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Abstract Balloons are 2D spheres. Hoops are 1D loops. Knotted balloons and hoops 8

(KBH) in 4-space behave much like the first and second homotopy groups of a topological 9

space—hoops can be composed as in π1, balloons as in π2, and hoops “act” on balloons 10

as π1 acts on π2. We observe that ordinary knots and tangles in 3-space map into KBH in 11

4-space and become amalgams of both balloons and hoops. We give an ansatz for a tree 12

and wheel (that is, free Lie and cyclic word)-valued invariant ζ of (ribbon) KBHs in terms 13

of the said compositions and action and we explain its relationship with finite-type invari- 14

ants. We speculate that ζ is a complete evaluation of the BF topological quantum field 15

theory in 4D. We show that a certain “reduction and repackaging” of ζ is an “ultimate 16

Alexander invariant” that contains the Alexander polynomial (multivariable, if you wish), 17

has extremely good composition properties, is evaluated in a topologically meaningful way, 18

and is least wasteful in a computational sense. If you believe in categorification, that should 19

be a wonderful playground. 20
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1 Introduction24

Riddle 1.1 The set of homotopy classes of maps of a tube T = S1 × [0, 1] into a based25

topological space (X, b) which map the rim ∂T = S1 × {0, 1} of T to the basepoint b26

is a group with an obvious “stacking” composition; we call that group πT (X). Homotopy27

theorists often study π1(X) = [S1,X] and π2(X) = [S2, X] but seldom, if ever, do they28

study πT (X) = [T ,X]. Why?29

The solution of this riddle is on page 13. Whatever it may be, the moral is that it is better30

to study the homotopy classes of circles and spheres in X rather than the homotopy classes of31

tubes in X, and by morphological transfer, it is better to study isotopy classes of embeddings32

of circles and spheres into some ambient space than isotopy classes of embeddings of tubes33

into the same space.34

In [4, 5], Zsuzsanna Dancso and I studied the finite-type knot theory of ribbon tubes35

in R
4 and found it to be closely related to deep results by Alekseev and Torossian [1] on36

the Kashiwara-Vergne conjecture and Drinfel’d’s associators. At some point, we needed a37

computational tool with which to make and to verify conjectures.38

This paper started in being that computational tool. After a lengthy search, I found a39

language in which all the operations and equations needed for [4, 5] could be expressed40

and computed. Upon reflection, it turned out that the key to that language was to work with41

knotted balloons and hoops, meaning spheres and circles, rather than with knotted tubes.42

Then, I realized that there may be independent interest in that computational tool. For43

(ribbon) knotted balloons and hoops in R
4 (Krbh, Section 2) in themselves form a lovely44

algebraic structure (a meta-monoid-action (MMA), Section 3), and the “tool” is really a45

well-behaved invariant ζ . More precisely, ζ is a “homomorphism ζ of the MMA Krbh
0 to46

the MMA M of trees and wheels” (trees in Section 4 and wheels in Section 5). Here, Krbh
047

is a variant of Krbh defined using generators and relations (Definition 3.5). Assuming a48

sorely missing Reidemeister theory for ribbon-knotted tubes in R
4 (Conjecture 3.7), Krbh

0 is49

actually equal to Krbh.50

The invariant ζ has a rather concise definition that uses only basic operations written in51

the language of free Lie algebras. In fact, a nearly complete definition appears within Fig. 4,52

with lesser extras in Figs. 5 and 1. These definitions are relatively easy to implement on a53

computer, and as that was my original goal, the implementation along with some computa-54

tional examples is described in Section 6. Further computations, more closely related to [1]55

and to [4, 5], will be described in [3].56

In Section 7, we sketch a conceptual interpretation of ζ . Namely, we sketch the statement57

and the proof of the following theorem:58

Theorem 2.7 The invariant ζ is (the logarithm of) a universal finite type invariant of the59

objects in Krbh
0 (assuming Conjecture 3.7, of ribbon-knotted balloons and hoops in R

4).60

While the formulae defining ζ are reasonably simple, the proof that they work using only61

notions from the language of free Lie algebras involves some painful computations—the62
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more reasonable parts of the proof are embedded within Sections 4 and 5, and the 63

less reasonable parts are postponed to Section 10.4. An added benefit of the results of 64

Section 7 is that they constitute an alternative construction of ζ and an alternative proof of 65

its invariance—the construction requires more words than the free Lie construction, yet the 66

proof of invariance becomes simpler and more conceptual. 67

In Section 8, we discuss the relationship of ζ with the BF topological quantum field 68

theory, and in Section 9, we explain how a certain reduction of ζ becomes a system of 69

formulae for the (multivariable) Alexander polynomial which, in some senses, is better than 70

any previously available formula. 71

Section 10 is for “odds and ends”—things worth saying, yet those that are better post- 72

poned to the end. This includes the details of some definitions and proofs, some words about 73

our conventions, and an attempt at explaining how I think about “meta” structures. 74

Remark 1.3 Nothing of substance places this paper in R
4. Everything works just as well 75

in R
d for any d ≥ 4, with “balloons” meaning (d-2)-dimensional spheres and “hoops” 76

always meaning 1-dimensional circles. We have only specialized to d = 4 only for reasons 77

of concreteness. 78

2 The Objects 79

2.1 Ribbon-Knotted Balloons and Hoops 80

This paper is about ribbon-knotted balloons (S2s) and hoops (or loops, or S1s) in R
4 or, 81

equivalently, in S4. Throughout this paper, T and H will denote finite1 (not necessarily dis- 82

joint) sets of “labels”, where the labels in T label the balloons (though for reasons that will 83

become clear later, they are also called “tail labels” and the things they label are sometimes 84

called “tails”), and the labels in H label the hoops (though they are sometimes called “head 85

labels” and they sometimes label “heads”). 86

Definition 2.1 A (T ; H)-labelled ribbon-knotted balloons and hoops (rKBH) is a ribbon2 87

up-to-isotopy embedding into R
4 or into S4 of |T |-oriented 2-spheres labelled by the ele- 88

ments of T (the balloons), of |H |-oriented circles labelled by the elements of H (the hoops), 89

and of |T | + |H | strings (namely, intervals) connecting the |T | balloons and the |H | 90

hoops to some fixed base point, often denoted ∞. Thus a (2; 3)-labelled3 rKBH, for exam- 91

ple, is a ribbon up-to-isotopy embedding into R
4 or into S4 of the space drawn below. Let 92

Krbh(T ;H) denote the set of all (T ;H)-labelled rKBHs. 93

1The bulk of the paper easily generalizes to the case where H (not T!) is infinite, though nothing is gained
by allowing H to be infinite.
2The adjective “ribbon” will be explained in Definition 2.4.
3See “notational conventions”, Section 10.5.
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Recall that 1D objects cannot be knotted in 4D space. Hence, the hoops in an rKBH94

are not in themselves knotted, and hence an rKBH may be viewed as a knotting of the95

|T | balloons in it, along with a choice of |H | elements of the fundamental group of the96

complement of the balloons. Likewise, the |T | + |H | strings in an rKBH only matter as97

homotopy classes of paths in the complement of the balloons. In particular, they can be98

modified arbitrarily in the vicinity of ∞, and hence they don’t even need to be specified99

near ∞—it is enough that we know that they emerge from a small neighbourhood of ∞100

(small enough so as to not intersect the balloons) and that each reaches its balloon or its101

hoop.102

Conveniently, we often pick our base point to be the point ∞ of the formula103

S4 = R
4 ∪ {∞} and hence, we can draw rKBHs in R

4 (meaning, of course, that we draw104

in R
2 and adopt conventions on how to lift these drawings to R

4).105

We will usually reserve the labels x, y and z for hoops; the labels u, v and w for balloons106

and the labels a, b and c for things that could be either balloons or hoops. With almost no107

risk of ambiguity, we also use x, y and z, along also with t, to denote the coordinates of R4.108

Thus, R2
xy is the xy plane within R

4, R3
txy is the hyperplane perpendicular to the z-axis and109

R
4
txyz is just another name for R4.110

Examples 2.2 and 2.3 are more than just examples, for they introduce much notation that111

we use later on.112

Example 2.2 The first four examples of rKBHs are the “four generators” shown in Fig. 1:113

• hεx is an element of Krbh(; x) (more precisely, Krbh(∅; {x})). It has a single hoop114

extending from near ∞ and back to near ∞, and as indicated above, we didn’t bother115

to indicate how it closes near ∞ and how it is connected to ∞ with an extra piece of116

string. Clearly, hεx is the “unknotted hoop”.117
• tεu is an element of Krbh(u; ). As a picture in R

3
xyz, it looks like a simplified tennis118

racket, consisting of a handle, a rim, and a net. To interpret a tennis racket in R
4, we119

embed R
3
xyz into R

4
txyz as the hyperplane [t = 0], and inside it, we place the handle and120

the rim as they were placed in R
3
xyz. We also make two copies of the net, the “upper”121

copy and the “lower” copy. We place the upper copy so that its boundary is the rim122

and so that its interior is pushed into the [t > 0] half-space (relative to the pictured123

[t = 0] placement) by an amount proportional to the distance from the boundary.124

Similarly, we place the lower copy, except we push it into the [t < 0] half space.125

Thus, the two nets along with the rim make a 2-sphere in R
4, which is connected to ∞126

using the handle. Clearly, tεu is the “unknotted balloon” (see below). We orient tεu by127

adopting the conventions that surfaces drawn in the plane are oriented counterclockwise128

Fig. 1 The four generators hεx , tεu, ρ+
ux and ρ−

ux , drawn in R
3
xyz (ρ±

ux differ in the direction in which x
pierces u—from below at ρ+

ux and from above at ρ−
ux ). The lower part of the figure previews the values of

the main invariant ζ discussed in this paper on these generators. More later, in Section 5
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(unless otherwise noted) and that when pushed to 4D, the upper copy retains the original 129

orientation while the lower copy reverses it.

130• ρ+
ux is an element of Krbh(u; x). It is the 4D analogue of the “positive Hopf link”. Its 131

picture in Fig. 1 should be interpreted in much the same way as the previous two—what 132

is displayed should be interpreted as a 3D picture using standard conventions (what’s 133

hidden is “below”), and then it should be placed within the [t = 0] copy of R3
xyz in R

4. 134

This done, the racket’s net should be split into two copies, one to be pushed to [t > 0] 135

and the other to [t < 0]. In R
3
xyz, it appears as if the hoop x intersects the balloon u 136

right in the middle. Yet in R
4, our picture represents a legitimate knot as the hoop is 137

embedded in [t = 0], the nets are pushed to [t �= 0], and the apparent intersection is 138

eliminated. 139

• ρ−
ux is the “negative Hopf link”. It is constructed out of its picture in exactly the same 140

way as ρ+
ux . We postpone to Section 10.1 the explanation of why ρ+

ux is “positive” and 141

ρ−
ux is “negative”. 142

Example 2.3 Below is a somewhat more sophisticated example of an rKBH with 143

two balloons labelled a and b and two hoops labelled with the same labels 144

(hence it is an element of Krbh(a, b; a, b)). It should be interpreted using the 145

same conventions as in the previous example, though some further comments are in 146

order: 147

• The “crossing” marked (1) below is between two hoops and in 4D it mat- 148

ters not if it is an overcrossing or an undercrossing. Hence, we did not bother 149

to indicate which of the two it is. A similar comment applies in two other 150

places. 151

• Likewise, crossing (2) is between a 1D strand and a thin tube, and its sense is imma- 152

terial. For no real reason, we’ve drawn the strand “under” the tube, but had we 153

drawn it “over”, it would be the same rKBH. A similar comment applies in two other 154

places. 155
• Crossing (3) is “real” and is similar to ρ− in the previous example. Two other crossings 156

in the picture are similar to ρ+. 157
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• Crossing (4) was not seen before, though its 4D meaning should be clear from our158

interpretation rules: nets are pushed up (or down) along the t coordinate by an amount159

proportional to the distance from the boundary. Hence, the wider net in crossing (4)160

gets pushed more than the narrower one, and hence, in 4D, they do not intersect even161

though their projections to 3D do intersect, as the figure indicates. A similar comment162

applies in two other places.163

• Our example can be simplified a bit using isotopies. Most notably, crossing (5) can be164

eliminated by pulling the narrow “\” finger up and out of the wider “/” membrane. Yet165

note that a similar feat cannot be achieved near (3) and (4). Over there, the wider “/”166

finger cannot be pulled down and away from the narrower “\” membrane and strand167

without a singularity along the way.168

We can now complete Definition 2.1 by providing the the definition of “ribbon169

embedding”.170

Definition 2.4 We say that an embedding of a collection of 2-spheres Si into R
4 (or into171

S4) is a “ribbon” if it can be extended to an immersion ι of a collection of 3-balls Bi172

whose boundaries are the Sis, so that the singular set � ⊂ R
4 of ι consists of transverse173

self-intersections, and so that each connected component C of � is a “ribbon singular-174

ity”: ι−1(C) consists of two closed disks D1 and D2, with D1 embedded in the interior of175

one of the Bi and with D2 embedded with its interior in the interior of some Bj and with176

its boundary in ∂Bj = Sj . A dimensionally reduced illustration is below. The ribbon177

condition does not place any restriction on the hoops of an rKBH.178

It is easy to verify that all the examples above are ribbon, and that all the operations we179

define below preserve the ribbon condition.180
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There is much literature about ribbon knots in R
4. See, e.g. [4, 5, 11, 12, 15, 26, 27]. 181

2.2 Usual Tangles and the Map δ 182

For the purposes of this paper, a “usual tangle”,4 or a “u-tangle”, is a “framed pure labelled 183

tangle in a disk”. In detail, it is a piece of an oriented knot diagram drawn in a disk, having 184

no closed components and with its components labelled by the elements of some set S, with 185

all regarded modulo the Reidemeister moves R1’, R2 and R3:

186
The set of all tangles with components labelled by S is denoted as uT (S). An exam- 187

ple of a member of uT (a, b) is below. Note that our u-tangles do not have a specific 188

“up” direction so they do not form a category, and that the condition “no closed compo- 189

nents” prevents them from being a planar algebra. In fact, uT carries almost no interesting 190

algebraic structure. Yet it contains knots (as 1-component tangles) and more generally, 191

by restricting to a subset, it contains “pure tangles” or “string links” [9]. And in the 192

next section, uT will be generalized to vT and to wT , which do carry much interesting 193

structure.

194

There is a map δ : uT (S) → Krbh(S; S). The picture should precede the words, and it 195

appears as the left half of Fig. 2. 196

In words, if T ∈ uT (S), to make δ(T ) we convert each strand s ∈ S of T into 197

a pair of parallel entities: a copy of s on the right and a band on the left (T is a planar 198

diagram and s is oriented, so “left” and “right” make sense). We cap the resulting band 199

near its beginning and near its end, connecting the cap at its end to ∞ (namely, to outside 200

the picture) with an extra piece of string—so that when the bands are pushed to 4D in the 201

usual way, they become balloons with strings. Finally, near the crossings of T we apply the 202

following (sign-preserving) local rules:

203

4Better English would be “ordinary tangle”, but I want the short form to be “u-tangle”, which fits better with
the “v-tangles” and “w-tangles” that arise later in this paper.
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Fig. 2 A T0 �→ δ(T0) example,
and its invariant ζ of Section 5
(computed to degree 3)

Proposition 2.5 The map δ is well defined.204

Proof We need to check that the Reidemeister moves in uT are carried to isotopies in205

Krbh. We’ll only display the “band part” of the third Reidemeister move, as everything else206

is similar or easier:

207

The fact that the two “band diagrams” above are isotopic before “inflation” to R
4, and208

hence also after, is visually obvious.209

2.3 The Fundamental Invariant and the Near-Injectivity of δ210

The “Fundamental invariant” π(K) of K ∈ Krbh(ui; xj ) is the triple (π1(K
c); m; l),211

where within this triple:212

• The first entry is the fundamental group of the complement of the balloons of K, with213

basepoint taken to be at ∞.214
• The second entry m is the function m : T → π1(K

c) which assigns to a balloon u ∈ T215

its “base meridian” mu—the path obtained by travelling along the string of u from ∞216
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to near the balloon, then Hopf-linking with the balloon u once in the positive direction 217

much like in the generator ρ+ of Fig. 1, and then travelling back to the basepoint again 218

along the string of u. 219
• The third entry l is the function l : H → π1(K

c) which assigns to hoop x ∈ H its 220

longitude lx—it is simply the hoop x itself regarded as an element of π1(K
c). 221

Thus, for example, with 〈α〉 denoting the group generated by a single element α and 222

following the “notational conventions” of Section 10.5 for “inline functions”, 223

π(hεx) = (1; (); (x → 1)), π(tεu) = (〈α〉; (u → α); ())
224

and π(ρ±
ux) = (〈α〉; (u → α); (x → α±1)).

We leave the following proposition as an exercise for the reader: 225

Proposition 2.6 If T is an n-labelled u-tangle, then π(δ(T )) is the fundamental group of 226

the complement of T (within a 3D space!), followed by the list of meridians of T (placed 227

near the outgoing ends of the components of T), followed by the list of longitudes of T. 228

It is well known (e.g. [17, Theorem 6.1.7]) that knots are determined by the fundamental 229

group of their complements, along with their “peripheral systems”, namely their meridians 230

and longitudes regarded as elements of the fundamental groups of their complements. Thus 231

we have the following: 232

Theorem 2.7 When restricted to long knots (which are the same as knots), δ is injective. 233

Remark 2.8 A similar map studied by Winter [30] is (sometimes) 2 to 1, as it retains less 234

orientation information. 235

I expect that δ is also injective on arbitrary tangles and that experts in geometric topology 236

would consider this trivial, but this result would be outside of my tiny puddle. 237

2.4 The Extension to v/w-Tangles and the Near-Surjectivity of δ 238

The map δ can be extended to “virtual crossings” [16] using the local assignment 239

(1)

In a few more words, u-tangles can be extended to “v-tangles” by allowing virtual crossings 240

as on the left hand side of Eq. 1, and then modding out by the “virtual Reidemeister moves” 241

and the “mixed move”/“detour move” of [16].5 One may then observe, as in Fig. 3, that δ 242

respects those moves as well as the overcrossings commute relation (yet not the undercross- 243

ings commute relation). Hence, δ descends to the space wT of w-tangles, which are the 244

quotient of v-tangles by the overcrossings commute relation. 245

A topological-flavoured construction of δ appears in Section 10.2. 246

5In [16], the mixed/detour move was yet unnamed, and was simply “move (c) of Fig. 2”.
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Fig. 3 The “overcrossing commute” (OC) relation and the gist of the proof that it is respected by δ, and the
“undercrossing commute” (UC) relation and the gist of the reason why it is not respected by δ

The newly extended δ : wT → Krbh cannot possibly be surjective, for the rKBHs in its247

image always have an equal number of balloons as hoops, with the same labels. Yet, if we248

allow the deletion of components, δ becomes surjective:249

Theorem 2.9 For any KTG K, there is some w-tangle T so that K is obtained from δ(T ) by250

the deletion of some of its components.251

Proof (Sketch) This is a variant of Theorem 3.1 of Satoh’s [26]. Clearly, every knotting252

of 2-spheres in R
4 can be obtained from a knotting of tubes by capping those tubes. Satoh253

shows that any knotting of tubes is in the image of a map he calls “tube”, which is identical254

to our δ except that our δ also includes the capping (good) and an extra hoop component for255

each balloon (harmless as they can be deleted). Finally, to get the hoops of K, simply put256

them in as extra strands in T, and then delete the spurious balloons that δ would produce257

next to each hoop.258

3 The Operations259

3.1 The Meta-Monoid-Action260

Loosely speaking, an rKBH K is a map of several S1s and several S2s into some ambient261

space. The former (the hoops of K) resemble elements of π1, and the latter (the balloons262

of K) resemble elements of π2. In general, in homotopy theory, π1 and π2 are groups, and263

further, there is an action of π1 on π2. Thus, we find that on Krbh, there are operations that264

resemble the group multiplication of π1, and the group multiplication of π2, and the action265

of π1 on π2.266

Let us describe these operations more carefully. Let K ∈ Krbh(T ;H).267

• Analogously to the product in π1, there is the operation of “concatenating two hoops”.268

Specifically, if x and y are two distinct labels in H and z is a label not in H (except269

possibly equal to x or to y), we let6 K � hm
xy
z be K with the x and y hoops270

removed and replaced with a single hoop labelled z that traces the path of them both.271

See Fig. 4.272
• Analogously to the homotopy-theoretic product of π2, there is the operation of “merg-273

ing two balloons”. Specifically, if u and v are two distinct labels in T and w is a label274

not in T (except possibly equal to u or to v), we let K � tmuv
w be K with the u and275

v balloons removed and replaced by a single two-lobed balloon (topologically, still a276

sphere!) labelled w which spans them both. See Fig. 4.277
• Analogously to the homotopy-theoretic action of π1 on π2, there is the operation thaux278

(tail by head action on u by x ) of re-routing the string of the balloon u to go along279

the hoop x, as illustrated in Fig. 4. In balloon-theoretic language, after the isotopy280

which pulls the neck of u along its string, this is the operation of “tying the balloon”,281
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Fig. 4 An rKBH K and the three basic unary operators applied to it. We use schematic notation; K may have
plenty more components, and it may actually be knotted. The lower part of the figure is a summary of the
main invariant ζ defined in this paper. See Section 5

commonly performed to prevent the leakage of air (though admittedly, this will fail in 282

4D). 283

In addition, Krbh affords the further unary operations tηu (when u ∈ T ) of “puncturing” 284

the balloon u (implying, deleting it) and hηx (when x ∈ H ) of “cutting” the hoop x 285

(implying, deleting it). These two operations were already used in the statement and proof 286

of Theorem 2.9. 287

In addition, Krbh affords the binary operation ∗ of “connected sum”, sketched in Fig. 5 288

(along with its ζ formulae of Section 5) Whenever we have disjoint labelsets T1∩T2 = ∅ = H1∩ 289

H2, it is an operation Krbh(T1;H1) × Krbh(T2;H2) → Krbh(T1 ∪ T2;H1 ∪ H2). We often 290

suppress the ∗ symbol and write K1K2 for K1 ∗ K2. Krbh(T1;H1) × Krbh(T2;H2) 291

→ Krbh(T1 ∪ T2; H1 ∪ H2). We often suppress the ∗ symbol and write K1K2 for K1 ∗ K2. 292

Finally, there are re-labelling operations hσa
b and tσ a

b on Krbh, which take a label a 293

(either a head or a tail) and rename it b (provided b is “new”). 294

6See “notational conventions”, Section 10.5.
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Fig. 5 Connected sums

Proposition 3.1 The operations ∗, tσu
v , hσx

y , tηu, hηx , hm
xy
z , tmuv

w and thaux and the295

special elements tεu and hεx have the following properties:296

• If the labels involved are distinct, the unary operations all commute with each other.297
• The re-labelling operations have some obvious properties and interactions:298

σa
b �σb

c = σa
c , hm

xy
x � hσx

z = hm
xy
z , etc., and similarly for the deletion operations299

ηa .300
• ∗ is commutative and associative; where it makes sense, it bi-commutes with the unary301

operations ((K1 � hm
xy
z ) ∗ K2 = (K1 ∗ K2) � hm

xy
z , etc.).302

• tεu and hεx are “units”:303

(K ∗ tεu) � tmuv
w = K � tσ v

w, (K ∗ tεu) � tmvu
w = K � tσ v

w,
304

(K ∗ hεx) � hm
xy
z = K � hσ

y
z , (K ∗ hεx) � hm

yx
z = K � hσ

y
z .

• Meta-associativity of hm, similar to the associativity in π1:305

hm
xy
x � hmxz

x = hm
yz
y � hm

xy
x . (2)

• Meta-associativity of tm, similar to the associativity in π2:306

tmuv
u � tmuw

u = tmvw
v � tmuv

u . (3)

• Meta-actions commute. The following is a special case of the first property above,307

yet it deserves special mention because later in this paper it will be the only such308

commutativity that is non-obvious to verify:309

thaux � thavy = thavy � thaux. (4)

• Meta-action axiom t, similar to (uv)x = uxvx :310

tmuv
w � thawx = thaux � thavx � tmuv

w . (5)

• Meta-action axiom h, similar to uxy = (ux)y:311

hm
xy
z � thauz = thaux � thauy � hm

xy
z . (6)

Proof The first four properties say almost nothing and we did not even specify them in312

full.7 The remaining four deserve attention, especially in the light of the fact that the veri-313

fication of their analogues later in this paper will be non-trivial. Yet in the current context,314

their verification is straightforward.315

Later, we will seek to construct invariants of rKBHs by specifying their values on316

some generators and by specifying their behaviour under our list of operations. Thus, it is317

convenient to introduce a name for the algebraic structure of which Krbh is an instance:318

7We feel that the clarity of this paper is enhanced by this omission.
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Definition 3.2 A meta-monoid-action (MMA) M is a collections of sets M(T ; H), one for 319

each pair of finite sets of labels T and H, along with partially defined operations8 ∗, tσu
v , 320

hσx
y , tηu, hηx , hm

xy
z , tmuv

w and thaux , and with special elements tεu ∈ M({u}; ∅) and 321

hεx ∈ M(∅; {x}), which together satisfy the properties in Proposition 3.1. 322

For the rationale behind the name “meta-monoid-action” see Section 10.3. In 323

Section 10.3.5, we note that Krbh in fact has the further structure making it a meta-group- 324

action (or more precisely, a meta-Hopf-algebra-action). 325

3.2 The Meta-Monoid of Tangles and the Homomorphism δ 326

Our aim in this section is to show that the map δ : wT → Krbh of Sections 2.2 and 2.4, 327

which maps w-tangles to knotted balloons and hoops, is a “homomorphism”. But first, we 328

have to discuss the relevant algebraic structures on wT and on Krbh. 329

wT is a “meta-monoid” (see Section 10.3.2). Namely, for any finite set S of “strand 330

labels” wT (S) is a set, and whenever we have a set S of labels and three labels a �= b and 331

c not in it, we have the operation mab
c : wT (S ∪ {a, b}) → wT (S ∪ {c}) of “concatenating 332

strand a with strand b and calling the resulting strand c”. See the picture below and note that 333

while on uT , the operation mab
c would be defined only if the head of a happens to be adja- 334

cent to the tail of b; on vT and on wT , this operation is always defined as the head of a can 335

always be brought near the tail of b by adding some virtual crossings, if necessary. wT triv- 336

ially also carries the rest of the necessary structure to form a meta-monoid—namely, strand 337

relabelling operations σa
b , strand deletion operations ηa , and a disjoint union operation ∗, 338

and units εa (tangles with a single unknotted strand labelled a).

339
It is easy to verify the associativity property (compare with (32) of Section 10.3.1):

340
It is also easy to verify that if a tangle T ∈ wT (a, b) is non-split, then 341

T �= (T � ηb) ∗ (T � ηa), so in the sense of Section 10.3.2, wT is non-classical. 342

8tmuv
w , for example, is defined on M(T ; H) exactly when u, v ∈ T yet w �∈ T \{u, v}. All other operations

behave similarly.
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Sulotion of Ridle 1.1 πT
∼= π1 × π2 (a semi-direct product!), so if you know all about343

π1 and π2 (and the action of π1 and π2), you know all about πT.344

Krbh is an analogue of both π1 and π2. In homotopy theory, multiplication on345

that part of Krbh in which the balloons and the hoops are matched together. More346

precisely, given a finite set of labels S, let Kb=h(S) := Krbh(S; S) be the set347

of rKBHs whose balloons and whose hoops are both labelled with labels in S. Then348

define dmab
c : Kb=h(S ∪ {a, b}) → Kb=h(S ∪ {c}) (the prefix d is for “diagonal” or349

“double”) by350

dmab
c = thaab � tmab

c � hmab
c . (7)

It is a routine exercise to verify that the properties (2)–(6) of hm, tm and tha imply that dm351

is meta-associative:352

dmab
a � dmac

a = dmbc
b � dmab

a .

Thus, dm (along with diagonal η’s and σ ’s and an unmodified ∗) puts a meta-monoid353

structure on Kb=h.354

Proposition 3.3 δ : wT → Kb=h is a meta-monoid homomorphism. (A rough picture is355

below: in the picture a and b are strands within the same tangle, and they may be knotted356

with each other and with possible further components of that tangle).357

3.3 Generators and Relations for Krbh358

It is always good to know that a certain algebraic structure is finitely presented. If we had359

a complete set of generators and relations for Krbh, for example, we could define a “homo-360

morphic invariant” of rKBHs by picking some target MMA M (Definition 3.2), declaring361

the values of the invariant on the generators, and verifying that the relations are satisfied.362

Hence, it’s good to know the following:363

Theorem 3.4 The MMA Krbh is generated (as an MMA) by the four rKBHs hεx , tεu, ρ+
ux364

and ρ−
ux of Fig. 1.365

Proof By Theorem 2.9 and the fact that the MMA operations include component dele-366

tions tηu and hηx , it follows that Krbh is generated by the image of δ. By the previous367
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proposition and the fact (7) that dm can be written in terms of the MMA operations of 368

Krbh, it follows that Krbh is generated by the δ-images of the generators of wT . But the 369

generators of wT are the virtual crossing and the right-handed and left-handed cross- 370

ings and ; and so, the theorem follows from the following easily verified assertions: 371

, and . 372

We now turn to the study of relations. Our first is the hardest and most significant, the 373

“Conjugation Relation”, whose name is inspired by the group theoretic relation vuv = uv 374

(here, uv denotes group conjugation, uv = v−1uv). Consider the following equality: 375

Easily, the rKBH on the very left is ρ+
ux(ρ+

vyρ+
wz � tmvw

v )�hm
xy
x and the one on the very 376

right is (ρ+
vxρ+

wz � tmvw
v )ρ+

uy � hm
xy
x , and so 377

ρ+
uxρ+

vyρ+
wz � tmvw

v � hm
xy
x � thauz = ρ+

vxρ+
wzρ

+
uy � tmvw

v � hm
xy
x . (8)

Definition 3.2 Let Krbh
0 be the MMA freely generated by symbols ρ±

ux ∈ Krbh
0 (u; x), 378

modulo the following relations: 379

• Relabelling: ρ±
ux � hσx

y � tσu
v = ρ±

vy . 380

• Cutting and puncturing: ρ±
ux � hηx = tεu and ρ±

ux � tηu = hεx . 381
• Inverses: ρ+

uxρ−
vy � tmuv

w � hm
xy
z = tεwhεz. 382

• Conjugation relations: for any s1,2 ∈ {±}, 383

ρs1
uxρs2

vyρs2
wz � tmvw

v � hm
xy
x � thauz = ρs2

vxρs2
wzρ

s1
uy � tmvw

v � hm
xy
x .

• Tail commutativity: on any inputs, tmuv
w = tmvu

w . 384
• Framing independence: 385

ρ±
ux � thaux = ρ±

ux. (9)

The following proposition, whose proof we leave as an exercise, says that Krbh
0 is a pretty 386

good approximation to Krbh: 387

Proposition 3.3 The obvious maps π = Krbh
0 → Krbh and δ = wT → Krbh

0 are well 388

defined. 389

Conjecture 3.7 The projection π : Krbh
0 → Krbh is an isomorphism. 390

We expect that there should be a Reidemeister-style combinatorial calculus of ribbon 391

knots in R
4. The above conjecture is that the definition of Krbh

0 is such a calculus. We expect 392

that given any such calculus, the proof of the conjecture should be easy. In particular, the 393

above conjecture is equivalent to the statement that the stated relations in the definition of 394
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wT generate the relations in the kernel of Satoh’s Tube map δ0 (see Section 10.2), and this395

is equivalent to the conjecture whose proof was attempted at [31]. Though I understood by396

private communication with B. Winter that [31] is presently flawed.397

In the absence of a combinatorial description of Krbh, we replace it by Krbh
0 throughout398

the rest of this paper. Hence, we construct invariants of elements ofKrbh
0 instead of invariants399

of genuine rKBHs. Yet note that the map δ = wT → Krbh
0 is well-defined, so our400

invariants are always good enough to yield invariants of tangles and virtual tangles.401

3.4 Example: The Fundamental Invariant402

The fundamental invariant π of Section 2.3 is defined in a direct manner on Krbh and does403

not need to suffer from the difficulties of the previous section. Yet, it can also serve as an404

example for our approach for defining invariants on Krbh
0 using generators and relations.405

Definition 3.8 Let (T ;H) denote the set of all triples (G; m; l) of a group G along with406

functions m ∈ GT and l ∈ GH , regarded modulo group isomorphisms with their obvious407

action on m and l.9 Define MMA operations (∗, tσu
v , hσx

y , tηu, hηx, tmuv
w , hm

xy
z , thaux) on408

 = {(T ;H)} and units tεu and hεx as follows:409

• ∗ is the operation of taking the free product G1 ∗ G2 of groups and concatenating the410

lists of heads and tails:411

(G1; m1; l1) ∗ (G2; m2; l2) := (G1 ∗ G2; m1 ∪ m2; l1 ∪ l2).

• tσ a
b / hσa

b relabels an element labelled a to be labelled b.412
• tηu / hηx removes the element labelled u / x.413
• tmuv

w “combines” u and v to make w. Precisely, it replaces the input group G with414

G′ = G/〈mu = mv〉, removes the tail labels u and v, and introduces a new tail, the415

element mu = mv of G′ and labels it w:416

tmuv
w (G; m; l) := (G/〈mu = mv〉; (m\{u, v}) ∪ (w → mu); l).

• hm
xy
z replaces two elements in l by their product:417

hm
xy
z (G; m; l) := (G,m, (l\{x, y}) ∪ (z → lx ly).

• The best way to understand the action of thaux is as “the thing that makes the funda-418

mental invariant π a homomorphism, given the geometric interpretation of thaux on419

Krbh in Section 3.1”. In formulae, this becomes420

thaux(G; m; l) := (G ∗ 〈α〉/〈mu = lxαl−1
x 〉; (m\u) ∪ (u → α), l),

where α is some new element that is added to G.421
• tεu = (〈α〉; (u → α); ()) and hεx = (1; (); (x → 1)).422

We state the following without its easy topological proof:423

Proposition 3.9 π : Krbh →  is a homomorphism of MMAs.424

A consequence is that π can be computed on any rKBH starting from its values on the425

generators of Krbh as listed in Section 2.3 and then using the operations of Definition 3.8.426

9I ignore set-theoretic difficulties. If you insist, you may restrict to countable groups or to finitely presented
groups.
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Comment 3.10 The fundamental groups of ribbon 2-knots are “labelled-oriented tree” 427

(LOT) groups in the sense of Howie [13, 14]. Howie’s definition has an obvious extension to 428

labelled-oriented forests (LOF), yielding a class of groups that may be called “LOF groups”. 429

One may show that the the fundamental groups of complements of rKBHs are always LOF 430

groups. One may also show that the subset LOF of  in which the group component G is 431

an LOF group is a sub-MMA of . Therefore π = Krbh → LOF is also a homomor- 432

phism of MMAs; I expect it to be an isomorphism or very close to an isomorphism. Thus, 433

much of the rest of this paper can be read as a “theory of homomorphic (in the MMA sense) 434

invariants of LOF groups”. I don’t know how much it may extend to a similar theory of 435

homomorphic invariants of bigger classes of groups. 436

4 The Free Lie Invariant 437

In this section, we construct ζ0, the “tree” part to our main tree-and-wheel-valued invariant 438

ζ , by following the scheme of Section 3.3. Yet, before we succeed, it is useful to aim a bit 439

higher and fail, and thus appreciate that even ζ0 is not entirely trivial. 440

4.1 A Free Group Failure 441

If the balloon part of an rKBH K is unknotted, the fundamental group π1(K
c) of its com- 442

plement is the free group generated by the meridians (mu)u∈T . The hoops of K are then 443

elements in that group and hence, they can be written as words (wx)x∈H in the mu’s and 444

their inverses. Perhaps we can make an MMA W out of lists (wx) of free words in letters 445

m±1
u and use it to define a homomorphic invariant W = Krbh → W? All we need, it 446

seems, is to trace how MMA operations on K affect the corresponding list (wx) of words. 447

The beginning is promising. ∗ acts on pairs of lists of words by taking the union of those 448

lists. hm
xy
z acts on a list of words by replacing wx and wy by their concatenation, now 449

labelled z. tm
pq
r acts on w̄ = (wx) by replacing every occurrence of the letter mp and 450

every occurrence of the letter mq in w̄ by a single new letter, mr . 451

The problem is with thaux . Imitating the topology, thaux should act on w̄ = (wy) by 452

replacing every occurrence of mu in w̄ with wxαw−1
x , where α is a new letter, destined to 453

replace mu. But wx may also contain instances of mu, so after the replacement, mu �→ αwx 454

is performed; it should be performed again to get rid of the mu’s that appear in the “con- 455

jugator” wx . But new mu’s are then created, and the replacement should be carried out yet 456

again. . . . The process clearly does not stop, and our attempt failed. 457

Yet, not all is lost. The latter and latter’s replacements occur within conjugators of con- 458

jugators, deeper and deeper into the lower central series of the free groups involved. Thus, 459

if we replace free groups by some completion thereof in which deep members of the lower 460

central series are “small”, the process becomes convergent. This is essentially what will be 461

done in the next section. 462

4.2 A Free Lie Algebra Success 463

Given a set T, let FL(T ) denote the graded completion of the free Lie algebra on the gen- 464

erators in T (sometimes we will write “FL” for “FL(T ) for some set T”). We define a 465

meta-monoid-action M0 as follows. For any finite set T of “tail labels” and any finite set H 466

or “head labels”, we let 467

M0(T ; H) := FL(T )H
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be the set of H-labelled arrays of elements of FL(T ). On M0 := {M0(T ;H)}, we define468

operations as follows, starting from the trivial and culminating with the most interesting,469

thaax. All of our definitions are directly motivated by the “failure” of the previous section;470

in establishing the correspondence between the definitions below and the ones above, one471

should interpret λ = (λx) ∈ M0(T ;H) as “a list of logarithms of a list of words (wx)”.472

• hσx
y is simply σx

y as explained in the conventions section, Section 10.5.473
• tσu

v is induced by the map FL(T ) → FL((T \u) ∪ {v}) in which the generator u is474

mapped to the generator v.475
• tη acts by setting one of the tail variables to 0, and hη acts by dropping an array element.476

Thus, for λ ∈ M0(T ;H),477

λ � tηu = λ � (u �→ 0) and λ � hηx = η\x.

• If λ1 ∈ M0(T1;H1) and λ2 ∈ M0(T2;H2) (and, of course, T1 ∩ T2 = ∅ = H1 ∩ H2),478

then479

λ1 ∗ λ2 := (λ1 � ι1) ∪ (λ2 � ι2)

where ιi are the natural embeddings ιi : FL(Ti) ↪→ FL(T1 ∪ T2), for i = 1, 2.480
• If λ ∈ M0(T ; H) then481

λ � tmuv
w := λ � (u, v �→ w),

where (u, v �→ w) denotes the morphism FL(T ) → FL(T \{u, v} ∪ {w}) defined482

by mapping the generators u and v to the generator w.483
• If λ ∈ M0(T ; H) then484

λ � hm
xy
z := λ\{x, y} ∪ (z → bch(λx, λy)),

where bch stands for the Baker-Campbell-Hausdorff formula:485

bch(a, b) := log(eaeb) = a + b + 1

2
[a, b] + . . . .

• If λ ∈ M0(T ; H) then486

λ � thaux := λ � (C−λx
u )−1 = λ � RCλx

u (10)

In the above formula, C
−λx
u denotes the automorphism of FL(T ) defined by mapping487

the generator u to its “conjugate” e−λx ueλx . More precisely, u is mapped to e−adλx (u),488

where ad denotes the adjoint action, and ead is taken in the formal sense. Thus489

C−λx
u : u �→ e−adλx (u) = u − [λx, u] + 1

2
[λx, [λx, u]] − . . . . (11)

Also in (10), RC
λx
u := (C

−λx
u )−1 denotes the inverse of the automorphism C

−λx
u .490

• tεu = () and hεx = (x → 0).491

Warning 4.1 When γ ∈ FL, the inverse of C
−γ
u may not be C

γ
u . If γ does not contain492

the generator u, then indeed C
−γ
u � C

γ
u = I . But in general, applying C

−γ
u creates many493

new us, within the γ s that appear in the right hand side of (11), and the new us are then494

conjugated by C
γ
u instead of being left in place. Yet C

−γ
u is invertible, so we simply name495

its inverse RC
γ
u .496
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The name “RC” stands either for “reverse conjugation” or for “repeated conjugation”. 497

The rationale for the latter naming is that if α ∈ FL(T ) and ū is a name for a new 498

“temporary” free-Lie generator, then RC
γ
u (α) is the result of applying the transformation 499

u �→ eadγ (ū) repeatedly to α until it stabilizes (at any fixed degree, this will happen after 500

a finite number of iterations), followed by the eventual renaming ū �→ u. 501

Comment 4.2 Some further insight into RC
γ
u can be obtained by studying the triangle 502

below. The space at the bottom of the triangle is the quotient of the free Lie algebra on 503

T ∪ {ū} (where ū is a new temporary generator) by either of the two relations shown there; 504

these two relations are, of course, equivalent. The map φ is induced from the obvious inclu- 505

sion of FL(T ) into FL(T ∪ {ū}), and in the presence of the relation ū = e−adγ u, it is 506

clearly an isomorphism. The map φ̄ is likewise induced from the renaming of u �→ ū. It, 507

too, is an isomorphism, but slightly less trivially—indeed, using the relation u = eadγ ū 508

repeatedly, any element in FL(T ∪ {ū}) can be written in form that does not include u, and 509

hence is in the image of φ̄. It is clear that C
−γ
u = φ̄ � φ−1. Hence, RC

γ
u = φ � φ̄−1, 510

and as φ̄−1 is described in terms of repeated applications of the relation u = eadγ ū, 511

it is clear that RC
γ
u indeed involves repeated conjugation as asserted in the previous 512

paragraph. 513

Warning 4.3 Equation (10) does not say that thaux = RC
λx
u as abstract operations, only 514

that they are equal when evaluated on λ. In general, it is not the case that μ� thaux = μ� 515

RC
λx
u for arbitrary μ—the latter equality is only guaranteed if μx = λx . 516

As another example of the difference, the operations hm
xy
z and thaux do not commute— 517

in fact, the composition hm
xy
z � thaux does not even make sense, for by the time thaux is 518

evaluated, its input does not have an entry labelled x. Yet, the commutativity 519

λ � hm
xy
z � RCλx

u = λ � RCλx
u � hm

xy
z (12)

makes perfect sense and holds true, for the operation hm
xy
z only involves the heads/roots of 520

trees, while RC
λx
u only involves their tails/leafs. 521

Theorem 4.4 M0, with the operations defined above, is a meta-monoid-action (MMA). 522

Proof Most MMA axioms are trivial to verify. The most important ones are the ones 523

in (2) through (6). Of these, the meta-associativity of hm follows from the associa- 524

tivity of the bch formula, bch(bch(λx, λy), λz) = bch(λx, bch(λy, λz)), the meta- 525

associativity of tm is trivial, and it remains to prove that meta-actions commute ((4); 526

all other required commutativities are easy) and the the meta-action axiom t (5) and 527

h (6). 528
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Meta-actions commute Expanding (4) using the above definitions and denoting α := λx ,529

β = λy , α′ := α � RC
β
v , and β ′ := β � RCα

u , we see that we need to prove the530

identity531

RCα
u � RCβ ′

v = RCβ
v � RCα′

u . (13)

Consider the commutative diagram below. In it, FL(u, v) means “the (completed) free532

Lie algebra with generators u and v, and some additional fixed collection of generators”,533

and likewise, for FL(u, ū, v, v̄). The diagonal arrows are all substitution homomorphisms534

as indicated, and they are all isomorphisms. We put the elements α and β in the upper-left535

space, and by comparing with the diagram in Comment 4.2, we see that the upper horizontal536

map is RCα
u and the left vertical map is RC

β
v . Therefore, β ′ is the image of β in the top left537

space, and α′ is the image of α in the bottom left space. Therefore, again, using the diagram538

in Comment 4.2, the right vertical map is RC
β ′
v and the lower horizontal map is RCα′

u ,539

and (13) follows from the commutativity of the external square in the diagram below.

540
For later use, we record the fact that by reading all the horizontal and vertical arrows541

backwards, the above argument also proves the identity542

C
−α�RC

β
v

u � C−β
v = C

−β�RCα
u

v � C−α
u . (14)

Meta-action axiom t. Expanding (5) and denoting γ := λx , we need to prove the identity543

tmuv
w � RC

γ�tuv
w

w = RC
γ
u � RC

γ�RC
γ
u

v � tmuv
w . (15)

544

Consider the diagram below. In it, the vertical and diagonal arrows are all substitution545

homomorphisms as indicated. The horizontal arrows are RC maps as indicated. The element546

γ lives in the upper left corner of the diagram, but equally makes sense in the upper of the547

central spaces. We denote its image via RC
γ
u by γ2, and think of it as an element of the548

middle space in the top row. Likewise, γ4 := γ � tmuv
w lives in both the bottom left space549

and the bottom of the two middle spaces.550
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It requires a minimal effort to show that the map at the very centre of the diagram is well 551

defined. The commutativity of the triangles in the diagram follows from Comment 4.2, and 552

the commutativity of the trapezoids is obvious. Hence, the diagram is overall commutative. 553

Reading it from the top left to the bottom right along the left and the bottom edges gives the 554

left hand side of (15), and along the top and the right edges gives the right hand side. 555

Meta-action axiom h Expanding (6), we need to prove 556

λ � hm
xy
z � RC

bch(λx ,λy)
u = λ � RCλx

u � RC
λy�RC

λx
u

u � hm
xy
z .

Using commutativities as in (12) and denoting α = λx and β = λy , we can cancel the 557

hm
xy
z ’s, and we are left with 558

RCbch(α,β)
u

?= RCα
u � RCβ ′

u , where β ′ := β � RCα
u . (16)

This last equality follows from a careful inspection of the following commutative diagram: 559

(17)

Indeed, by the definition of RCα
u , we have β ′ = β modulo and the relation u = eadαū. 560

So, in the bottom space, u = eadαū = eadαeadβ ′ ¯̄u = eadαeadβ ¯̄u = ebch(adα,adβ) ¯̄u = 561

ead bch(α,β) ¯̄u. Hence, if we concentrate on the three corners of (17), we see the diagram 562

below, whose top row is both RCα
u � RC

β ′
u and the definition of RC

bch(α,β)
u . 563
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�

It remains to construct ζ0 : Krbh
0 → M0 by proclaiming its values on the generators:564

ζ0(tεu) := (), ζ0(hεx) := (x → 0), and ζ0(ρ
±
ux) := (x → ± u).

Proposition 4.5 ζ0 is well defined; namely, the values above satisfy the relations in565

Definition 3.5.566

Proof We only verify the conjugation relation (8), as all other relations are easy. On the567

left, we have568

while on the right it is569

and the equality follows because bch(ead v(u), v) = log(eveue−v · ev) = bch(v, u).570

As we shall see in Section 7, ζ0 is related to the tree part of the Kontsevitch integral.571

Thus, by finite-type folklore [2, 10], when evaluated on string links (i.e., pure tangles) ζ0572

should be equivalent to the collection of all Milnor μ invariants [23]. No proof of this fact573

will be provided here.574

5 The Wheel-Valued Spice and the Invariant ζ575

This is perhaps the most important section of this paper. In it, we construct the wheel part of576

the full trees-and-wheels MMA M and the full tree-and-wheels invariant ζ : Krbh → M .577

5.1 Cyclic Words, divu, and Ju578

The target MMA, M, of the extended invariant ζ is an extension of M0 by “wheels”, or579

equally well, by “cyclic words”, and the main difference between M and M0 is the addi-580

tion of a wheel-valued “spice” term Ju(λx) to the meta-action thaux . We first need the581

“infinitesimal version” divu of Ju.582

Recall that if T is a set (normally, of tail labels), we denote by FL(T ) the graded583

completion of the free Lie algebra on the generators in T. Similarly, we denote by584

FA(T ) the graded completion of the free associative algebra on the generators in T, and585

by CW(T ) the graded completion of the vector space of cyclic words on T, namely,586

CW(T ) := FA(T )/{uw = wu : u ∈ T ,w ∈ FA(T )}. Note that the last is a vector space587

quotient—we mod out by the vector-space span of {uw = wu}, and not by the ideal gen-588

erated by that set. Hence, CW is not an algebra and not “commutative”; merely, the words589
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in it are invariant under cyclic permutations of their letters. We often call the elements of 590

CW “wheels”. Denote by tr the projection tr : FA → CW and by ι the standard inclusion 591

ι : FL(T ) → FA(T ) (ι is defined to be the identity on letters in T, and is then extended to 592

the rest of FL using ι([λ1, λ2]) := ι(λ1)ι(λ2) − ι(λ2)ι(λ1)). Note that operations defined 593

by “letter substitutions” make sense on FA and on CW. In particular, the operation RC
γ
u of 594

Section 4.2 makes sense on FA and on CW. 595

The inclusion ι can be extended from “trees” (elements of FL) to “wheels of trees” (ele- 596

ments of CW(FL)). Given a letter u ∈ T and an element γ ∈ FL(T), we let divuγ 597

be the sum of all ways of gluing the root of γ to near any one of the u-labelled leafs 598

of γ ; each such gluing is a wheel of trees, and hence can be interpreted as an element 599

of CW(T ). An example is below, and a formula-level definition follows: we first define 600

σu : FL(T ) → FA(T ) by setting σu(v) := δuv for letters v ∈ T and then setting 601

σu([λ1, λ2]) := ι(λ1)σu(λ2) − ι(λ2)σu(λ1), and then we set divu(γ ) := tr(uσu(γ )). An 602

alternative definition of a similar functional div is in [1, Proposition 3.20], and some further 603

discussion is in [5, Section 3.2].

604
Now given u ∈ T and γ ∈ FL(T ) define 605

Ju(γ ) :=
∫ 1

0
ds divu

(
γ � RC

sγ
u

)
� C

−sγ
u . (18)

Note that at degree d, the integrand in the above formula is a degree d element of CW(T ) 606

with coefficients that are polynomials of degree at most d − 1 in s. Hence the above formula 607

is entirely algebraic. The following (difficult!) proposition contains all that we will need to 608

know about Ju. 609

Proposition 5.1 If α, β, γ ∈ FL then the following three equations hold: 610

Ju(bch(α, β)) = Ju(α) + Ju(β � RCα
u ) � C−α

u , (19)
611

Ju(α) − Ju(α � RCβ
v ) � C−β

v = Jv(β) − Jv(β � RCα
u ) � C−α

u (20)
612

Jw(γ � tmuv
w ) =

(
Ju(γ ) + Jv(γ � RC

γ
u ) � C

−γ
u

)
� tmuv

w (21)

We postpone the proof of this proposition to Section 10.4. 613

Remark 5.2 Ju can be characterized as the unique functional Ju : FL(T ) → CW(T ) which 614

satisfies (19) as well as the conditions Ju(0) = 0 and 615

d

dε
Ju(εγ )

∣∣∣∣
ε=0

= divu(γ ), (22)
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which in themselves are easy consequences of the definition of Ju, (18). Indeed, taking616

α = sγ and β = εγ in (19), where s and ε are scalars, we find that617

Ju((s + ε)γ ) = Ju(sγ ) + Ju(εγ � RC
sγ
u ) � C

−sγ
u .

Differentiating the above equation with respect to ε at ε = 0 and using (22), we find that618

d

ds
Ju(sγ ) = divu(γ � RC

sγ
u ) � C

−sγ
u ,

and integrating from 0 to 1 we get (18).619

Finally, for this section, one may easily verify that the degree 1 piece of CW is preserved620

by the actions of C
γ
u and RC

γ
u , and hence it is possible to reduce modulo degree 1. Namely,621

set CW r (T ) := CW(T )/deg 1 = CW >1(T ), and all operations remain well defined and622

satisfy the same identities.623

5.2 The MMA M624

Let M be the collection {M(T ;H)}, where625

M(T ; H) := FL(T )H × CW r (T ) = M0(T ; H) × CW r (T )

(I really mean ×, not ⊗). The collection M has MMA operations as follows:626

• tσu
v , tηu, and tmuv

w are defined by the same formulae as in Section 4.2. Note that these627

formulae make sense on CW and on CW r just as they do on FL.628
• hσx

y , hηx , and hm
xy
z are extended to act as the identity on the CW r (T ) factor of629

M(T ; H).630
• If μi = (λi;ωi) ∈ M(Ti; Hi) for i = 1, 2 (and, of course, T1 ∩ T2 = ∅ = H1 ∩ H2),631

set632

μ1 ∗ μ2 := (λ1 ∗ λ2; ι1(ω1) + ι2(ω2)),

where ιi are the obvious inclusions ιi : CW r (Ti) → CW r (T1 ∪ T2).633
• The only truly new definition is that of thaux :634

(λ;ω) � thaux := (λ; ω + Ju(λx)) � RCλx
u .

Thus the “new” thaux is just the “old” thaux , with an added term of Ju(λx).635
• tεu := ((); 0) and hεx := ((x → 0); 0).636

Theorem 5.3 M, with the operations defined above, is a meta-monoid-action (MMA). Fur-637

thermore, if ζ : Krbh
0 → M is defined on the generators in the same way as ζ0, except638

extended by 0 to the CW r factor, ζ(ρ±
ux) := ((x → ±u); 0), then it is well-defined;639

namely, the values above satisfy the relations in Definition 3.5.640

Proof Given Theorem 4.4 and Proposition 4.5, the only non-obvious checks remaining are641

the “wheel parts” of the main equations defining and MMA (2)–(6) and the conjugation642

relation (8), and the FI relation (9). As the only interesting wheels-creation occurs with the643

operation tha, (2) and (3) are easy. As easily Ju(v) = 0 if u �= v, no wheels are created644

by the tha action within the proof of Proposition 4.5, so that proof still holds. We are left645

with (4)–(6) and (8)–(9).646
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Let us start with the wheels part of (4). If μ = ((x → α, y → β, . . .);ω) ∈ M , then 647

μ � thaux = ((x → α � RCα
u , y → β � RCα

u , . . .); (ω + Ju(α)) � RCα
u )

and hence the wheels-only part of μ � thaux � thavy is 648

ω � RCα
u � RC

β�RCα
u

v + Ju(α) � RCα
u � RC

β�RCα
u

v + Jv(β � RCα
u ) � RC

β�RCα
u

v

649

= [
ω + Ju(α) + Jv(β � RCα

u ) � C−α
u

]
� RCα

u � RC
β�RCα

u
v .

In a similar manner, the wheels-only part of μ � thavy � thaux is 650

[
ω + Jv(β) + Ju(α � RCβ

v ) � C−β
v

]
� RCβ

v � RC
β�RC

β
v

u .

Using (13), the operators outside the square brackets in the above two formulae are the 651

same, and so we only need to verify that 652

ω + Ju(α) + Jv(β � RCα
u ) � C−α

u = ω + Jv(β) + Ju(α � RCβ
v ) � C−β

v .

But this is (20). In a similar manner, the wheels parts of (5) and (6) reduce to (21) and (19), 653

respectively. One may also verify that no wheels appear within (8), and that wheels appear 654

in (9) only in degree 1, which is eliminated in CW r . 655

Thus, we have a tree-and-wheel valued invariant ζ defined on Krbh
0 , and thus δ � ζ is a 656

tree-and-wheel valued invariant of tangles and w-tangles. 657

As we shall see in Section 7, the wheels part ω of ζ is related to the wheels part of 658

the Kontsevitch integral. Thus by finite-type folklore (e.g., [19]), the Abelianization of ω 659

(obtained by declaring all the letters in CW(T ) to be commuting) should be closely related 660

to the multi-variable Alexander polynomial. More on that in Section 9. I don’t know what 661

the bigger (non-commutative) part of ω measures. 662

6 Some Computational Examples 663

Part of the reason I am happy about the invariant ζ is that it is relatively easily computable. 664

Cyclic words are easy to implement, and using the Lyndon basis (e.g. [24, Chapter 5]), free 665

Lie algebras are easy too. Hence, I include here a demo-run of a rough implementation, 666

written in Mathematica. The full source files are available at [web/]. 667

6.1 The Program 668

First, we load the package FreeLie.m, which contains a collection of programs to manip- 669

ulate series in completed free Lie algebras and series of cyclic words. We tell FreeLie.m 670

to show series by default only up to degree 3, and that if two (infinite) series are compared, 671

they are to be compared by default only up to degree 5:

672

http://www.math.toronto.edu/~drorbn/papers/KBH
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Merely as a test of FreeLie.m, we tell it to set t1 to be bch(u, v). The computer’s673

response is to print that series to degree 3:

674
Note that by default, Lie series are printed in “top bracket form”, which means that675

brackets are printed above their arguments, rather than around them. Hence u uv means676

[u, [u, v]]. This practise is especially advantageous when it is used on highly nested677

expressions, when it becomes difficult for the eye to match left brackets with the their678

corresponding right brackets.679

Note also that that FreeLie.m utilizes lazy evaluation, meaning that when a Lie series680

(or a series of cyclic words) is defined, its definition is stored but no computations take681

place until it is printed or until its value (at a certain degree) is explicitly requested. Hence,682

t1 is a reference to the entire Lie series bch(u, v), and not merely to the degrees 1–3 parts683

of that series, which are printed above. Hence, when we request the value of t1 to degree684

6, the computer complies:

685
(It is surprisingly easy to compute bch to a high degree and some amusing patterns686

emerge. See [web/mo] and [web/bch].)687

The package FreeLie.m know about various free Lie algebra operations, but not about688

our specific circumstances. Hence, we have to make some further definitions. The first689

few are set-theoretic in nature. We define the “domain” of a function stored as a list of690

key → value pairs to be the set of “first elements” of these pairs; meaning, the set of keys.691

We define what it means to remove a key (and its corresponding value), and likewise for a692

list of keys. We define what it means for two functions to be equal (their domains must be693

equal, and for every key #, we are to have # � f1 = # � f2). We also define how to apply a694

Lie morphism mor to a function (apply it to each value), and how to compare (λ, ω) pairs695

(in FL(T )H × CW r (T )):696

http://www.math.toronto.edu/~drorbn/papers/KBH/mo
http://www.math.toronto.edu/~drorbn/papers/KBH/bch
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Next, we enter some free-Lie definitions that are not a part of FreeLie.m. Namely, we 697

define RC
γ
u,ū(s) to be the result of “stable application” of the morphism u → ead(γ )(ū) 698

to s (namely, apply the morphism repeatedly until things stop changing; at any fixed degree 699

this happens after a finite number of iterations). We define RC
γ
u to be RC

γ
u,ū � (ū → u). 700

Finally, we define J as in (18):

701
Mostly, to introduce our notation for cyclic words, let us compute Jv(bch(u, v)) to degree 702

4. Note that when a series of wheels is printed out here, its degree 1 piece is greyed out to 703

honour the fact that it “does not count” within ζ :

704
Next is a series of definitions that implement the definitions of ∗, tm, hm, and tha 705

following Sections 4.2 and 5.2:

706
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Next, we set the values of ζ(tεx) and ζ(ρ±
ux), which we simply denote tεx and ρ±

ux :

707
The final bit of definitions have to do with 3D tangles. We set R+ to be the value of708

as in the proof of Theorem 3.4, likewise for R−, and we define dm by following709

(7):

710

6.2 Testing Properties and Relations711

It is always good to test both the program and the math by verifying that the operations we712

have implemented satisfy the relations predicted by the mathematics. As a first example,713

we verify the meta-associativity of tm. Hence, in line 1 below, we set t1 to be the element714

t1 = ((x → u + v + w, y → [u, v] + [v,w]); uvw) of M(u, v, w; x, y). In line715

2, we compute t1 � tmuv
u , in line 3 we compute t2 := t1 � tmuv

u � tmuw
u and store its value716

in t2; in line 4, we compute t1 � tmvw
v , in line 5 we compute t3 := t1 � tmvw

v � tmuv
u and717

store its value in t3, and then in line 6, we test if t2 is equal to t3. The computer thinks the718

answer is “True”, at least to the degree tested:

719
The corresponding test for the meta-associativity of hm is a bit harder, yet produces the720

same result. Note that we have declared $SeriesCompareDegree to be higher than721

$SeriesShowDegree, so the “True” output below means a bit more than the visual722

comparison of lines 3 and 5:723
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We next test the meta-action axiom t on ((x → u + [u, t], y → u + [u, t]); uu + tuv) 724

and the meta-action axiom h on ((x → u + [u, v], y → v + [u, v]); uu + uvv):
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And finally for this testing section, we test the conjugation relation of (8):

725

6.3 Demo Run 1 — the Knot 817726

We are ready for a more substantial computation—the invariant of the knot 817. We draw727

817 in the plane, with all but the neighbourhoods of the crossings dashed-out. We thus get728

a tangle T1 which is the disjoint union of eight individual crossings (four positive and four729

negative). We number the 16 strands that appear in these eight crossings in the order of their730

eventual appearance within 817, as seen below.

731
The 8-crossing tangle T1 we just got has a rather boring ζ invariant, a disjoint merge of 8732

ρ±’s. We store it in μ1. Note that we used numerals as labels, and hence, in the expression733

below, top-bracketed numerals should be interpreted as symbols and not as integers. Note734

also that the program automatically converts two-digit numerical labels into alphabetical735

symbols, when these appear within Lie elements. Hence, in the output below, “a” is “10”,736

“c” is “12”, “e” is “14”, and “g” is “16”:737
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Next is the key part of the computation. We “sew” together the strands of T1 in order by 738

first sewing 1 and 2 and naming the result 1, then sewing 1 and 3 and naming the result 1 739

once more, and so on until everything is sewn together to a single strand named 1. This is 740

done by applying dm1k
1 repeatedly to μ1, for k = 2, . . . , 16, each time storing the result 741

back again in μ1. Finally, we only wish to print the wheels part of the output, and this we 742

do to degree 6:

743
Let A(X) be the Alexander polynomial of 817. Namely, A(X) = −X−3 + 4X−2 − 744

8X−1 + 11 − 8X + 4X2 − X3. For comparison with the above computation, we print the 745

series expansion of log A(ex), also to degree 6:

746

6.4 Demo Run 2—the Borromean Tangle 747

In a similar manner, we compute the invariant of the rgb-coloured Borromean tangle, shown 748

below. 749
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We label the edges near the crossings as shown, using the labels {r, 1, 2, 3} for the r750

component, {g, 4, 5, 6} for the g component, and {b, 7, 8, 9} for the b component. We let751

μ2 store the invariant of the disjoint union of six independent crossings labelled as in752

the Borromean tangle, we concatenate the numerically labelled strands into their corre-753

sponding letter-labelled strands, and we then print μ2, which now contains the invariant754

we seek:755

We then print the r-head part of the tree part of the invariant to degree 5 (the g-head and756

b-head parts can be computed in a similar way, or deduced from the cyclic symmetry of r,757

g, and b), and the wheels part to the same degree:

758
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Fig. 5 The redhead part of the tree part and the wheels part of the invariant of the Borromean tangle, to
degree 6

A more graphically pleasing presentation of the same values, with the degree raised to 6, 759

appears in Fig. 5. 760

7 Sketch of the Relation with Finite Type Invariants 761

One way to view the invariant ζ of Section 5 is as a mysterious extension of the reasonably 762

natural invariant ζ0 of Section 4. Another is as a solution to a universal problem—as we shall 763

see in this section, ζ is a universal finite type invariant of objects in Krbh
0 . Given that Krbh

0 764
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is closely related to wT (w-tangles), and given that much was already said on finite-type765

invariants of w-tangles in [5], this section will be merely a sketch, difficult to understand766

without reading much of [4] and sections 1–3 of [5], as well as the parts of section 4 that767

concern with caps.768

Over all, defining ζ using the language of Sections 4 and 5 is about as difficult as using769

finite-type invariants. Yet computing it using the language of Sections 4 and 5 is much easier770

while proving invariance is significantly harder.771

7.1 A circuit Algebra Description of Krbh
0772

A w-tangle represents a collection of ribbon-knotted tubes in R
4. It follows from Theorem773

2.9 that every rKBH can be obtained from a w-tangle by capping some of its tubes and774

puncturing the rest, where puncturing a tube means “replacing it with its spine, a strand that775

runs along it”. Using thick red lines to denote tubes, red bullets to denote caps, and dotted776

blue lines to denote punctured tubes, we find that777

Note that punctured tubes (meanings strands or hoops) can only go under capped tubes778

(balloons), and that while it is allowed to slide tubes over caps, it is not allowed to slide them779

under caps. Further explanations and the meaning of “CA” are in [5]. The “red bullet” sub-780

script on the right hand side indicates that we restrict our attention to the subspace in which781

all red strands are eventually capped. We leave it to the reader to interpret the operations782

hm, tha, and tm is this language (tm is non-obvious!).783

7.2 Arrow Diagrams for Krbh
0784

As in [4, 5], one we finite-type invariants of elements on Krbh
0 bi considering iterated dif-785

ferences of crossings and non-crossings (virtual crossings), and then again as in [4, 5], we786

find that the arrow-diagram space Abh(T ;H) corresponding to these invariants may be787

described schematically as follows:788
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In the above, arrow tails may land only on the red “tail” strands, but arrow heads may land 789

on either kind of strand. The “relations” are the TC and
−→
4T relations of [4, Section 2.3], the 790

CP relation of [5, Section 4.2], and the relation DL = DR = 0, which corresponds to the 791

R1 relation (DL and DR are defined in [4, Section 3]). 792

The operation hm acts on Abh by concatenating two head stands. The operation tha acts 793

by duplicating a head strand (with the usual summation over all possible ways of reconnect- 794

ing arrow-heads as in [4, Section 2.5.1.6]), changing the colour of one of the duplicates to 795

red, and then concatenating it to the beginning of some tail strand. 796

We note that modulo the relations, one may eliminate all arrow-heads from all tail 797

strands. For diagrams in which there are no arrow-heads on tail strands, the operation tm is 798

defined by merging together two tail strands. The TC relation implies that arrow-tails on the 799

resulting tail-strand can be ordered in any desired way. 800

As in [4, Section 3.5], Abh has an alternative model in which internal “2-in 1-out” triva- 801

lent vertices are allowed, and in which we also impose the
−→
AS,

−−→
ST U , and

−−−→
IHX relations (ibid.). 802

7.3 The Algebra Structure on Abh and its Primitives 803

For any fixed finite sets T and H, the space Abh(T ;H) is a co-commutative bi-algebra. Its 804

product defined using the disjoint union followed by the tm operation on all tail strands and 805

the hm operation on all head strands, and its co-product is the “sum of all splittings” as 806

in [4, Section 3.2]. Thus by Milnor-Moore, Abh(T ; H) is the universal enveloping algebra 807

of its set of primitives Pbh. The latter is the set of connected diagrams in Abh (modulo 808

relations), and those, as in [5, Section 3.2], are the trees and the degree >1 wheels. (Though 809

note that even if T = H = {1, . . . , n}, the algebra structure on Abh(T ; H) is different 810

from the algebra structure on the space Aw(↑n) of ibid.). Identifying trees with FL(T ) and 811

wheels with CW r (T ), we find that 812

Pbh(T ;H) ∼= FL(T )H × CW r (T ) = M(T ; H).

Theorem 7.1 By taking logarithms (using formal power series and the algebra structure 813

of Abh), Pbh(T ; H) inherits the structure of an MMA from the group-like elements of Abh. 814

Furthermore, Pbh(T ;H) and M(T ;H) are isomorphic as MMAs. 815

Sketch of the proof Once it is established that Pbh(T ;H) is an MMA, that tm and hm act 816

in the same way as on M and that the tree part of the action of tha is given using the RC 817

operation, it follows that the wheels part of the action of tha is given by some functional 818

J ′ which necessarily satisfies (19). But according to Remark 5.2, (19) and a few auxiliary 819

conditions determine J uniquely. These conditions are easily verified for J ′, and hence 820

J ′ = J . This concludes the proof. 821

Note that the above theorem and the fact that Pbh(T ;H) is an MMA provided an alter- 822

native proof of Proposition 5.1 which bypasses the hard computations of Section 10.4. In 823

fact, personally, I first knew that J exists and satisfies Proposition 5.1 using the reasoning 824

of this section, and only then did I observe using the reasoning of Remark 5.2 that J must 825

be given by the formula in (18). 826

7.4 The Homomorphic Expansion Zbh 827

As in [4, Section 3.4] and [5, Section 3.1], there is a homomorphic expansion (a universal 828

finite type invariant with good composition properties) Zbh : Krbh
0 → Abh defined by 829
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mapping crossings to exponentials of arrows. It is easily verified that Zbh is a morphism of830

MMAs, and therefore it is determined by its values on the generators ρ± of Krbh
0 , which are831

single crossings in the language of Section 7.1. Taking logarithms we find that log Zbh = ζ832

on the generators and hence always, and hence ζ is the logarithm of a universal finite type833

invariant of elements of Krbh
0 .834

8 The Relation with the BF Topological Quantum Field Theory835

8.1 Tensorial Interpretation836

Given a Lie algebra g, any element of FL(T ) can be interpreted as a function taking |T |837

inputs in g and producing a single output in g. Hence, putting aside issues of comple-838

tion and convergence, there is a map τ1 : FL(T ) → Fun(gT → g), where in general,839

Fun(X → Y) denotes the space of functions from X to Y. To deal with completions more840

precisely, we pick a formal parameter �, multiply the degree k part of τ1 by �
k , and get a per-841

fectly good τ = τg : FL(T ) → Fun(gT → g���), where in general, V ��� := Q��� ⊗ V842

for any vector space V. The map τ obviously extends to τ : FL(T )H → Fun(gT → gH ���).843

Similarly, if also g is finite dimensional, then by taking traces in the adjoint representation844

we get a map τ = τg : CW(T ) → Fun(gT → Q���). Multiplying this τ with the τ from845

the previous paragraph, we get τ = τg : M(T ; H) → Fun(gT → gH ���). Exponen-846

tiating, we get847

eτ : M(T ; H) → Fun(gT → U(g)⊗H ���).

8.2 ζ and BF Theory848

Fix a finite dimensional Lie algebra g. In [7] (see especially section 4), Cattaneo and Rossi849

discuss the BF quantum field theory with fields A ∈ �1(R4, g) and B ∈ �2(R4, g∗)850

and construct an observable “U(A,B,�)” for each “long” R
2 in R

4; meaning, for each 2-851

sphere in S4 with a prescribed behaviour at ∞. We interpret these as observables defined on852

our “balloons”. The Cattaneo-Rossi observables are functions of a variable � ∈ g, and they853

can be interpreted as power series in a formal parameter �. Further, given the connection-854

field A, one may always consider its formal holonomy along a closed path (a “hoop”) and855

interpret it as an element in U(g)���. Multiplying these hoop observables and also the856

Cattaneo-Rossi balloon observables, we get an observableOγ for any KBH γ , taking values857

in Fun(gT → U(g)⊗H ���).858

Conjecture 8.1 If γ is an rKBH, then 〈Oγ 〉BF = eτ (ζ(γ )).859

Of course, some interpretation work is required before Conjecture 8.1 even becomes a860

well-posed mathematical statement.861

We note that the Cattaneo-Rossi observable does not depend on the ribbon property of862

the KBH γ . I hesitate to speculate whether this is an indication that the work presented in863

this paper can be extended to non-ribbon knots or an indication that somewhere within the864

rigorous mathematical analysis of BF theory an obstruction will arise that will force one to865

restrict to ribbon knots (yet I speculate that one of these possibilities holds true).866

Most likely the work of Watanabe [28] is a proof of Conjecture 8.1 for the case of a single867

balloon and no hoops, and very likely, it contains all key ideas necessary for a complete868

proof of Conjecture 8.1.869
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9 The Simplest Non-Commutative Reduction and an Ultimate Alexander Invariant 870

9.1 Informal 871

Let us start with some informal words. All the fundamental operations within the defini- 872

tion of M, namely [., .], C
γ
u , RC

γ
u and divu, act by modifying trees and wheels near their 873

extremities—their tails and their heads (for wheels, all extremities are tails). Thus, all opera- 874

tions will remain well-defined and will continue to satisfy the MMA properties if we extend 875

or reduce trees and wheels by objects or relations that are confined to their “inner” parts. 876

In this section, we discuss the “β-quotient of M”, an extension/reduction of M as dis- 877

cussed above, which is even better-computable than M. As we have seen in Section 6, 878

objects in M, and in particular the invariant ζ , are machine-computable. Yet the dimensions 879

of FL and of CW grow exponentially in the degree, and so does the complexity of compu- 880

tations in M. Objects in the β-quotient are described in terms of commutative power series, 881

their dimensions grow polynomially in the degree, and computations in the β-quotient are 882

polynomial time. In fact, the power series appearing with the β-quotient can be “summed”, 883

and non-perturbative formulae can be given to everything in sight. 884

Yet ζβ , meaning ζ reduced to the β-quotient, remains strong enough to contain the 885

(multi-variable) Alexander polynomial. I argue that in fact, the formulae obtained for the 886

Alexander polynomial within this β-calculus are “better” than many standard formulae for 887

the Alexander polynomial. 888

More on the relationship between the β-calculus and the Alexander polynomial (though 889

nothing about its relationship with M and ζ ), is in [6].

890
Still on the informal level, the β-quotient arises by allowing a new type of a “sink” vertex 891

c and imposing the β-relation, shown above, on both trees and wheels. One easily sees that 892

under this relation, trees can be shaved to single arcs union “c-stubs”, wheels become unions 893

of c-stubs, and c-stubs “commute with everything”:

894
Hence, c-stubs can be taken as generators for a commutative power series ring R (with 895

one generator cu for each possible tail label u), CW(T ) becomes a copy of the ring R, 896

elements of FL(T ) becomes column vectors whose entries are in R and whose entries 897
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correspond to the tail label in the remaining arc of a shaved tree, and elements of FL(T )H898

can be regarded as T × H matrices with entries in R. Hence, in the β-quotient, the MMA899

M reduces to an MMA {β0(T ;H)} whose elements are T × H matrices of power series,900

with yet an additional power series to encode the wheels part. We will introduce β0 more901

formally below, and then note that it can be simplified even further (with no further loss of902

information) to an MMA β whose entries and operations involve rational functions, rather903

than power series.904

Remark 9.1 The β-relation arose from studying the (unique non-commutative) 2D Lie alge-905

bra g2 := FL(ξ1, ξ2)/([ξ1, ξ2] = ξ2), as in Section 8.1. Loosely, within g2 the β-relation906

is a “polynomial identity” in a sense similar to the “polynomial identities” of the theory of907

PI-rings [25]. For a more direct relationship between this Lie algebra and the Alexander908

polynomial, see [web/chic1].909

9.2 Less Informal910

For a finite set T let R = R(T ) := Q�{cu}u∈T � denote the ring of power series with com-911

muting generators cu corresponding to the elements u of T, and let L = L(T ) := R ⊗ QT912

be the the free R-module with generators T. Turn L into a Lie algebra over R by declaring913

that [u, v] = cuv − cvu for any u, v ∈ T . Let c : L → R be the R-linear extension of914

u �→ cu; namely,915

γ =
∑

u
γuu ∈ L �→ cγ :=

∑
u
γucu ∈ R, (23)

where the γu’s are coefficients in R. Note that with this definition, we have916

[α, β] = cαβ − cβα for any α, β ∈ L. There are obvious surjections π : FL → L and917

π : CW → R (strictly speaking, the first of those maps has a small cokernel yet becomes918

a surjection once the ground ring of its domain space is extended to R).919

The following Lemma-Definition may appear scary, yet its proof is nothing more than920

high school level algebra, and the messy formulae within it mostly get renormalized away921

by the end of this section. Hang on!922

Lemma-Definition 9.2 The operations Cu, RCu, bch, divu, and Ju descend from FL/CWto923

L/R, and, for α, β, γ ∈ L (with γ = ∑
vγvv) they are given by924

v � C
−γ
u = v � RC

γ
u = v for u �= v ∈ T , (24)

ρ � C
−γ
u = ρ � RC

γ
u = ρ for ρ ∈ R, (25)

u � C
−γ
u = e−cγ

(
u + cu

ecγ − 1

cγ

γ

)
(26)

= e−cγ

((
1 + cuγu

ecγ − 1

cγ

)
u + cu

ecγ − 1

cγ

∑
v �=u

γvv

)
, (27)

u � RC
γ
u =

(
1 + cuγu

ecγ − 1

cγ

)−1 (
ecγ u − cu

ecγ − 1

cγ

∑
v �=u

γvv

)
, (28)

bch(α, β) = cα + cβ

ecα+cβ − 1

(
ecα − 1

cα

α + ecα
ecβ − 1

cβ

β

)
, (29)

divuγ = cuγu, (30)

Ju(γ ) = log

(
1 + ecγ − 1

cγ

cuγu

)
. (31)

http://www.math.toronto.edu/~drorbn/papers/KBH/chic1
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Proof (Sketch) Equation (24) is obvious—Cu or RCu conjugate or repeatedly conjugate u, 925

but not v. Equation (25) is the statement that Cu and RCu are R-linear, namely that they act 926

on scalars as the identity. Informally this is the fact that 1-wheels commute with everything, 927

and formally it follows from the fact that π : FL → L is a well-defined morphism of Lie 928

algebras. 929

To prove (26), we need to compute e−adγ (u), and it is enough to carry this computation 930
out within the 2D subspace of L spanned by u and by γ . Hence, the computation is an 931
exercise in diagonalization—one needs to diagonalize the 2 × 2 matrix ad(−γ ) in order 932
to exponentiate it. Here, are some details: set δ = [−γ, u] = cuγ − cγ u. Then, clearly 933

ad(−γ )(δ) = − cγ δ, and hence e−adγ (δ) = e−cγ δ. Also note that ad(−γ )(γ ) = 0, and 934

hence e−adγ (γ ) = γ . Thus 935

u � C
−γ
u = e−adγ (u) = e−adγ

(
− δ

cγ

+ cuγ

cγ

)
= − e−cγ δ

cγ

+ cuγ

cγ

= e−cγ

(
u + cu

ecγ − 1

cγ

γ

)
.

936

Equation (27) is simply (26) rewritten using γ = ∑
vγvv. To prove (28), take its right 937

hand side and use (27) and (24) to get u back again, and hence our formula for RC
γ
u indeed 938

inverts the formula already established for C
−γ
u . 939

Equation (29) amounts to writing the group law of a 2D Lie group in terms of its 2D Lie 940

algebra, L0 := span(α, β), and this is again an exercise in 2 × 2 matrix algebra, though 941

a slightly harder one. We work in the adjoint representation of L0 and aim to compare the 942

exponential of the left hand side of (29) with the exponential of its right hand side. If a and 943

b are scalars, let e(a, b) be the matrix representing ead(aα+bβ) on L0 relative to the basis 944

(α, β). Then using [α, β] = cαβ − cβα we find that e(a, b) = exp

(
bcβ −acβ

−bcα acα

)
, and 945

we need to show that e(1, 0) · e(0, 1) = e
(

cα + cβ

e
cα+cβ − 1

ecα − 1
cα

,
cα + cβ

e
cα+cβ −1

ecα e
cβ − 1

cβ

)
. Lazy 946

bums do it as follows:

947
Equation 30 is the fact that divuu = cu, along with the R-linearity of divu. 948

For (31), note that using (28), the coefficient of u in γ � RC
sγ
u is 949

γue
scγ

(
1 + cuγu

escγ −1
cγ

)−1
. Thus using (30) and the fact that Cu acts trivially on R, 950

Ju(γ ) =
∫ 1

0
ds divu

(
γ � RC

sγ
u

)
� C

−sγ
u =

∫ 1

0
ds

(
1 + cuγu

escγ − 1

cγ

)−1

cuγue
scγ

= log

(
1 + escγ − 1

cγ

cuγu

)∣∣∣∣
1

0
= log

(
1 + ecγ − 1

cγ

cuγu

)
.

951
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9.3 The Reduced Invariant ζβ0 .952

We now let β0(T ; H) be the β-reduced version of M(T ;H). Namely, in parallel with953

Section 5.2 we define954

β0(T ;H) := L(T )H × Rr(T ) = R(T )T ×H × Rr(T ).

In other words, elements of β0(T ;H) are T × H matrices A = (Aux) of power series in955

the variables {cu}u∈T , along with a single additional power series ω ∈ Rr (Rr is R modded956

out by its degree 1 piece) corresponding to the last factor above, which we write at the top957

left of A:958

β0(u, v, . . . ; x, y, . . .) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

ω x y · · ·
u Aux Auy ·
v Avx Avy ·
... · · . . .

⎞
⎟⎟⎟⎠ : ω ∈ Rr(T ), A·· ∈ R(T )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Continuing in parallel with Section 5.2 and using the formulae from Lemma-959

Definition 9.2, we turn {β0(T ; H)} into an MMA with operations defined as follows (on a960

typical element of β0, which is a decorated matrix (A,ω) as above):961

• tσu
v acts by renaming row u to v and sending the variable cu to cv everywhere. tηu acts962

by removing row u and sending cu to 0. tmuv
w acts by adding row u to row v calling the963

result row w, and by sending cu and cv to cw everywhere.964
• hσx

y and hηx are clear. To define hm
xy
z , let α = (Aux)u∈T and β = (Auy)u∈T denote965

the columns of x and y in A, let cα := ∑
u∈T Auxcu and cβ := ∑

u∈T Auycu in parallel966

with (23), and let hm
xy
z act by removing the x- and y-columns α and β and introducing967

a new column, labelled z, and containing cα+cβ

e
cα+cβ −1

(
ecα −1

cα
α + ecα e

cβ −1
cβ

β
)

, as in (29).968

• We now describe the action of thaux on an input (A,ω) as depicted below. Let γ =969 (
γu

γrest

)
be the column of x, split into the “row u” part γu and the rest, γrest. Let cγ be970 ∑

v∈T γvcv as in (23). Then thaux acts as follows:971

– As dictated by (31), ω is replaced by ω + log
(

1 + ecγ −1
cγ

cuγu

)
.972

– As dictated by (24) and (28), every column α =
(

αu

αrest

)
in A (including the973

column γ itself) is replaced by974
(

1 + cuγu
ecγ − 1

cγ

)−1
(

ecγ αu

αrest − cu
ecγ −1

cγ
(cγ )rest

)
,

where (cγ )rest is the column whose row v entry is cvγv , for any v �= u.975

• The “merge” operation ∗ is976

• and (these values correspond to a matrix with an empty set of977

columns and a matrix with an empty set of rows, respectively).978

hp
Highlight

hp
Highlight
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We have concocted the definition of the MMA β0 so that the projection π : M → β0 979

would be a morphism of MMAs. Hence, to completely compute ζβ0 := π ◦ζ on any rKBH 980

(to all orders!), it is enough to note its values on the generators. These are determined by 981

the values in Theorem 5.3: . 982

9.4 The Ultimate Alexander Invariant ζβ . 983

Some repackaging is in order. Noting the ubiquity of factors of the form ec−1
c

in the previous 984

section, it makes sense to multiply any column α of the matrix A by ecα −1
cα

. Noting that 985

row-u entries (things like γu) often appear multiplied by cu, we multiply every row by its 986

corresponding variable cu. Doing this and rewriting the formulae of the previous section 987

in the new variables, we find that the variables cu only appear within exponentials of the 988

form ecu . So, we set tu := ecu and rewrite everything in terms of the tu’s. Finally, the only 989

formula that touches ω is additive and has a log term. So, we replace ω with eω. The result 990

is “β-calculus”, which was described in detail in [6]. A summary version follows. In these 991

formulae, α, β , γ , and δ denote entries, rows, columns, or submatrices as appropriate, and 992

whenever α is a column, 〈α〉 is the sum of is entries: 993

994

Theorem 9.3 If K is a u-knot regarded as a 1-component pure tangle by cutting it open, 995

then the ω part of ζβ(δ(K)) is the Alexander polynomial of K. 996

I know of three winding paths that constitute a proof of the above theorem: 997

• Use the results of Section 7 here, of [4, Section 3.7], and of [21]. 998
• Use the results of Section 7 here, of [4, Section 3.9], and the known relation of the 999

Alexander polynomial with the wheels part of the Kontsevich integral (e.g. [19]). 1000
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• Use the results of [18], where formulae very similar to ours appear.1001

Yet to me, the strongest evidence that Theorem 9.3 is true is that it was verified explicitly1002

on very many knots—see the single example in Section 6.3 here and many more in [6].1003

In several senses, ζβ is an “ultimate” Alexander invariant:1004

• The formulae in this section may appear complicated, yet note that if an rKBH consists1005

of about n balloons and hoops, its invariant is described in terms of only O(n2) poly-1006

nomials and each of the operations tm, hm, and tha involves only O(n2) operations on1007

polynomials.1008
• It is defined for tangles and has a prescribed behaviour under tangle compositions (in1009

fact, it is defined in terms of that prescribed behaviour). This means that when ζβ is1010

computed on some large knot with (say) n crossings, the computation can be broken1011

up into n steps of complexity O(n2) at the end of each the quantity computed is the1012

invariant of some topological object (a tangle), or even into 3n steps at the end of each1013

the quantity computed is the invariant of some rKBH10.1014
• ζβ contains also the multivariable Alexander polynomial and the Burau representation1015

(overwhelmingly verified by experiment, not written-up yet).1016
• ζβ has an easily prescribed behaviour under hoop- and balloon-doubling, and ζβ ◦ δ1017

has an easily prescribed behaviour under strand-doubling (not shown here).1018

10 Odds and Ends1019

10.1 Linking Numbers and Signs1020

If x is an oriented S1 and u is an oriented S2 in an oriented S4 (orR4) and the two are disjoint,1021

their linking number lux is defined as follows. Pick a ball B whose oriented boundary is1022

u (using the “outward pointing normal” convention for orienting boundaries), and which1023

intersects x in finitely many transversal intersection points pi . At any of these intersection1024

points pi , the concatenation of the orientation of B at pi (thought of a basis to the tangent1025

space of B at pi) with the tangent to x at pi is a basis of the tangent space of S4 at pi , and1026

as such it may either be positively oriented or negatively oriented. Define σ(pi) = + 1 in1027

the former case and σ(pi) = − 1 in the latter case. Finally, let lux := ∑
iσ (pi). It is a1028

standard fact that lux is an isotopy invariant of (u, x).1029

Exercise 10.1 Verify that lux(ρ±
ux) = ±1, where ρ+

ux and ρ−
ux are the positive and negative1030

Hopf links as in Example 2.2. For the purpose of this exercise, the plane in which Fig. 11031

is drawn is oriented counterclockwise, the 3D space it represents has its third coordinate1032

oriented up from the plane of the paper, and R
4
txyz is oriented so that the t coordinate is1033

“first”.1034

An efficient thumb rule for deciding the linking number signs for a balloon u and a hoop1035

x presented using our standard notation as in Section 2.1 is the “right-hand rule” of the1036

10A similar statement can be made for Alexander formulae based on the Burau representation. Yet note that
such formulae still end with a computation of a determinant which may take O(n3) steps. Note also that
the presentation of knots as braid closures is typically inefficient—typically a braid with O(n2) crossings is
necessary in order to present a knot with just n crossings.
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figure below, shown here without further explanation. The lovely figure is adopted from 1037

[Wikipedia: Right-hand rule].

1038

10.2 A Topological Construction of δ 1039

The map δ is a composition δ0 � ϒ (“δ0 followed by ϒ”, aka ϒ ◦ δ0. See Sec- 1040

tion 10.5.). Here, δ0 is the standard “tubing” map δ0 (called t ′ in Satoh’s [26]), though 1041

with the tubes decorated by an additional arrowhead to retain orientation information. 1042

The map ϒ caps and strings both ends of all tubes to ∞ and then uses, at the level of 1043

embeddings, the fact that a pinched torus is homotopy equivalent to a sphere wedge a 1044

circle:

1045

It is worthwhile to give a completely “topological” definition of the tubing map δ0, 1046

thus giving δ = δ0 � ϒ a topological interpretation. We must start with a topo- 1047

logical interpretation of v-tangles, and even before, with v-knots, also known as virtual 1048

knots. 1049

http://en.wikipedia.org/wiki/Right-hand_rule
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The standard topological interpretation of v-knots (e.g. [20]) is that they are oriented1050

knots drawn11 on an oriented surface �, modulo “stabilization”, which is the addition and/or1051

removal of empty handles (handles that do not intersect with the knot). We prefer an equiv-1052

alent, yet even more bare-bones approach. For us, a virtual knot is an oriented knot γ drawn1053

on a “virtual surface � for γ ”. More precisely, � is an oriented surface that may have a1054

boundary, γ is drawn on �, and the pair (�, γ ) is taken modulo the following relations:1055

• Isotopies of γ on � (meaning, in � × [−ε, ε]).1056
• Tearing and puncturing parts of � away from γ :1057

(We call � a “virtual surface” because tearing and puncturing imply that we only care1058

about it in the immediate vicinity of γ ).1059

We can now define12 a map δ0, defined on v-knots and taking values in ribbon tori in1060

R
4: given (�, γ ), embed � arbitrarily in R

3
xyz ⊂ R

4. Note that the unit normal bundle of1061

� in R
4 is a trivial circle bundle and it has a distinguished trivialization, constructed using1062

its positive t-direction section and the orientation that gives each fibre a linking number +11063

with the base �. We say that a normal vector to � in R
4 is “near unit” if its norm is between1064

1 − ε and 1 + ε. The near-unit normal bundle of � has as fibre an annulus that can be1065

identified with [−ε, ε] × S1 (identifying the radial direction [1 − ε, 1 + ε] with [−ε, ε] in1066

an orientation-preserving manner), and hence the near-unit normal bundle of � defines an1067

embedding of � × [−ε, ε] × S1 into R
4. On the other hand, γ is embedded in � × [−ε, ε]1068

so γ × S1 is embedded in � × [−ε, ε] × S1, and we can let δ0(�, γ ) be the composition1069

γ × S1 ↪→ � × [−ε, ε] × S1 ↪→ R
4,

which is a torus in R
4, oriented using the given orientation of γ and the standard orientation1070

of S1.1071

We leave it to the reader to verify that δ0(�, γ ) is ribbon, that it is independent of the1072

choices made within its construction, that it is invariant under isotopies of γ and under1073

tearing and puncturing, that it is also invariant under the “overcrossing commute” relation1074

of Fig. 3, and that it is equivalent to Satoh’s tubing map.1075

The map δ0 has straightforward generalizations to v-links, v-tangles, framed-v-links, v-1076

knotted-graphs, etc.1077

10.3 Monoids, Meta-Monoids, Monoid-Actions, and Meta-Monoid-Actions1078

How do we think about meta-monoid-actions? Why that name? Let us start with ordinary1079

monoids.1080

11Here and below, “drawn on �” means “embedded in � × [−ε, ε]”.
12Following a private discussion with Dylan Thurston.
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10.3.1 Monoids 1081

A monoid13 G gives rise to a slew of spaces and maps between them: the spaces would be 1082

the spaces of sequences Gn = {(g1, . . . , gn) : gi ∈ G}, and the maps will be the maps 1083

“that can be written using the monoid structure”—they will include, for example, the map 1084

m
ij
i : Gn → Gn−1 defined as “store the product gigj as entry number i in Gn−1 while 1085

erasing the original entries number i and j and re-numbering all other entries as appropriate”. 1086

In addition, there is also an obvious binary “concatenation” map ∗: Gn × Gm → Gn+m 1087

and a special element ε ∈ G1 (the monoid unit). 1088

Equivalently but switching from “numbered registers” to “named registers”, a monoid 1089

G automatically gives rise to another slew of spaces and operations. The spaces are 1090

GX = {f : X → G} = {(x → gx)x∈X} of functions from a finite set X to G, or as 1091

we prefer to say it, of X-indexed sequences of elements in G, or how computer scientists 1092

may say it, of associative arrays of elements of G with keys in X. The maps between such 1093

spaces would now be the obvious “register multiplication maps” m
xy
z : GX∪{x,y} → GX∪{z} 1094

(defined whenever x, y, z �∈ X and x �= y), and also the obvious “delete a register” map 1095

ηx : GX → GX\x , the obvious “rename a register” map σx
y : GX∪{x} → GX∪{y}, and an 1096

obvious ∗: GX × GY → GX∪Y , defined whenever X and Y are disjoint. Also, there are 1097

special elements, “units”, εx ∈ G{x}. 1098

This collection of spaces and maps between them (and the units) satisfies some 1099

properties. Let us highlight and briefly discuss two of those: 1100

(1.) The “associativity property”: For any � ∈ GX , 1101

� � m
xy
x � mxz

x = � � m
yz
y � m

xy
x . (32)

This property is an immediate consequence of the associativity axiom of monoid the- 1102

ory. Note that it is a “linear property’—its subject, �, appears just once on each 1103

side of the equality. Similar linear properties include � � σx
y �σ

y
z = � � σx

z , 1104

� � m
xy
z �σz

u = � � m
xy
u , etc., and there are also “multi-linear” properties like 1105

(�1 ∗ �2) ∗ �3 = �1 ∗ (�2 ∗ �3), which are “linear” in each of their inputs. 1106

(2.) If � ∈ G{x,y}, then 1107

� = (� � ηy) ∗ (� � ηx) (33)

(indeed, if � = (x → gx, y → gy), then � � ηy = (x → gx) and 1108

��ηx = (y → gy) and so the right hand side is (x → gx) ∗ (y → gy), which is 1109

� back again), so an element of G{x,y} can be factored as an element of G{x} times an 1110

element of G{y}. Note that � appears twice in the right hand side of this property, so 1111

this property is “quadratic”. In order to write this property one must be able to “make 1112

two copies of �”. 1113

10.3.2 Meta-Monoids 1114

Definition 10.2 A meta-monoid is a collection (GX,m
xy
z , σx

z , ηx, ∗) of sets GX , one for 1115

each finite set X “of labels”, and maps between them m
xy
z , σx

z , ηx , ∗ with the same domains 1116

and ranges as above, and special elements εx ∈ G{x}, and with the same linear and multi- 1117

linear properties as above. 1118

13A monoid is a group sans inverses. You lose nothing if you think “group” whenever the discussion below
states “monoid”.
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Very crucially, we do not insist on the non-linear property (33) of the above, and so we1119

may not have the factorization G{x,y} = G{x} × G{y}, and in general, it need not be the1120

case that GX = GX for some monoid G. (Though of course, the case GX = GX is an1121

example of a meta-monoid, which perhaps may be called a “classical meta-monoid”).1122

Thus a meta-monoid is like a monoid in that it has sets GX of “multi-elements” on1123

which almost-ordinary monoid theoretic operations are defined. Yet, the multi-elements in1124

GX need not simply be lists of elements as in GX, and instead, they may be somehow1125

“entangled”. A relatively simple example of a meta-monoid which isn’t a monoid is H⊗X1126

where H is a Hopf algebra14. This simple example is similar to “quantum entanglement”.1127

But a meta-monoid is not limited to the kind of entanglement that appears in tensor powers.1128

Indeed many of the examples within the main text of this paper aren’t tensor powers and1129

their “entanglement” is closer to that of the theory of tangles. This especially applied to the1130

meta-monoid wT of Section 3.2.1131

10.3.3 Monoid-Actions1132

A monoid-action15 of a monoid G1 on another monoid G2 is a single algebraic structure1133

MA consisting of two sets G1 (heads) and G2 (tails), a binary operation defined on G1,1134

a binary operation defined on G2, and a mixed operation G1 × G2 → G2 (denoted1135

(x, u) �→ ux) which satisfy some well-known axioms, of which the most interesting are the1136

associativities of the first two binary operations and the two action axioms (uv)x = uxvx1137

and u(xy) = (ux)y .1138

As in the case of individual monoids, a monoid-action MA gives rise to a slew of spaces1139

and maps between them. The spaces are MA(T ;H) := GT
2 × GH

1 , defined when-1140

ever T and H are finite sets of tail labels and head labels. The main operations16 are1141

tmuv
w : MA(T ∪ {u, v}; H) → MA(T ∪ {w}; H) defined using the multiplication in G21142

(assuming u, v,w �∈ T and u �= v), hm
xy
z : MA(T ; H ∪ {x, y}) → MA(T ; H ∪ {z})1143

(assuming x, y �∈ H and x �= y) defined using the multiplication in G1, and1144

thaux : MA(T ; H) → MA(T ;H) (assuming x ∈ H and u ∈ T ) defined using the1145

action of G1 on G2. These operations have the following properties, corresponding to the1146

associativity of G1 and G2 and to the two action axioms of the previous paragraph:1147

hm
xy
x � hmxz

x = hm
yz
y � hm

xy
x , tmuv

u � tmuw
u = tmvw

v � tmuv
u ,

tmuv
w � thawx = thaux � thavx � tmuv

w , hm
xy
z � thauz = thaux � thauy � hm

xy
z .

(34)
There are also routine properties involving also ∗, η’s and σ ’s as before.1148

10.3.4 Meta-Monoid-Actions1149

Finally, a meta-monoid-action is to a monoid-action like a meta-monoid is to a monoid.1150

Thus it is a collection1151

(M(T ; H), tmuv
w , hm

xy
z , thaux, tσu

w, hσx
y , tηu, hηx, ∗, tεu, hεx)

14Or merely an algebra.
15Think “group-action”.
16There are also ∗, tηu, hηx , tσ u

v and hσ x
y and units tεu and hεx as before.
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of sets M(T ; H), one for each pair of finite sets (T ;H) of tail labels and head labels, and 1152

maps between them tmuv
w , hm

xy
z , thaux , tσu

v , hσx
y , tηu, hηx , ∗, and units tεu and hεx , with 1153

the same domains and ranges as above and with the same linear and multi-linear properties 1154

as above; most importantly, the properties in (34). 1155

Thus a meta-monoid-action is like a monoid-action in that it has sets M(T ; H) of multi- 1156

elements on which almost-ordinary monoid theoretic operations are defined. Yet the multi- 1157

elements in M(T ;H) need not simply be lists of elements as in GT
2 ×GH

1 , and instead they 1158

may be somehow entangled. 1159

10.3.5 Meta-Groups / Meta-Hopf-Algebras 1160

Clearly, the prefix meta can be added to many other types of algebraic structures, though 1161

sometimes a little care must be taken. To define a “meta-group”, for example, one may 1162

add to the definition of a meta-monoid in Section 10.3.2 a further collection of operations 1163

Sx , one for each x ∈ X, representing “invert the (meta-)element in register x”. Except 1164

that the axiom for an inverse, g · g−1 = ε, is quadratic in g—one must have two copies 1165

of g in order to write the axiom, and hence it cannot be written using Sx and the oper- 1166

ations in Section 10.3.2. Thus, in order to define a meta-group, we need to also include 1167

“meta-co-product” operations �x
yz : GX∪{x} → GX∪{y,z}. These operations should sat- 1168

isfy some further axioms, much like within the definition of a Hopf algebra. The major 1169

ones are: a meta-co-associativity, a meta-compatibility with the meta-multiplication, and a 1170

meta-inverse axiom � � �x
yz � Sy � m

yz
x = (� � ηx) ∗ εx . 1171

A strict analogy with groups would suggest another axiom: a meta-co-commutativity of 1172

�, namely �x
yz = �x

zy . Yet, experience shows that it is better to sometimes not insist 1173

on meta-co-commutativity. Perhaps the name meta-group should be used when meta-co- 1174

commutativity is assumed, and “meta-Hopf-algebra” when it isn’t. 1175

Similarly one may extend “meta-monoid-actions” to “meta-group-actions” and/or “meta- 1176

Hopf-actions”, in which new operations t� and h� are introduced, with appropriate 1177

axioms. 1178

Note that vT and wT have a meta-co-product, defined using “strand doubling”. It is not 1179

meta-co-commutative. 1180

Note also that Krbh and Krbh
0 have operations h� and t�, defined using “hoop doubling” 1181

and “balloon doubling”. The former is meta-co-commutative while the latter is not. 1182

Note also that M and M0 have have an operation h�x
yz defined by cloning one Lie word, 1183

and an operation t�u
vw defined using the substitution u → v + w. Both of these operations 1184

are meta-co-commutative. 1185

Thus ζ0 and ζ cannot be homomorphic with respect to t�. The discussion of trivalent ver- 1186

tices in [5, Section 4] can be interpreted as an analysis of the failure of ζ to be homomorphic 1187

with respect to t�, but this will not be attempted in this paper. 1188

10.4 Some Differentials and the Proof of Proposition 5.1 1189

We prove Proposition 5.1, namely (19) through (21), by verifying that each of these equa- 1190

tions holds at one point, and then by differentiating each side of each equation and showing 1191

that the derivatives are equal. While routine, this argument appears complicated because the 1192

spaces involved are infinite dimensional and the operations involved are non-commutative. 1193

In fact, even the well-known derivative of the exponential function, which appears in the 1194

definition of Cu which appears in the definitions of RCu and of Ju, may surprise readers 1195

who are used to the commutative case dex = exdx. 1196
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Recall that FA denotes the graded completion of the free associative algebra on some1197

alphabet T, and that the exponential map exp : FL → FA defined by γ �→ exp(γ ) =1198

eγ := ∑∞
k=0

γ k

k! makes sense in this completion.1199

Lemma 10.3 If δγ denotes an infinitesimal variation of γ , then the infinitesimal variation1200

δeγ of eγ is given as follows:1201

δeγ = eγ ·
(

δγ �
1 − e−adγ

adγ

)
=
(

δγ �
eadγ − 1

adγ

)
· eγ . (35)

Above expressions such as eadγ −1
adγ

are interpreted via their power series expansions,1202

eadγ −1
adγ

= 1 + 1
2 adγ + 1

6 (adγ )2 + . . . , and hence δγ � eadγ −1
adγ

= δγ + 1
2 [γ, δγ ] +1203

1
6 [γ, [γ, δγ ]]+ . . . . Also, the precise meaning of (35) is that for any δγ ∈ FL, the deriva-1204

tive δeγ := limε→0
1
ε

(
eγ+εδγ − eγ

)
is given by the right-hand-side of that equation.1205

Equivalently, δeγ is the term proportional to δγ in eγ+δγ , where during calculations, we1206

may assume that “δγ is an infinitesimal”, meaning that anything quadratic or higher in δγ1207

can be regarded as equal to 0.1208

Lemma 10.3 is rather standard (e.g. [8, Section 1.5], [22, Section 7]). Here’s a tweet:1209

Proof of Lemma 10.3 With an infinitesimal δγ , consider F(s) := e−sγ es(γ+δγ ) − 1.1210

Then, F(0) = 0 and d
ds

F (s) = e−sγ (−γ )es(γ+δγ ) + e−sγ (γ + δγ )es(γ + δγ ) =1211

e−sγ δγ es(γ+δγ ) = e−sγ δγ esγ = δγ � e−sadγ . So e−γ δγ = F(1) = ∫ 1
0ds d

ds
F (s) =1212

δγ �
∫ 1

0ds e−sadγ = δγ � 1−e−adγ

adγ
. The second part of (35) is proven in a similar manner,1213

starting with G(s) := es(γ+δγ )e−sγ − 1.1214

Lemma 10.4 If γ = bch(α, β) and δα, δβ , and δγ are infinitesimals related by γ + δγ =1215

bch(α + δα, β + δβ), then1216

δγ �
1 − e−adγ

adγ
=
(

δα �
1 − e−adα

adα
� e−adβ

)
+
(

δβ �
1 − e−adβ

adβ

)
(36)

Proof Use Leibniz’ law on eγ = eαeβ to get δeγ = (δeα)eβ + eα(δeβ). Now use1217

Lemma 10.3 three times to get1218

eγ

(
γ �

1 − e−adγ

adγ

)
= eα

(
δα �

1 − e−adα

adα

)
eβ + eαeβ

(
δβ �

1 − e−adβ

adβ

)
,

conjugate the eβ in the first summand to the other side of the parenthesis, and cancel eγ =1219

eαeβ from both sides of the resulting equation.1220

Recall that C
γ
u and RC

γ
u are automorphisms of FL. We wish to study their variations1221

δC
γ
u and δRC

γ
u with respect to γ (these variations are “infinitesimal” automorphisms of1222

FL). We need a definition and a property first.1223
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Definition 10.5 For u ∈ T and γ ∈ FL(T ) let adu{γ } = adγ
u : FL(T ) → FL(T ) 1224

denote the derivation of FL(T ) defined by its action of the generators as follows: 1225

v � adu{γ } = v � adγ
u :=

{ [γ, u] v = u

0 otherwise.

1226Property 10.6 adu is the infinitesimal version of both Cu and RCu. Namely, if δγ is an 1227

infinitesimal, then C
δγ
u = RC

δγ
u = 1 + adu{δγ }. 1228

We omit the easy proof of this property and move on to δC
γ
u and δRC

γ
u : 1229

Lemma 10.7 δC
γ
u = adu

{
δγ �

eadγ − 1

adγ
� RC

−γ
u

}
� C

γ
u and δRC

γ
u = RC

γ
u � 1230

adu

{
δγ �

1 − e−adγ

adγ
� RC

γ
u

}
. 1231

Proof Substitute α and δβ into (16) and get RC
bch(α,δβ)
u = RCα

u � RC
δβ�RCα

u
u , and hence 1232

using Property 10.6 for the infinitesimal δβ � RCα
u and Lemma 10.4 with δα = β = 0 on 1233

bch(α, δβ), 1234

RC
α+(δβ� adα

1−e−adα )

u = RCα
u + RCα

u � adu{δβ � RCα
u }.

Now, replacing α → γ and δβ → δγ � 1−e−adγ

adγ
, we get the equation for δRC

γ
u . The 1235

equation for δC
γ
U now follows by taking the variation of C

γ
u � RC

−γ
u = Id . 1236

Our next task is to compute δJu(γ ). Yet before we can do that, we need to know one of 1237

the two properties of divu that matter for us (besides its linearity): 1238

Proposition 10.8 For any u, v ∈ T and any α, β ∈ FL and with δuv denoting the Kro- 1239

necker delta function, the following “cocycle condition” holds: (compare with [1, Proposi- 1240

tion 3.20]) 1241

(divuα) � adβ
v︸ ︷︷ ︸

A

− (divvβ) � adα
u︸ ︷︷ ︸

B

= δuvdivu[α, β]︸ ︷︷ ︸
C

+ divu(α � adβ
v )︸ ︷︷ ︸

D

− divv(β � adα
u)︸ ︷︷ ︸

E

. (37)

Proof Start with the case where u = v. We draw each contribution to each of the terms 1242

above and note that all of these contributions cancel, but we must first explain our drawing 1243

conventions. We draw α and β as the “logic gates” appearing below. Each is really a linear 1244

combination, but (37) is bilinear so this doesn’t matter. Each is really a tree, but the proof 1245

does not use this so we don’t display this. Each may have many tail-legs labelled by other 1246

elements of T, but we care only about the legs labelled u = v and so we display only those, 1247

and without real loss of generality, we draw it as if α and β each have exactly three such 1248

tails. 1249
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Objects such as divuα and α � adβ
u are obtained from α and β by connecting the head1250

of one near its own tails, or near the other’s tails, in all possible ways. We draw just one1251

summand from each sum, yet we indicate the other possible summands in each case by1252

marking the other places where the relevant head could go with filled circles (•) or empty1253

circles (the filling of the circles has no algebraic meaning; it is there only to separate1254

summations in cases where two summations appear in the same formula). I hope the pictures1255

below explain this better than the words.

1256
We illustrate our next convention with the pictorial representation of term A of (37),1257

(divuα) � adβ
u , shown below. Namely, when the two relevant summations dictate that two1258

heads may fall on the same arc, we split the sum into the generic part, A1 below, in1259

which the two heads do not fall on the same arc, and the exceptional part, A2 below,1260

in which the two heads do indeed fall on the same arc. The last convention is that •1261

indicates the first summation, and ◦, the second. Hence in A1, the α head may fall in1262

three places, and after that, the β head may only fall on one of the remaining rele-1263

vant tails, whereas in A1, the α is again free, but the β head must fall on the same1264

arc.

1265
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With all these conventions in place and with term A as above, we depict terms B–E:

1266
Clearly, A1 = D1, B1 = E1, and D3 = E3 (the last equality is the only place in 1267

this paper that we need the cyclic property of cyclic words). Also, by the Jacobi identity, 1268

A2 − D2 = C1 and E2 − B2 = C2. So altogether, A − B = C + D − E. 1269

The case where u �= v is similar, except we have to separate between u and v tails, the 1270

terms analogous to A2, B2, D2 and E2 cannot occur, and C = 0: 1271

Clearly, A − B = D − E. 1272

For completeness and for use within the proof of (21), here’s the remaining property of 1273

div we need to know, presented without its easy proof: 1274

Proposition 10.9 For any γ ∈ FL, γ � tuv
w � divw = γ � divu � tuv

w + γ � divv � tuv
w . 1275

Proposition 10.10 δJu(γ ) = δγ �
1 − e−adγ

adγ
� RC

γ
u � divu � C

−γ
u . 1276
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Proof Let Is := γ �RC
sγ
u �divu �C

−sγ
u denote the integrand in the definition of Ju. Then1277

under γ → γ + δγ , using Leibniz, the linearity of divu, and both parts of Lemma 10.7, we1278

have1279

δIs = δγ � RC
sγ
u � divu � C

−sγ
u

+γ � RC
sγ
u � adu

{
δγ � 1−e−adsγ

adγ
� RC

sγ
u

}
� divu � C

−sγ
u

−γ � RC
sγ
u � divu � adu

{
δγ � 1−e−adsγ

adγ
� RC

sγ
u

}
� C

−sγ
u .

Taking the last two terms above as D and A of (37), with α = γ � RC
sγ
u and β = δγ �1280

1−e−adsγ

adγ
�RC

sγ
u , and using [α, β] = [γ, δγ � 1−e−adsγ

adγ
]�RC

sγ
u = δγ �(1−e−adsγ )�RC

sγ
u ,1281

we get1282

δIs = δγ � RC
sγ
u � divu � C

−sγ
u

+δγ � 1−e−adsγ

adγ
� RC

sγ
u � adu{γ � RC

sγ
u } � divu � C

−sγ
u

−δγ � 1−e−adsγ

adγ
� RC

sγ
u � divu � adu{γ � RC

sγ
u } � C

−sγ
u

−δγ � (1 − e−adsγ ) � RC
sγ
u � divu � C

−sγ
u ,

and so, by combining the first and the last terms above,1283

δIs = δγ � e−adsγ � RC
sγ
u � divu � C

−sγ
u

+δγ � 1−e−adsγ

adγ
� RC

sγ
u � adu{γ � RC

sγ
u } � divu � C

−sγ
u

−δγ � 1−e−adsγ

adγ
� RC

sγ
u � divu � adu{γ � RC

sγ
u } � C

−sγ
u ,

and hence, once again using Lemma 10.7 to differentiate RC
sγ
u and C

−sγ
u (except that things1284

are now simpler because sγ and δ(sγ ) = d
ds

(sγ ) = γ commute), we get1285

δIs = d

ds

(
δγ �

1 − e−adsγ

adγ
� RC

sγ
u � divu � C

−sγ
u

)
.

Integrating with respect to the variable s and using the fundamental theorem of calculus, we1286

are done.1287

Proof of Equation (19). We fix α and show that (19) holds for every β . For this it is enough1288

to show that (19) holds for β = 0 (it trivially does), and that the derivatives of both sides of1289

(19) in the radial direction are equal, for any given β . Namely, it is enough to verify that the1290

variations of the two sides of (19) under β → β + δβ are equal, where δβ is proportional1291

to β . Indeed, using the chain rule, Lemma 10.4, Proposition 10.10, the fact that β commutes1292

with δβ , and with γ := bch(α, β),1293

δLHS =
(
δβ � 1−e−adβ

adβ
� adγ

1−e−adγ

)
� 1−e−adγ

adγ
� RC

γ
u � divu � C

−γ
u

= δβ � RC
γ
u � divu � C

−γ
u .

Similarly, using Proposition 10.10 and the fact that β � RCα
u commutes with δβ � RCα

u ,1294

δRHS = δβ � RCα
u � RC

β�RCα
u

u � divu � C
−β�RCα

u
u � C−α

u = δβ � RC
γ
u � divu � C

−γ
u ,

where in the last equality, we have used (16) to combine the RCs and its inverse to combine1295

the Cs.1296
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Proof of Equation (20). Equation (20) clearly holds when α = 0, so as before, it is enough 1297

to prove it after taking the radial derivative with respect to α. So we need (ouch!) 1298

α � RCα
u � divu � C−α

u − α � RCβ
v � RC

α�RC
β
v

u � divu � C
−α�RC

β
v

u � C−β
v

= −β � RCα
u � ad

α�RCα
u

u �
1 − e−ad(β�RCα

u )

ad(β � RCα
u )

� RC
β�RCα

u
v � divv � C

−β�RCα
u

v � C−α
u

− β � RCα
u � Jv � ad

−α�RCα
u

u � C−α
u .

This we simplify using (13) and (14), cancel the C−α
u on the right, and get 1299

α � RCα
u � divu − α � RCα

u � RC
β�RCα

u
v � divu � C

−β�RCα
u

v

?= −β � RCα
u � ad

α�RCα
u

u �
1 − e−ad(β�RCα

u )

ad(β � RCα
u )

� RC
β�RCα

u
v � divv � C

−β�RCα
u

v

− β � RCα
u � Jv � ad

−α�RCα
u

u .

We note that above α and β only appear within the combinations α � RCα
u and β � RCα

u , 1300

so we rename α � RCα
u → α and β � RCα

u → β: 1301

α � divu − α � RCβ
v � divu � C−β

v

?= −β � adα
u �

1 − e−ad(β)

ad(β)
� RCβ

v � divv � C−β
v − β � Jv � ad−α

u . (38)

Equation (38) still contains a Jv in it, so in order to prove it, we have to differentiate 1302

once again. So note that it holds at β = 0, multiply by −1, and take the radial variation with 1303

respect to β (note that d
ds

1−e−ad(sβ)

ad(sβ)

∣∣∣
s=1

= e−ad(β)(1 + ad(β)−ead(β))
ad(β)

): 1304

α � RC
β
v � adβ�RC

β
v

v � divu � C
−β
v − α � RC

β
v � divu � adβ�RC

β
v

v � C
−β
v

?= β � adα
u � 1−e−ad(β)

ad(β)
� RC

β
v � divv � C

−β
v

+β � adα
u � e−ad(β)(1 + ad(β)−ead(β))

ad(β)
� RC

β
v � divv � C

−β
v

+β � adα
u � 1−e−ad(β)

ad(β)
� RC

β
v � adβ�RC

β
v

v � divv � C
−β
v

+β � adα
u � 1−e−ad(β)

ad(β)
� RC

β
v � divv � ad−β�RC

β
v

v � C
−β
v

+β � RC
β
v � divv � CC

−β
v � ad−α

u

(39)

We massage three independent parts of the above desired equality at the same time: 1305

• The div and the ad on the left hand side make terms D and A of (37), with α�RC
β
v → α 1306

and β � RC
β
v → β . We replace them by terms A and E. 1307

• We combine the first two terms of the right hand side using 1−e−a

a
+ e−a(1+a−ea)

a
= 1308

e−a . 1309

• In (14), C
−α�RC

β
v

u � C
−β
v = C

−β�RCα
u

v � C−α
u , take an infinitesimal α and use 1310

Property 10.6 and Lemma 10.7 to get 1311

ad−α�RC
β
v

u � C−β
v = ad

−β�adα
u� 1−e−ad(β)

ad(β)
�RC

β
v

v � C−β
v + C−β

v � ad−α
u . (40)

The last of that matches the last of (39), so we can replace the last of (39) with the start 1312

of (40). 1313
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All of this done, (39) becomes the lowest point of this paper:1314

β � RC
β
v � adα�RC

β
v

u � divv � C
−β
v − β � RC

β
v � divv � adα�RC

β
v

u � C
−β
v

?= β � adα
u � e−ad(β) � RC

β
v � divv � C

−β
v

+ β � adα
u � 1−e−ad(β)

ad(β)
� RC

β
v � adβ�RC

β
v

v � divv � C
−β
v

+ β � adα
u � 1−e−ad(β)

ad(β)
� RC

β
v � divv � ad−β�RC

β
v

v � C
−β
v

+ β � RC
β
v � divv � ad−α�RC

β
v

u � C
−β
v

− β � RC
β
v � divv � ad

−β�adα
u� 1−e−ad(β)

ad(β)
�RC

β
v

v � C
−β
v

Next, we cancel the C
−β
v at the right of every term, and a pair of repeating terms to get1315

β � RCβ
v � adα�RC

β
v

u � divv
?= β � adα

u � e−ad(β) � RCβ
v � divv

+ β � adα
u �

1 − e−ad(β)

ad(β)
� RCβ

v � adβ�RC
β
v

v � divv

− β � adα
u �

1 − e−ad(β)

ad(β)
� RCβ

v � divv � adβ�RC
β
v

v

− β � RCβ
v � divv � ad

−β�adα
u� 1−e−ad(β)

ad(β) �RC
β
v

v

The two middle terms above differ only in the order of adv and divv . So we apply (37)1316
again and get1317

β � RCβ
v � adα�RC

β
v

u � divv
?= β � adα

u � e−ad(β) � RCβ
v � divv

+β � RCβ
v � ad

β�adα
u� 1−e−ad(β)

ad(β)
�RC

β
v

v � divv − β � RCβ
v � divv � ad

β�adα
u� 1−e−ad(β)

ad(β)
�RC

β
v

v

+
[
β � RCβ

v , β � adα
u �

1 − e−ad(β)

ad(β)
� RCβ

v

]
� divv − β � RCβ

v � divv � ad
−β�adα

u� 1−e−ad(β)

ad(β)
�RC

β
v

v

1318

In the above, the two terms that do not end in divv cancel each other. We then remove the1319

divv at the end of all remaining terms, thus making our quest only harder. Finally, we note1320

that RC
β
v is a Lie algebra morphism, so we can pull it out of the bracket in the penultimate1321

term, getting1322

β � RCβ
v � adα�RC

β
v

u
?= β � adα

u � e−ad(β) � RCβ
v

+β � RCβ
v � ad

β�adα
u� 1−e−ad(β)

ad(β)
�RC

β
v

v +
[
β, β � adα

u �
1 − e−ad(β)

ad(β)

]
� RCβ

v

The bracketing with β in the last term above cancels the ad(β) denominator there, and1323

then that term combines with the first term of the right hand side to yield1324

β � RCβ
v � adα�RC

β
v

u
?= β � adα

u � RCβ
v + β � RCβ

v � ad
β�adα

u� 1−e−ad(β)

ad(β) �RC
β
v

v
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We make our task harder again, 1325

RCβ
v � adα�RC

β
v

u
?= adα

u � RCβ
v + RCβ

v � ad
β�adα

u� 1−e−ad(β)

ad(β) �RC
β
v

v

and then we both pre-compose and post-compose with the isomorphism C
−β
v , getting 1326

adα�RC
β
v

u � C−β
v

?= C−β
v � adα

u + ad
β�adα

u� 1−e−ad(β)

ad(β)
�RC

β
v

v � C−β
v

The above is (40), with α replaced by −α, and hence it holds true. 1327

Proof of Equation (21). As before, the equation clearly holds at γ = 0, so we take its radial 1328

derivative. That of the left hand side is 1329

γ � tmuv
w � RC

γ�tmuv
w

w � divw � C
−γ�tmuv

w
w

Using (15) and then Proposition 10.9, this becomes 1330

γ � RC
γ
u � RC

γ�RC
γ
u

v � (divu + divv) � tmuv
w � C

−γ�tmuv
w

w .

Now using the reverse of (15), proven by reading the horizontal arrows within its proof 1331

backwards, this becomes 1332

γ � RC
γ
u � RC

γ�RC
γ
u

v � (divu + divv) � C
−γ�RC

γ
u

v � C
−γ
u � tmuv

w .

On the other hand, the radial variation of the right hand side of (21) is 1333

γ � RC
γ
u � divu � C

−γ
u � tmuv

w + γ � RC
γ
u � RC

γ�RC
γ
u

v � divv � C
−γ�RC

γ
u

v � C
−γ
u � tmuv

w

+γ � RC
γ
u � adγ�RC

γ
u

u �
1 − e−ad(γ�RC

γ
u )

ad(γ � RC
γ
u )

� RC
γ�RC

γ
u

v � divv � C
−γ�RC

γ
u

v � C
−γ
u � tuv

w

+γ � RC
γ
u � Jv � ad−γ�RC

γ
u

u � C
−γ
u � tuv

w

1334Equating the last two formulae while eliminating the common term (the second term in 1335

each) and removing all trailing C
−γ
u � tuv

w ’s (thus making the quest harder), we need to show 1336

that 1337

γ � RC
γ
u � RC

γ �RC
γ
u

v � divu � C
−γ �RC

γ
u

v = γ � RC
γ
u � divu

+γ � RC
γ
u � adγ �RC

γ
u

u �
1 − e−ad(γ �RC

γ
u )

ad(γ � RC
γ
u )

� RC
γ �RC

γ
u

v � divv � C
−γ �RC

γ
u

v

+γ � RC
γ
u � Jv � ad−γ �RC

γ
u

u .

1338Nicely enough, the above is (38) with α = β = γ � RC
γ
u . 1339

10.5 Notational Conventions and Glossary 1340

For n ∈ N let n denote some fixed set with n elements, say {1, 2, . . . , n}. 1341

Often, within this paper, we use postfix notation for operator evaluations, so f (x) may 1342

also be denoted x � f . Even better, we use f � g for “composition done right”, meaning 1343

f �g = g◦f , meaning that if X
f−→ Y

g−→ Z then X
f�g−→ Z rather than the uglier (though 1344

equally correct) X
g◦f−→ Z. We hope that this notation will be adopted by others, to be used 1345

alongside and eventually instead of g ◦ f , much as we hope that τ will be used alongside 1346

and eventually instead of the presently popular π := τ/2. In LATEX, � = \sslash ∈ 1347

stmaryrd.sty. 1348
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In the few paragraphs that follow, X is an arbitrary set. Though within this paper such1349

X’s will usually be finite, and their elements will thought of as labels. Hence, if f ∈ GX is1350

a function f : X → G where G is some other set, we think of f as a collection of elements1351

of G labelled by the elements of X. We often write fx to denote f (x).1352

If f ∈ GX and x ∈ X, we let f \x denote the restricted function f |X\x in which x is1353

removed from the domain of f. In other words, f \x is “the collection f, with the element1354

labelled x removed”. We often neglect to state the condition x ∈ X. Thus, when writing1355

f \x we implicitly assume that x ∈ X.1356

Likewise, we write f \{x, y} for “f with x and y removed from its domain” and as before1357

this includes the implicit assumption that {x, y} ⊂ X.1358

If f1 : X1 → G and f2 : X2 → G and X1 and X2 are disjoint, we denote by f ∪ g the1359

obvious “union function” with domain X1 ∪ X2 and range G. In fact, whenever we write1360

f ∪ g, we make the implicit assumption that the domains of f1 and f2 are disjoint.1361

In the spirit of “associative arrays” as they appear in various computer languages, we use1362

the notation (x → a, y → b, . . . ) for “inline function definition”. Thus, () is the empty1363

function, and if f = (x → a, y → b), then the domain of f is {x, y} and fx = a and1364

fy = b.1365

We denote by σx
y the operation that renames the key x in an associative array to y.1366

Namely, if f ∈ GX, x �∈ X, and y �∈ X\x, then1367

σx
y f = (f \x) ∪ (y → fx).
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Glossary of Notations (Greek letters, then Latin, then symbols)1375

α, β, γ Free Lie series Sec. 41376

α, β, γ, δ Matrix parts Sec. 9.41377

β A repackaging of β Sec. 9.41378

β0 A reduction of M Sec. 9.31379

δ A map uT /vT /wT → Krbh Sec. 2.21380

δα, δβ, δγ Infinitesimal free Lie series Sec. 10.41381

εa Units Sec. 3.21382

 The MMA “of groups” Sec. 3.41383

π The fundamental invariant Sec. 2.31384

π The projection Krbh
0 → Krbh Prop. 3.61385

ρ±
ux ±-Hopf links in 4D Ex. 2.21386

σx
y Re-labelling Sec. 10.51387

τ Tensorial interpretation map Sec. 8.11388

ω The wheels part of M/ζ Sec.51389

ω The scalar part in β/β0 Sec. 9.31390

ϒ Capping and sliding Sec.10.21391

ζ The main invariant Sec. 51392
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ζ0 The tree-level invariant Sec. 4 1393

ζβ A β-valued invariant Sec. 9.4 1394

ζβ0 A β0-valued invariant Sec. 9.3 1395

A The matrix part in β/β0 Sec. 9.3 1396

a, b, c Strand labels Sec. 2.2 1397

adγ
u , adu{γ } Derivations of FL Def. 105 1398

Abh Space of arrow diagrams Sec. 7.2 1399

bch Baker-Campbell-Hausdorff Sec. 4.2 1400

C
γ
u Conjugating a generator Sec. 4.2 1401

CA Circuit algebra Sec. 7.1 1402

CW Cyclic words Sec. 5.1 1403

CWr CW mod degree 1 Sec. 5.1 1404

c A “sink” vertex Sec. 9.1 1405

cu A “c-stub” Sec. 9.1 1406

divu The “divergence” FL → CW Sec. 5.1 1407

dmab
c Double/diagonal multiplication Sec. 3.2 1408

FA Free associative algebra Sec. 5.1 1409

FL Free Lie algebra Sec. 4.2 1410

Fun(X → Y) Functions X → Y Sec. 8.1 1411

H Set of head/hoop labels Sec. 2 1412

hεx Units Ex. 2.2, Sec. 4.2,5.2 1413

hη Head delete Sec. 3,4.2,5.2 1414

hm
xy
z Head multiply Sec. 3,4.2,5.2 1415

hσx
y Head re-label Sec. 3,4.2,5.2 1416

Ju The “spice” FL → CW Sec. 5.1 1417

Krbh All rKBHs Def. 2.1 1418

Krbh
0 Conjectured version of Krbh Sec. 3.3 1419

lux 4D linking numbers Sec. 10.1 1420

lx Longitudes Sec. 2.3 1421

M The “main” MMA Sec. 5.2 1422

M0 The MMA of trees Sec. 4.2 1423

MMA Meta-monoid-action Def. 3.2, Sec. 10.3.4 1424

mu Meridians Sec. 2.3 1425

mab
c Strand concatenation Sec 3.2 1426

OC Overcrossings commute Fig. 3 1427

Pbh Primitives of Abh Sec. 7.3 1428

R Ring of c-stubs Sec. 9.2 1429

Rr R mod degree 1 Sec. 9.3 1430

R1,R1’,R2,R3 Reidemeister moves Sec. 2.2, 7.1 1431

RC
γ
u Repeated C

γ
u / reverse C

−γ
u Sec. 4.2 1432

rKBH Ribbon knotted balloons&hoops Def. 2.1 1433

S Set of strand labels Sec. 2.2 1434

T Set of tail / balloon labels Sec. 2 1435

tεu Units Ex. 2.2, Sec. 4.2,5.2 1436

thaux Tail by head action Sec. 3,4.2,5.2 1437

tηu Tail delete Sec. 3,4.2,5.2 1438

tmuv
w Tail multiply Sec. 3,4.2,5.2 1439

tσ x
y Tail re-label Sec. 3,4.2,5.2 1440
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t, x, y, z Coordinates Sec. 21441

UC Undercrossings commute Fig. 31442

u-tangle A usual tangle Sec. 2.21443

uT All u-tangles Sec. 2.21444

u, v,w Tail / balloon labels Sec. 21445

v-tangle A virtual tangle Sec. 2.41446

vT All v-tangles Sec. 2.41447

w-tangle A virtual tangle mod OC Sec. 2.41448

wT All w-tangles Sec. 2.41449

x, y, z Head / hoop labels Sec. 21450

Zbh An Abh-valued expansion Sec. 7.41451

∗ Merge operation Sec. 3,4.2,5.21452

� Composition done right Sec. 10.51453

x � f Postfix evaluation Sec. 10.51454

f \x Entry removal Sec. 10.51455

x → a Inline function definition Sec. 10.51456

uv “Top bracket form” Sec. 61457 ︷︸︸︷
uv A cyclic word Sec. 61458
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