thm:snake_for_mu Theorem 5.14. The map λ “ λ̄ ˝ q induces a unique map

η̂ : T̃ {1p q Ñ T̃ {1p q

in the sense of the commutative diagram of Figure 29. The map η̂ agrees with the
self-intersection map

µ : Cπ Ñ |Cπ| b Cπ

under the identification β : T̃ {1p k ℓ
q

–
ÝÑ |Cπ|bk b Cπbℓ up to a framing term.

that is,
µ “ β ˝ η̂ ˝ β´1 ` 1 b id,

where 1 denotes the constant loop.

Proof. We first show that the diagram of Figure 29 commutes. The commutativity
of the left square is immediate from the exactness of the top row. The right side
square is split into two triangles: of these the top one commutes by definition. The
commutativity of the bottom triangle, that is, the fact that the post-composition
of λ̄ with the projection to T̃ {1p q is the zero map, is also straightforward, as
follows. For a curve γ in T̃ {1p q – Cπ, the map λ̄ is the difference of two lifts of γ
to bottom tangles. When these lifts are subsequently projected back to T̃ {1p q,
they both project to γ, hence, their difference is 0.

Thus, as in Section 2, diagram (2.1), λ induces a unique well defined ho-
momorphism η : T̃ {1p q Ñ T̃ 1{2

∇ p q. By Proposition 5.11, the division by
b map qb restricts to an isomorphism qb : T̃ 1{2

∇ p q Ñ T̃ {1p q. The map
η̂ : T̃ {1p q Ñ T̃ {1p q is the composition η̂ “ qb ˝ η.
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T̃ 1{2
∇ p q T̃ {2

∇ p q T̃ {1p q 0

0 T̃ 1{2
∇ p q T̃ {2

∇ p q T̃ {1p q

T̃ {1p q

0

q

0
λ̄

η̂

η

qb

λ“λ̄˝q

Figure 29. The nontrivial horizontal maps are the respective
quotient maps, and q is one such quotient map.fig:Snakeformu

It remains to show that µ “ β ˝ η̂ ˝ β´1. Given a curve γ P |Cπ|, the value
of β ˝ η̂ ˝ β´1 is calculated as follows: γ is lifted to a curve of rotation number
zero in π̃ “ π̃‚˚, and, in turn, interpreted as an element in T̃ {1p q. The map λ̄ is
applied to this framed curve, to obtain a difference of tangles in T̃ 1{2

∇ p q. This
value is divided by b, and interpreted as a loop and a curve in |Cπ| b Cπ.

Let γ be a curve in T̃ {1p q – Cπ, and let λapγq “ Ta be the framed ascending
lift of γ and λdpγq “ Td the framed descending lift. Then λ̄pγq “ Ta´Td. Denote
the bottom projection of Ta by Da, and the bottom projection of Td by Dd. In
particular, Dd is obtained from Da, by flipping all crossings arising from γ, and
one of the crossings corresponding to the framing kinks.

As in the proof of Theorem 5.5, number the crossings to be flipped from 1 to r,
with the framing kink being last. Let Di denote the link diagram where the first
i of the crossings have been flipped. Specifically, D0 “ Da and Dr “ Dd. Then
D0 ´Dr can be written as a telescopic sum:

eq:Telescope2eq:Telescope2 (5.6) D0 ´Dr “ pD0 ´D1q ` pD1 ´D2q ` ...` pDr´1 ´Drq.

In the sum (5.6) each term pDi ´ Di`1q contains one (signed) double point
corresponding to a self-intersection of γ. We apply the Conway relation ( “ b¨a)
at these double points. A straightforward check shows that the sign arising from
the crossing signs of the first pr ´ 1q double points matches the sign ´εp in the
definition of µ (Definition 3.3). The double point arising from the framing is
" ´ ! “ ´ gives the framing term. Thus, dividing by b, reinterpreting via β,
and adding 1 b γ to cancel the framing term coincides with the value of µpγq, as
required. See Figure 30 for an example. □

As with the Goldman bracket, the associated graded version of Theorem 5.14
follows:
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∇
b

Figure 30. An example computation of the map η̂: at the top
left is the difference of the writhe 1 ascending and descending lifts
of a curve. The latter is simplified as the negative kink cancels
with one of the positive correction kinks.fig:CobracketCalc

Ã1{2
∇ p q Ã{2

∇ p q Ã{1p q 0

0 Ã1{2
∇ p q Ã{2

∇ p q Ã{1p q

Ã{1p q

0 0

gr η̂

gr η

grqb

grλ

Figure 31. Associated graded diagram constructing the graded
self-intersection map.fig:Snakefor_gr_cobracket

cor:grmu Corollary 5.15. The diagram in Figure 31 commutes, the rows are exact, gr η
is the induced homomorphism, and grµ “ grβ ˝ gr η̂ ˝ pgrβq´1.

Proof. The commutativity of the diagram (Figure 31) and the exactness of the
rows follows from general principles in exactly the same way as Corollary 5.6. The
rest is immediate, given that the framing term cancels in the associated graded
map, as it is in filtered degree 0. □



44 D. BAR-NATAN, Z. DANCSO, T. HOGAN, J. LIU, AND N. SCHERICH

It is necessary for proving the formality statement – that is, the compatibil-
ity of the Kontsevich integral with the bracket and cobracket – to also have a
concrete understanding of the associated graded map of λ. Recall from 5.4 and
Proposition 5.10 that in Ã{1 chord endings commute on the poles: this gives the
isomorphism grβ : Ã{1p q Ñ FA.

lem:GradedAscDesc Lemma 5.16. Given a chord diagram D P Ã{1p q, the map grλa : Ã{1 Ñ Ã{2
∇

orders the chord endings of D in an ascending order along the poles, that is, the
ordering along the poles match the ordering along the strand. Similarly, grλd :

Ã{1 Ñ Ã{2
∇ orders the chord endings of D along the poles in a descending order,

that is, opposite to the ordering along the strand.

Proof. This is immediate from the definition of the associated graded map, by
choosing a singular tangle TD representing D, and inspecting the chord diagram
representing λapTDq (respectively, λdpTDq). □

Recall from Section 3.2 that the Turaev cobracket δ : |Cπ| Ñ |Cπ| b |Cπ|
is constructed from µ : Cπ Ñ |Cπ| b Cπ by post-composing µ with the trace
map Cπ Ñ |Cπ| in the second component, antisymmetrising (using Altpxb yq “

xb y ´ y b x), and adding the framing term |γ| ^ 1. The composition

δ̃ “ Alt ˝ p1 b | ¨ |q ˝ µ` | ¨ | ^ 1 : Cπ Ñ |Cπ| b |Cπ|
descends to the Turaev cobracket δ : |Cπ| Ñ |Cπ| b |Cπ|, as in Definition 3.4.

We mimic this construction in the context of tangle diagrams by post-composing
η̂ with the closure map g:clcl : T̃ p q Ñ T̃ p q on the open component, followed by
anti-symmetrising, as shown in the diagram (5.7).

eq:CobracketStepseq:CobracketSteps (5.7)

T̃ {1p q T̃ {1p q

T̃ {1p q b T̃ {1p q

T̃ {1p q T̃ {1p q b T̃ {1p q

η̂

ζ̂

ζ̃
cl

cl

Alt

ζ

The closure map connects the endpoints of the bottom tangle, ‚ and ˚, by the path
ν connecting ˚ to ‚ along the bottom boundary BDp, following the orientation (as
in Figure 3). We denote the map cl˝η̂ “: g:zetahatζ̂, and after antisymmetrisation Alt˝ζ̂ “:

g:zetatildeζ̃. We will show that ζ̃ descends to a map g:zetaζ : T̃ {1p q Ñ T̃ {1p q b T̃ {1p q, which
realises the Turaev cobracket via the identification β. Since the framing correction
term is already part of η̂, it does not need to be added at this stage.

prop:zeta_to_del Proposition 5.17. The map ζ realises the Turaev cobracket δ via the identifica-
tions β, in the sense that the diagram in Figure 32 commutes.
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T̃ {1p q

T̃ {1p q T̃ {1p q T̃ {1p q b T̃ {1p q T̃ {1p q b T̃ {1p q

Cπ |Cπ| b Cπ |Cπ| b |Cπ| |Cπ| b |Cπ|

|Cπ|

ζ

β“ p1q

cl

β“

η̂

ζ̃

p2q

cl

β“ p3q

Alt

βbβ“ p4q βbβ“

|¨|

µ´1bid

δ̃

|¨| Alt

δ

Figure 32. The map ζ realises the Turaev cobracket δ.fig:Identifications

Proof. The only substantial statement is the commutativity of the square (2): this
is Theorem 5.14. Squares (1) and (3) are the same: the closure map corresponds
to the trace Cπ Ñ |Cπ|. Square (4) is tautological. The maps ζ̃ and δ̃ are defined
as the compositions shown: in the case of δ̃ this is Definition 3.4. In particular,
we have δ̃ “ pβ b βq ˝ ζ̃ ˝ β´1. The fact that δ̃ descends to δ is Proposition 5.10
of [AKKN18b]. The fact that ζ̃ descends to ζ is immediate from the canonical
identifications. □

Corollary 5.18. The corresponding statement is true for the associated graded
cobracket:

gr δ “ pgrβ b grβq ˝ gr ζ ˝ grβ´1.

□

The key result left to prove is that ζ is homomorphic with respect to the
Kontsevich integral Z: gr ζ˝Z “ Z˝ζ, and hence the Kontsevich integral descends
to a homomorphic expansion for δ. The subtlety involved is that Z does not
respect the map η̂ – there is an error term –, but after applying the closure, the
error term cancels up to a framing correction, which subsequently cancels after
alternation.

The proof is based on the naturality of the induced homomorphisms, as outlined
in Section 2 and demonstrated in Section 5.1 for the Goldman bracket. The naive
version of this idea would be to prove that all faces of a multi-cube similar to
(5.3) commute. As before, the only non-trivial part of this statement is the
commutativity of the middle square involving the map λ; unfortunately, in the
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case of the self-intersection map, this square fails to commute:

eq:FailToCommuteeq:FailToCommute (5.8)

T̃ {2
∇ p q

T̃ {2
∇ p q

Ã{2
∇ p q

Ã{2
∇ p q

λ
Z{2

Z{2

ö

grλ

This failure is mirrored in the setting of the Goldman–Turaev Lie bialgebra by
the fact the the self-intersection map µ is not formal, only the Turaev cobracket
obtained from it is [AKKN18b].

The resolution of this issue comes down to two observations:

(1) The square (5.8) fails to commute by a controlled error; and
(2) after applying the closure map and alternating to pass to the Turaev

cobracket, this error vanishes.

In order to proceed we need to define an operation on T̃ , which will help
relate the ascending and descending lifts. The vertical flip, or flip for short. This
is a composition of a vertical mirror image (mirror image to the ceiling), with
orientation reversal of each pole. In other words, the flip of a tangle is its vertical
mirror image but with poles still ascending. The flip of a tangle T is denoted
T 7. The flip operation is also well-defined on the Conway quotient T̃∇ by setting
b7 “ ´b for the variable b.

The associated graded vertical flip, or simply flip, of a chord diagram D P Ã,
denoted D7, is the vertical mirror image of D with ascending poles, multiplied by
p´1qs, where s is the s-degree of D. This is because the mirror image reverses the
signs of all crossings, then pole reversals reverse back the signs of all pole-strand
crossings. Thus, only the signs of strand-strand crossings are reversed by the
composite. On the Conway quotient Ã∇, the associated graded flip is given by
setting a7 “ ´a.

lem:CDflip Lemma 5.19. The Kontsevich integral respects flips:

ZpT 7q “ pZpT qq7

for any T P T̃ or T P T̃∇.

Proof. The Kontsevich integral is well known to respect mirror images and ori-
entations switches, hence, it respects the composition. □

The next lemma addresses the first of these steps by modifying the bottom
arrow of (5.8) to correct the error:
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lem:LambdaAlg Lemma 5.20. There exists a map g:lambdaalgλalg : Ã{2
∇ p q Ñ Ã{2

∇ p q so that the diagram
(5.10) commutes10.

eq:FixedSquareeq:FixedSquare (5.9)
T̃ {2
∇ p q T̃ {2

∇ p q

Ã{2
∇ p q Ã{2

∇ p q

Z{2

λ

Z{2

λalg

Proof. Recall that by definition, λ “ pλa ´ λdq ˝ q, where q is the projection
T̃ {2
∇ p q Ñ T̃ {1p q, and λa and λd are the ascending and descending lifts. Since

the Kontsevich integral is compatible with the s-filtration and hence q, it is enough
to show that the analogous statements are true for λa and λd separately. Namely,
we show that there exist maps λalga and λalgd making the following squares com-
mute:

eq:FixedSquareeq:FixedSquare (5.10)
T̃ {2
∇ p q T̃ {1p q T̃ {2

∇ p q T̃ {1p q

Ã{2
∇ p q Ã{1p q Ã{2

∇ p q Ã{1p q

Z{2

λa

Z{1 Z{2

λd

Z{1

λalga λalgd

Let γ be a curve in T̃ {1p q. To find λalga , we need to express Z{2pλapγqq in
terms of Z{1pγq. Since the Kontsevich integral is compatible with the s-filtration,
Z{1pγq “ Z{1pλapγqq.

The proof thus depends on understanding the Kontsevich integral of λapγq: see
Figure 33 for an expression of λapγq as the tangle composition11

eq:Asceq:Asc (5.11) λapγq “ Φ´1βΦRC.

Since the Kontsevich integral is multiplicative with respect to tangle composi-
tion,

eq:ZAsceq:ZAsc (5.12) Z{2pλapγqq “ Z{2pΦ´1qZ{2pβqZ{2pΦqZ{2pRqZ{2pCq.

Since the Kontsevich integral asympototically commutes with “distant disjoint
unions” [CDM12, Chapter 8], the values of C, R and β include only chords in
the highlighted areas of Figure 33. In particular, the value of the cap in C
includes strand-strand chords only, and has no degree one term [BNGRT00], thus,

10Of course, λalg
‰ grλ.

11We use notation inspired by Drinfel’d associators, but emphasise that these are classical
Kontsevich integral calculations, not using the combinatorial construction in terms of the KZ
associator. In particular, our definition of Z is in terms of limits (“infinitely near” and “infinitely
far”), rather than parenthetisations.
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=

C

R

Φ

β

Φ´1

Figure 33. Tangle decomposition of the ascending lift λapγq.fig:AscDecomp

Z{2pCq “ 1. The value Z{2pRq can be explicitly computed and is well known to
be 1 ` t

2 , where t denotes a single chord.
As for β, the value Z{2pβq has no strand-strand chords, and the strand-pole

chords follow the strand in ascending order. Thus, by Lemma 5.16,

eq:Zbetaeq:Zbeta (5.13) Z{2pβq “ grλapZ{1pγqq.

In summary, we have

eq:ZAsc2eq:ZAsc2 (5.14) Z{2pλapγqq “ Z{2pΦ´1q grλapZ{1pγqqZ{2pΦq

ˆ

1 `
t

2

˙

The formula can be further simplified by understanding ZpΦ1q. Since values of
the Kontsevich integral are group-like, ZpΦq “ exppφq for some primitive φ P

ÃpÒÒÒÓq. Since deleting either of the non-pole strands of ZpΦq simplifies to 1, we
have that pZpΦq ´ 1q P Ã1, and in particular φ P Ã1. Thus,

eq:ZPhieq:ZPhi (5.15) Z{2pΦq “ 1 ` φ with φ P Ã1{2

Consequently, Z{2pΦ´1q “ 1 ´ φ. Substituting these values into (5.14), and ex-
panding, we obtain

eq:ZAsc3eq:ZAsc3 (5.16) Z{2pλapγqq “ grλapZ{1pγqq `

”

grλapZ{1pγqq, φ
ı

` grλapZ{1pγqq
t

2
,

where the square brackets denote the algebra commutator in Ã{2pÒÒÒÓq.
In summary, for a diagram D P Ã{1p q, the map given by the formula

eq:AscAlgeq:AscAlg (5.17) λalga pDq “ grλapDq ` rgrλapDq, φs ` grλapDq
t

2

completes the commutative diagram (5.10) for λa, as required. Note that φ does
label for glossary does nt
interact well inside
labeled equation.
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=

C

pΦ7q´1

β7

Φ7

R

Figure 34. Tangle decomposition of the descending lift λdpγq.fig:DescDecomp

not depend on D.
Similarly for λdpγq, Figure 34 shows that

eq:ZDesceq:ZDesc (5.18) Z{2pλdpγqq “ Z{2pRq

´

Z{2pΦ7qZ{2pβ7qZ{2pΦ7q´1
¯2,1

,

where β7 and Φ7 are the flip of β, and Φ, respectively, and the superscript “2, 1”
indicates that the strands of these components are swapped.

Since Z{2pβ7q involves only strand-pole chords, and since the strand is descend-
ing, we have by Lemma 5.16:

eq:Zbetaeq:Zbeta (5.19) Z{2pβ7q “ grλdpZ{1pγqq.

By Lemma 5.19 we have

eq:PhiSharpeq:PhiSharp (5.20) Z{2pΦ7q “ pZ{2pΦqq7 “ p1 ` φq7 “ 1 ` φ7

In turn, Z{2ppΦ7q´1q “ 1´φ7 and Z{2pRq “ p1` t
2q. Substituting into (5.21), we

obtain:

eq:ZDesceq:ZDesc (5.21) Z{2pλdpγqq “

ˆ

1 `
t

2

˙

´

p1 ` φ7q grλdpZ{1pγqqp1 ´ φ7q

¯2,1

Expanded in Ã{2, using that t, φ P Ã1{2 this gives

eq:ZDesc2eq:ZDesc2 (5.22) Z{2pλdpγqq “ grλdpZ{1pγqq `

”

φ7, grλdpZ{1pγqq

ı2,1
`
t

2
grλdpZ{1pγqq

Therefore, we define

eq:DescAlgeq:DescAlg (5.23) λalgd pDq “ grλdpDq `
“

φ7, grλdpDq
‰2,1

`
t

2
grλdpDq

which completes the commutative diagram (5.10) for λd, as required.
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Ã1{2
∇ p q Ã{2

∇ p q Ã{1p q 0

0 Ã1{2
∇ p q Ã{2

∇ p q Ã{1p q

Ã{1p q

0 0

η̂alg

ηalg

grqb

λalg

Figure 35. The diagram for the self-intersection map, with cor-
rected associated graded maps.fig:AdjustedSnakefor_gr_cobracket

Define g:lambdaaldbarλ
alg

“ λalga ´ λalgd , and λalg “ λ
alg

˝ q, where q is the projection Ã{2
∇ Ñ

Ã{1
∇ . Then, by definition, λalg makes the diagram (5.10) commute, completing

the proof. □

Since the formula for λalg will be important, we restate it as a proposition:

prop:LambdaAlg Proposition 5.21. The map λalg is defined by λalg “ pλalga ´ λalgd q ˝ q, where

λalga pDq “ grλapDq ` rgrλapDq, φs ` grλapDq
t

2

λalgd pDq “ grλdpDq `
“

φ7, grλdpDq
‰2,1

`
t

2
grλdpDq.

□

lem:lambda_alg_diagram Lemma 5.22. The map λalg fits into the commutative diagram of Figure 35
(solid arrows).

Proof. The only non-empty part of this statement is that q ˝λalg “ 0, that is, the
composition of λalg with the projection to Ã{1p q is zero. We have seen before
that this is true for grλ, and it is shown in (5.17) and (5.23) that λalg differs
from grλ in some correction terms. However, all of these correction terms are in
s-degree 1 or higher (multiplicatively, 1 in s-degree 0), hence, q˝λalg “ q˝grλ. □

We denote the induced map by g:etaalgηalg and the composition of ηalg with grqb by
g:etaalgη̂alg, as shown in Figure 35.
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T̃ 1{2
∇ p q T̃ {2

∇ p q T̃ {1p q

T̃ 1{2p q T̃ {2
∇ p q T̃ {1p q

Ã1{2
∇ p q Ã{2

∇ p q Ã{1p q

Ã1{2p q Ã{2
∇ p q Ã{1p q

0 Z{2 λ Z{2

Z{1

0

η

ρ

Z{2

0 λalg 0

ηalg

Z{2 Z{1

Figure 36. Commutative cube showing the compatibility of η
and ηalg with the Kontsevich integral.fig:Cube_for_cobracket

cor:ZEtaAlg Corollary 5.23. The Kontsevich integral is compatible with the map η and its
corrected algebraic counterpart ηalg:

(5.24) ηalg ˝ Z{1 “ Z{2 ˝ η,

and consequently,

(5.25) η̂alg ˝ Z{1 “ Z{1 ˝ η̂.

Proof. If all faces of the multi-cube of Figure 36 commute, then this implies the
satatement, which itself is the commutativity of the diagonal (red) square. Indeed,
all the faces of the multi-cube commute: the only non-trivial statement is the
commutativity of the middle face, which was established in Lemma 5.20. Recall
that η̂ (respectively ˆηalg) is obtained from η (repsectively, ηalg) through division
by b (respectively, division by a). Therefore, the second equality follows from the
fact that the Kontsevick integral respects the s-filtration (Proposition 4.13). □

We have now established that the square (5.8) commutes up to a controlled
error: namely, it commutes if grλ is replaced by λalg, and furthermore, λalg is
expressed explicitly in terms of gra λ and grλd in Proposition 5.21 (and Equa-
tions (5.17) and (5.23)). In other words, we achieved the goal (1) stated above
Lemma 5.20. Moving on to goal (2), we need to show that the error vanishes after
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passing to the Turaev cobracket δ. Recall (Figure 32) that δ : |Cπ| Ñ |Cπ|b |Cπ|,
which descends from δ̃ : Cπ Ñ |Cπ|b |Cπ|. In turn, δ̃ “ Alt˝ p| ¨ | b idq ˝µ is iden-
tified via the isomorphisms β with the composition Alt ˝ cl ˝

´

qb ˝ η
¯

“ Alt ˝ cl ˝ η̂

by Theorem 5.14.

thm:cobrackethomomorphic Theorem 5.24. The Kontsevich integral descends to a homomorphic expansion
for the ordered Turaev cobracket. Namely, pZ{1 b Z{1q ˝ δ̃ “ gr δ̃ ˝ Z{1, as shown
in the diagram below, and consequently, pZ{1 b Z{1q ˝ δ “ gr δ ˝ Z{1.

eq:Zdeltaeq:Zdelta (5.26)

|Cπ| b |Cπ| T̃ {1p q b T̃ {1p q T̃ {1p q Cπ

xFA b xFA A{1p q b A{1p q A{1p q xFA

Z{1bZ{1

–

βbβ

Z{1bZ{1

Alt˝cl˝η̌

Z{1

–

β´1

δ̃

Z{1

–

grβbgrβ Alt˝cl˝gr η̂

–

grβ´1

gr δ̂

Proof. If gr η̂ were replaced with η̂alg in the middle of the bottom row of (5.26),
then this would be true by Corollary 5.23. Thus, it is enough to show that

eq:Goaleq:Goal (5.27) Alt ˝ cl ˝ η̂alg “ Alt ˝ cl ˝ gr η̂.

Recall (from Figure 35) that

η̂alg “ gr β̌ ˝

´

λalg1 ´ λalgd

¯

“
λalga ´ λalgd

a
.

Substituting the fromulas of Proposition 5.21, we have

η̂algpDq “
pgrλa ´ grλdqpDq

a

`
rgrλapDq, φs ´

“

φ7, grλdpDq
‰2,1

` grλapDq t2 ´ t
2 grλdpDq

a
.

By definition, we have that pgrλa´grλdqpDq

a “ gr η̂pDq, hence, to prove (5.27) it
is enough to show that the second line of the formula vanishes after closure and
alternation. Namely, set

ε1pDq “
rgrλapDq, φs ´

“

φ7, grλdpDq
‰2,1

a
,

ε2pDq “
grλapDq t2 ´ t

2 grλdpDq

a
.
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It is sufficient to prove that Altpclpε1pDqqq “ 0 and Altpclpε2pDqqq “ 0 for any
D P Ã{1p q.

For ε1, recall from the proof of Lemma 5.20 that φ “ Z{2pΦq ´ 1 P Ã1{2. The
value φ is an infinite series graded by total degree; let X denote a term in φ.
Since X P Ã1{2, we can write X “ vtw, as shown in Figure ??. Here v and w
are words in p letters (where p is the number of poles, and words are read in the
direction of the strand), and t is the strand-strand chord.

By Lemma 5.19, the term corresponding to X in φ7 is X7 “ ´wtv, (see Fig-
ure ??). □

6. Glossary of notation
sec:glossary

a formal variable of CT̃∇ Def. 4.14
Ã associated graded CT̃ Sec. 4.3
Ã∇ associated graded CT̃∇,

isomorphic to D Sec. 4.6
Ã∇pSq the image gr ιpÃpSqq Def. 4.22
Ãt degree t component of Ã Sec. 4.3
Ãěs s-filtered component of

Ã Def. 4.12
ÃpSq admissible chord diagrams on the

skeleton S Sec. 4.3
Ã∇,t degree t component of Ã∇ Sec. 4.6
Ãs

∇ degree s component of
Ã∇ Sec. 4.6

Ãs
∇,t Ã∇,t X Ãs

∇ Sec. 4.6
Ã{s Ã{Ãěs Def. 4.22
Ã{s

∇ Ã∇{Ãěs
∇ Def. 4.22

Alt alternating map Def. 3.4
b e

a
2 ´ e´ a

2 Def. 4.14
pb multiplication by b

map Prop. 4.19
qb division by b map Prop. 4.19
β bottom projection map Prop. 5.1

bottom tangle Sec. 5.2
cl closure map Sec. 5.2
Cπ group algebra of π Sec. 3.2
|Cπ| homotopy classes of free loops in

Dp Sec. 3.2
Cπ̃ group algebra of π̃ Sec. 3.2
|Cπ̃| homotopy classes of immersed free

loops in Dp Sec. 3.2
|Cπ| |Cπ|{C1 Sec. 3.2

CT̃ formal linear combinations of
oriented tangles in Mp Sec. 4.1

CT̃∇ Conway quotient of CT̃ Def. 4.14
CT̃∇pSq the image ιpCT̃ pSqq Def. 4.17
sD vertical flip of diagram D Sec. 5.2
D \SDpSq Def. 4.6
D∇ Conway quotient of D Def. 4.15
Dt \SDtpSq Def. 4.6
DpSq space of admissible chord

diagrams on a skeleton S Def. 4.6
DtpSq degree t component of

DpSq Def. 4.6
δ Turaev Cobracket Def. 3.4
δgr graded Turaev

Cobracket Prop. 3.8
δ̃ cl ˝ µ Def. 3.4
Dp p-punctured disk Sec. 3.2
η, η̂ general notation for induced map

from “λ” Thm. 5.5 and also
Thm 5.14

ηalg, η̂alg Fig. 35
FA degree completed free algebra

FAxx1, ¨ ¨ ¨ , xpy Sec. 3.3
|FA | FA {rFA,FAs Sec. 3.3
xFA degree completion of FA Sec. 5.1
|xFA| degree completion of |FA | Sec. 5.1
p´q7 flip operation Sec. 4.2
r¨, ¨sG Goldman Bracket Def. 3.2
grCπ graded Cπ Sec. 3.3
r¨, ¨sgrG graded Goldman

Bracket Prop. 3.6
I augmentation ideal Sec. 3.3
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ι Sec. 4.6
K links or tangles in R3 Sec. 3.1.1
K̃ framed links R3 Sec. 3.1.2
K̃i filtered component of K̃ Sec. 3.1.2
λ general notation for a difference of

two maps, λ “ λ1 ´ λ2 in
Thm. 5.5, λ “ pλa ´ λdq ˝ q in
Thm. 5.14

λ1, λ2 stacking products Thm. 5.5
λa framed ascending lift Sec. 5.2
λd framed descending lift Sec. 5.2
λ̄ λa ´ λd Sec. 5.2
λalg Lem. 5.20
λalga Eq. 5.17
λalgd Eq. 5.23
λ
alg

λalga ´ λalgd Sec. 5.2
Mp Dp ˆ I Sec. 4.1
µ self intersection map Def. 3.3
µgr graded self intersection

map Prop. 3.7
ν path from ‹ to ‚ Sec. 3.2
ψ chord contraction map Lem. 4.7
π π1pDp, ˚q Sec. 3.2
π̃ regular homotopy classes of

immersed curves in Dp Sec. 3.2

q general notation of a projection
map Thm. 5.14 and Lem 5.22

T̃ framed tangles in Mp Def. 4.2
T̃ s s-filtered component of CT̃ Sec.

4.5
T̃ s
t T̃t X T̃ s Sec. 4.5

T̃t t filtered component of CT̃ Sec.
4.3

T̃ s
∇ s-filtered component of

CT̃∇ Sec. 4.6
T̃∇,t t-filtered component of

CT̃∇ Sec. 4.6
T̃ {n T̃ {T̃ n Sec. 4.6
T̃ {n

∇ CT̃∇{T̃ n
∇ Sec. 4.6

T̃ 1{2 T̃ 1{T̃ 2 Sec. 4.6
T̃ 1{2

∇ T̃ 1
∇ {T̃ 2

∇ Sec. 4.6
ξ inward normal vector Sec. 3.2
Z Kontsevich Integral
Z∇ Kontsevich Integral on

CT̃∇ Thm. 4.16
ZpT q Kontsevich Integral of

one-stranded tangles Sec. 5.2
ζ map descending from ζ̃ Sec. 5.2
ζ̃ Alt ˝ ζ̂ Sec. 5.2
ζ̂ cl ˝ η̂ Sec. 5.2
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