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2025.The works of Alekseev and Torossian [5] and Alekseev, Enriquez,

and Torossian [1] show that any solution of Drinfeld’s associator equa-
tions gives rise to a solution of the Kashiwara-Vergne equations in
an explicit way. We introduce a weak version of Drinfeld’s associator
equations that we call the emergent version of the original equations. It
is shown that solutions to the resulting linearized emergent Drinfeld’s
equations still lead to solutions to the linearized Kashiwara-Vergne
equations.

The emergent Drinfeld equations arise within a natural topological
context of emergent braids, which we discuss. Our results are adjacent
to the results of Bar-Natan, Dancso, Hogan, Liu and Scherich [8, 10]
on the relationship between emergent tangles and the Goldman-Turaev
Lie bialgebra. We hope that in time our results will play a role in
relating several bodies of work, on Drinfeld associators, Kashiwara-
Vergne equations, and on expansions for classical tangles, for w-tangles,
and for the Goldman-Turaev Lie bialgebra.

1 Introduction

1.1 Drinfeld associators and Kashiwara-Vergne equations

Alekseev and Torossian [5] proved that any Drinfeld associator gives rise to
a solution of the Kashiwara-Vergne (KV) problem [17]. They reformulated
the original KV problem in a universal form which involves the free Lie
algebra in two variables. The resulting (injective) map

Assoc1 ↪→ SolKV (1)

from the set of Drinfeld associators (with coupling constant 1) to the set of
solutions to the KV problem has been made explicit by Alekseev, Enriquez
and Torossian [1]. There is also an explicit map between the corresponding
spaces of infinitesimal deformations

ν : grt1 ↪→ krv2, (2)

where grt1 is the Grothendieck-Teichmüller Lie algebra [13, §5], and krv2
is the Kashiwara-Vergne Lie algebra [5, §4]. These graded Lie algebras
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integrate to the groups GRT1 and KRV2 which act freely and transitively on
Assoc1 and SolKV, respectively.

As was initially pointed out in [13], the theory of Drinfeld associators
has a topological nature. Bar-Natan [7] gave an interpretation of Drinfeld
associators as 1-formality isomorphisms (homomorphic expansions) of the
category PaB of parenthesized braids. The KV theory admits similar topo-
logical interpretations too, at least in two ways. One is given by Bar-Natan
and Dancso [9] in terms of welded foams, a class of singular surfaces in R4.
The other is given by Alekseev, Kawazumi, Kuno and Naef [2, 3] in terms
of the Goldman-Turaev Lie bialgebra [16, 25], an algebraic structure on the
free homotopy classes of loops in an oriented surface.

With the topological interpretations of the Drinfeld associators and the
KV theory mentioned above in mind, we introduce a weak version of the
Drinfeld’s associator equations that we call the emergent version of the orig-
inal equations, and a graded vector space grtem1 as the space of solutions
to the linearized emergent equations. Briefly, we obtain the emergent equa-
tions by working with certain subquotients of the target space of the original
equations. For instance, Drinfeld’s pentagon equation for grt1 takes place in
the Drinfeld-Kohno Lie algebra dk4 on four strands, which is generated by
six elements tij with 1 ≤ i < j ≤ 4. The corresponding emergent pentagon
equation for grtem1 takes place in edk2,2, which is defined to be the Lie subal-
gebra of dk4 generated by tij ’s with (i, j) 6= (1, 2) modulo the commutator of
the Lie ideal generated by t34. More generally, for any m,n ≥ 0 we define a
subquotient edkm,n of the Drinfeld-Kohno Lie algebra dkm+n. A topological
context for edkm,n is explained in Section 1.3. We show that the map (2)
decomposes as

ν : grt1 ↪→ grtem1
νem

↪→ krv2, (3)

and identify the image of νem.
The emergent Drinfeld equations arise within a natural topological con-

text of emergent braids. As we will show, the defining equations for grtem1
involve operations of the linearized version of the Goldman-Turaev Lie bial-
gebra. We expect the emergent braids to serve as an intermediate object
relating the topological aspect of Drinfeld associators and the KV theory.
In a future work, we hope to continue our study towards a decomposition
of the map (1) from the perspective of emergent braids.

1.2 Statement of the main result

Let us give a precise statement about the decomposition (3), which is the
main result of this paper. We need a few more details about the map (2).

Let lie2 = lie(x, y) be the free Lie algebra on two variables x and y. Re-
call that grt1 is the space of Lie polynomials ψ = ψ(x, y) ∈ lie2 satisfying
a certain set of equations (one pentagon and two hexagon equations), and
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that the elements of krv2 are pairs (u(x, y), v(x, y)) of two Lie polynomials
satisfying two equations (KV1) and (KV2) (see Section 5.3 for more pre-
cise definitions). Then the map (2) is given by the following formula [5,
Theorem 4.6]:

ν(ψ) = (ψ(−x− y, x), ψ(−x− y, y)).

Let ass2 = ass(x, y) be the free associative algebra on two variables x
and y. One can naturally regard lie2 as a subspace of ass2. The (non-
commutative) partial differential operators ∂x, ∂y : lie2 → ass2 are defined
by the formula a = (∂xa)x+ (∂ya)y for any a ∈ lie2. Let R : lie2 → ass2 be
the unique linear map satisfying R(x) = R(y) = 0 and

R([a, b]) =[R(a), b] + [a,R(b)]

+ (∂xb)x ι(∂xa)− (∂xa)x ι(∂xb) + (∂yb)y ι(∂ya)− (∂ya)y ι(∂yb)

for any a, b ∈ lie2. Here, ι is the anti-automorphism of ass2 defined by
ι(x) = −x and ι(y) = −y; for instance, ι(xxy) = −yxx. Let grtem1 be the
space of Lie polynomials ϕ = ϕ(x, y) ∈ lie2 satisfying the following equations:

ϕ(y, 0)− ϕ(x+ y, 0) = 0, (4)

(∂yϕ)(x, y) + (∂yϕ)(y, 0)− (∂yϕ)(x+ y, 0)−R(ϕ) = 0, (5)

[x, ϕ(y, x)] + [y, ϕ(x, y)] = 0. (6)

The equations (4) and (5) correspond to the emergent version of the pen-
tagon equation. The equation (6) appears by a rather technical reason,
but it has a topological explanation as well. By construction, there is an
injection grt1 ↪→ grtem1 , ψ(x, y) → ψ(−x− y, y).

An element (u(x, y), v(x, y)) ∈ krv2 is called symmetric if v(x, y) =
u(y, x). The space of symmetric elements in krv2 forms a Lie subalgebra
denoted by krvsym2 . For a Lie polynomial ϕ = ϕ(x, y) ∈ lie2, set

νem(ϕ) := (ϕ(y, x), ϕ(x, y)).

The main result of this paper is the following, which in particular proves
the decomposition of ν shown in (3).

Theorem 1.1. (i) For any ϕ ∈ grtem1 , we have νem(ϕ) ∈ krvsym2 .

(ii) The map νem : grtem1 → (krvsym2 )≥2 is a graded linear isomorphism.

It turns out that the space grtem1 has a Lie algebra structure.

Remark 1.2. It is not known whether krvsym2 coincides with krv2 or not
[5, Remark 8.10]. The map ν is conjectured to give a graded isomorphism
grt1

∼= (krv2)≥2 [5, §4.2]. If this conjecture is correct, then it implies krvsym2 =
krv2 and grt1 = grtem1 .
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The map R in the defining equation of grtem1 is closely related to an opera-
tion of the linearization of the Goldman-Turaev Lie bialgebra of a punctured
disk. Our proof of Theorem 1.1 is based on this fact and an interpretation
of the KV theory in terms of the Goldman-Turaev Lie bialgebra [2, 3].

We mention several recent works related to the content of this paper.
Our results and the idea of emergent knotted objects are adjacent to a work
by Bar-Natan, Dancso, Hogan, Liu and Scherich [8, 10], although there is a
difference in the setting: the objects considered in [8, 10] are the quotient of
our emergent objects by the Conway relation. Works by Alekseev, Naef and
Ren [4] and Naef and Navarro Betancourt [23] discuss essentially the same
object as ours but from different perspectives.

1.3 Emergent knotted objects

Consider some space K of knotted objects in a three manifold M (knots, or
links, or knotted graphs, or tangles if M has a boundary, or braids if one
can specify a “vertical” direction in M). If we mod out K by the relation

= , knottedness is eliminated and what remains is a space of curves (or
multi-curves, or graphs, etc.) regarded up to homotopy. “Emergent knotted
objects” are what you get when you mod out K by a slightly weaker version
of = known in the theory of finite type invariants as the relation

= 0. Knottedness almost entirely disappears yet in the space we get,
K/( ), we see that just a bit of knot theory begins to emerge beyond the
homotopy theory that is already there.

More precisely, we consider QK, the space of Q-linear combinations of
(some type of) knotted objects in M . As is often done when discussing
finite type invariants [6, 12], we extend K by allowing double points ( )
while declaring that a double point is just a short for the linear combination

− ; namely, we set = − . Then, as stated before, K/ is the
space of (linear combinations of) curves modulo homotopy. We continue as
in the theory of finite type invariants and also study the quotient Kem of
QK by knots that have two double points, where each of them represents a
combination − . The space Kem is the space of emergent knotted objects
in M .

IfM is the Euclidean space R3 (or a ball in R3 when discussing tangles),
homotopy theory is trivial so K/ becomes trivial (if, say, we are studying n-
component links, they all become equivalent in K/ ). The space of emergent
knots Kem = K/( ) is slightly more interesting, though one may easily
check that two links become equivalent if and only if all of the pairwise
linking numbers of their components are the same (with similar statements
for other types of knotted objects). Thus in that case, Kem is not completely
trivial yet nevertheless quite simple.

In [8, 10], Bar-Natan, Dancso, Hogan, Liu, and Scherich study emergent
tangles in a pole dancing studio PDSm (an m-punctured disk cross an inter-

4



val, or a room with m vertical lines removed). They find that in that case,
an appropriate theory of expansions for emergent tangles leads to “homo-
morphic” expansions of the Goldman-Turaev Lie bialgebra (which in itself
is a Lie bialgebra of curves modulo homotopy, a (K/ )-type object).

The subquotients edkm,n of the Drinfeld-Kohno Lie algebra dkm+n that
we use in this paper, in particular within the statement of our main theorem
in Section 1.2, arise from emergent braids in a pole dancing studio. Let us
explain how.

Let Pn denote the n-strand pure braid group, and let Pm,n denote the
kernel of the “forget the last n strands” map Pm+n → Pm; elements of
Pm,n are pure braids whose first m strands remain stationary, like m poles
in a pole dancing studio (and hence we cease to call these first m strands
“strands”, and instead refer to them as “poles”). Hence elements of Pm,n

can be thought of as n-strand braids in PDSm. Thus, following the above
discussion of emergent knotted objects, we define QP em

m,n to be the quotient of
QPm,n by the relation = 0, where all the strands involved in the double
points belong to the last n strands in Pm,n; namely, they are “strands”
rather than “poles”.

For the more algebraically-inclined, here is a fully-algebraic definition of
QP em

m,n: We let ψ : Pn → Pm,n ⊂ Pm+n be map which sends an n-strand
pure braid into an (m+ n)-strand pure braid by adding m straight strands
(“poles”) on the left; the resulting braid is clearly in Pm,n. Let IPn be the
augmentation ideal of QPn (namely, those Q-linear combinations of elements
of Pn whose sum of coefficients is 0). Let J be the two-sided ideal of QPm,n

generated by ψ(IPn) (it is the two-sided ideal generated by , if both strands
of the double point are strands and not poles). Finally, QP em

m,n := QPm,n/J
2.

The augmentation ideal of QPm,n descends to a two-sided ideal of QP em
m,n.

In complete generality, let N be an associative Q-algebra and I a two-
sided ideal of N . For example, if G is any group, one can set N to be the
group algebra QG and I = IG its augmentation ideal. The powers of I
defines a decreasing filtration of N and we can consider the completed asso-
ciated graded algebra AN defined by that filtration: AN :=

∏
k≥0 I

k/Ik+1.
It is well known (see e.g. [13, 18]) that AQPm+n is the completed universal
enveloping algebra of the Drinfeld-Kohno Lie algebra dkm+n that we alluded
to before, whose generators are {tij = [σij − 1] : 1 ≤ i 6= j ≤ m+ n}, where
σij is the generator of Pm+n in which strands #i and #j twist around each
other once, in the positive direction.

It is now easy to determine AQP em
m,n

: it is the completed universal en-
veloping algebra of the subquotient of dkm,n in which all the generators of
the form {tij : i, j ≤ m} are removed (as the generators {σij : i, j ≤ m}, the
pole-pole twists, are removed from Pm,n), and in which we mod out by the
square of the ideal generated by {tij : i, j > m}, corresponding to the emer-
gent quotient = 0. Thus AQP em

m,n
∼= U(edkm,n) with the same edkm,n as

in the previous section. An elementary proof of this isomorphism is given
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in Proposition 3.9.

1.4 Organization of the paper

In Sections 2 to 4, we discuss emergent braids. Actually, it is more natural to
consider more general objects, and so we begin by introducing the concepts
of mixed braids and chord diagrams in Section 2. In Section 3 we study
the structure of the emergent Drinfeld-Kohno Lie algebra. In Section 4, we
introduce the parenthesized version of mixed braids and emergent braids,
formulate the notion of 1-formality isomorphisms (homomorphic expansions)
of the categories of parenthesized mixed/emergent braids, and extract the
emergent version of Drinfeld’s associator equations.

The last two sections are devoted to the proof of Theorem 1.1. In Sec-
tion 5, we recall necessary materials from [2, 3] on the (linearized) Goldman-
Turaev Lie bialgebra of a punctured disk and its relation to the KV theory.
In Section 6, we prove Theorem 1.1.
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Notation

• Throughout this paper we work over the rationals Q, though all of our
arguments hold true over any field of characteristic zero.

• For a nonnegative integer n, let assn be the free associative algebra
on n free generators. When we need to specify generators, we write
assn = ass(x1, . . . , xn) for example.

• The algebra assn has a structure of Hopf algebra whose coproduct,
antipode and augmentation are given on generators by ∆(xi) = xi ⊗
1+1⊗xi, ι(xi) = −xi and ε(xi) = 1. We also use the notation a = ι(a)
for the antipode.

• We denote by lien = lie(x1, . . . , xn) the free Lie algebra on n free
generators x1, . . . , xn. One can identify lien with the space of primitive
elements in assn, namely lien = {a ∈ assn : ∆(a) = a ⊗ 1 + 1 ⊗ a}. It
holds that ι(a) = −a for any a ∈ lien.

• Let C be a groupoid or more generally a category, and O,O′ objects
in C. We denote by C(O,O′) the set of morphisms in C from O to O′.
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2 Mixed braids and chord diagrams

We introduce the notion of mixed braids. Then we define the notion of
mixed chord diagrams as the corresponding associated graded object.

2.1 Mixed braids

For a nonnegative integer l, let Bl be Artin’s braid group on l strands. Our
convention about the product of Bl is as follows: the product ββ′ of two
braids β and β′ is the braid obtained by placing β′ above β. For example,

· = .

Definition 2.1. Fix nonnegative integers m and n. A mixed braid of type
(m,n) is an element of Bm+n equipped with a coloring of its strands with
either red or blue such that

• there are m red colored strands which we draw slightly thicker and n
blue colored strands which we draw slightly thinner, and

• if we forget all the blue colored strands and view the rest as an element
in Bm, we are left with the trivial m-braid.

A blue colored strand in a mixed braid is simply called a strand, and a
red colored strand is called a pole.

Example 2.2. In the following three pictures, the first two pictures are
mixed braids of type (2, 2). Observe that their underlying braids on 2+2 = 4
strands are the same. However, the picture on the right is not a mixed braid.

non-example:

We denote by Bm,n the set of mixed braids of type (m,n). One can
construct the product of two mixed braids β, β′ of the same type when the
coloring of the strands of β at the top matches that of β′ at the bottom. In
this manner, the set Bm,n forms a groupoid. Its set of objects is the setWm,n

of words of length m+n consisting of m red (slightly bigger) bullets and n
blue (slightly smaller) bullets . When o ∈Wm,n, the word o is called of type
(m,n). For o, o′ ∈ Wm,n, we denote by Bm,n(o, o

′) the set of mixed braids
whose bottom and top ends match o and o′, respectively. For example, the
leftmost picture in Example 2.2 is an element in B2,2( , ).
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Definition 2.3. Let m,n ≥ 0 and let o, o′ ∈ Wm,n. A mixed permutation
(of type (m,n)) from o to o′ is a permutation σ of m+ n letters such that

• for any 1 ≤ i ≤ m + n, the ith letter of o and the σ(i)th letter of o′

have the same color, and

• if we forget all the blue letters in o and o′ and view the restriction of
σ to the red bullets as a permutation of m letters, then it is trivial.

Alternatively, a mixed permutation is a mixed braid whose over/under
information at each crossing of strands is lost. For example,

is a mixed permutation from to given by 1 7→ 4, 2 7→ 2, 3 7→ 1,
and 4 7→ 3.

For o, o′ ∈Wm,n, we denote by Sm,n(o, o
′) the set of mixed permutations

from o to o′. The set Sm,n =
⊔

o,o′∈Wm,n
Sm,n(o, o

′) of all mixed permuta-

tions of type (m,n) naturally forms a groupoid. The forgetful map

π : Bm,n → Sm,n

is a homomorphism of groupoids.
Let ostdm,n := · · ·︸ ︷︷ ︸

m

· · ·︸ ︷︷ ︸
n

∈ Wm,n, then the set Bstd
m,n := Bm,n(o

std
m,n, o

std
m,n)

forms a group with respect to the groupoid structure of Bm,n. One can
regard Bstd

m,n as a subgroup of Bm+n in a natural way.
The trivial permutation of degree m+ n defines the mixed permutation

1m,n :=
· · · · · ·

1 m 1 n

∈ Sm,n(o
std
m,n, o

std
m,n).

Then, Pm,n := π−1(1m,n) is a normal subgroup of Bstd
m,n. We call Pm,n the

mixed pure braid group of type (m,n). In fact, Lambropoulou [19, Sec-
tions 2 and 3] introduced the same group with the same notation and gave
its explicit presentation. In particular, Pm,n is generated by the following
elements αij , where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and τij , where 1 ≤ i < j ≤ n:

αij =

· · · · · · · · · · · ·
1 i m 1 j n

, τij =

· · · · · · · · · · · ·
1 m 1 i j n

.
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Collecting all types of mixed braids and mixed permutations we con-
sider the groupoids B :=

⊔
m,n≥0Bm,n and S :=

⊔
m,n≥0Sm,n. Both

of them have W :=
⊔

m,n≥0Wm,n as the set of objects. Following the
treatment in [7, Section 2.2.1], we define the category MB of mixed braids
as a Q-linear extension of the groupoid B . Its set of objects is W . Let
o, o′ ∈W . If the types of o and o′ are different, there is no morphism from
o to o′. If not, then morphisms from o to o′ are pairs (

∑
j cjβj , σ), where

σ ∈ S (o, o′) and
∑

j cjβj is a Q-linear combination of mixed braids such
that π(βj) = σ for all j. Thus when the types of o and o′ are the same, we
have MB(o, o′) =

⊔
σ∈S (o,o′)MB(o, o′)σ, where the subscript σ stands for

consisting of elements which have σ as the second entry. The composition
in MB is naturally induced from the composition in B .

2.2 Mixed version of the Drinfeld-Kohno Lie algebra

Let n be a nonnegative integer. Recall that the Drinfeld-Kohno Lie algebra,
which we denote by dkn, is the graded Lie algebra generated by degree one
elements tij = tji for 1 ≤ i 6= j ≤ n subject to the commutation relation
[tij , tkl] = 0 for distinct indices i, j, k, l, and the 4T relation [tij + tjk, tik] =
0 for distinct indices i, j, k. In a diagrammatic language, dkn is the Lie
algebra of horizontal chord diagrams on n vertical lines, and the generator
tij corresponds to the chord diagram consisting of a single chord connecting
the ith and jth lines:

tij =

· · · · · · · · ·
1 i j n

.

For every n > 0, there is a semi-direct product decomposition

dkn = dkn−1 n lie(t1n, . . . , t(n−1)n). (7)

It is known that the universal enveloping algebra of dkn is isomorphic
to the associated graded of the group algebra of the n-strand pure braid
group with respect to the powers of the augmentation ideal [18]. See also
[14, Theorem 10.0.4]. With this in mind, we introduce a variant of dkn
corresponding to the group Pm,n.

Definition 2.4. Form,n ≥ 0, let dkm,n be the graded Lie algebra generated
by degree one elements aij for 1 ≤ i ≤ m, 1 ≤ j ≤ n and cij = cji for
1 ≤ i 6= j ≤ n, subject to the commutation and 4T relations among them,
where we regard aij = ti(m+j) and cij = t(m+i)(m+j) as the corresponding
generators of dkm+n.
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Diagrammatically, the generators of dkm,n are horizontal chord diagrams
with a single chord on m vertical red lines and n vertical blue lines:

aij =

· · · · · · · · · · · ·
1 i m 1 j n

, cij =

· · · · · · · · · · · ·
1 m 1 i j n

.

Remark 2.5. We have dk0,n = dkn.

The semi-direct product decomposition (7) generalizes to dkm,n:

Lemma 2.6. There is a semi-direct product decomposition of Lie algebra

dkm,n = dkm,n−1 n lie(a1n, . . . , amn, c1n, . . . , c(n−1)n).

Proof. We simply write lie(a, c) = lie(a1n, . . . , amn, c1n, . . . , c(n−1)n). First
we describe the Lie action ρ of dkm,n−1 on lie(a, c) that is used in forming
the semi-direct product dkm,n−1 n lie(a, c). It is specified by the value on
generators of dkm,n−1: for 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1, 1 ≤ k ≤ m and
1 ≤ l ≤ n− 1,

ρ(aij)(akn) =

{
0 (i 6= k)

−[cjn, akn] (i = k)
, ρ(aij)(cln) =

{
0 (j 6= l)

−[ain, cln] (j = l)
,

and for 1 ≤ i 6= j ≤ n− 1, 1 ≤ k ≤ m and 1 ≤ l ≤ n− 1,

ρ(cij)(akn) = 0, ρ(cij)(cln) =

{
0 (l /∈ {i, j})
−[cjn, cln] (i = l)

.

Note that these formulas are compatible with the Lie bracket in dkm,n.
For example, we have [akj , akn] = −[cjn, akn] by the 4T relation, and this
matches the value ρ(akj)(akn) = −[cjn, akn]. Now we define the map dkm,n →
dkm,n−1 n lie(a, c) by

aij 7→

{
(aij , 0) (j ≤ n− 1)

(0, ain) (j = n)
, cij 7→

{
(cij , 0) (j ≤ n− 1)

(0, cin) (j = n)
.

Then one can check that this map is a Lie algebra isomorphism.

Remark 2.7. By Lemma 2.6, we inductively see that the map dkm,n →
dkm+n defined by aij 7→ ti(m+j) and cij 7→ t(m+i)(m+j) is an injective Lie
homomorphism. Therefore, one can identify dkm,n with the Lie subalgebra
of dkm+n generated by ti(m+j) (1 ≤ i ≤ m, 1 ≤ j ≤ n) and t(m+i)(m+j)

(1 ≤ i < j ≤ n).
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We show how the Lie algebra dkm,n and the group Pm,n are related.
On the one hand, let Am,n = U(dkm,n) be the universal enveloping algebra
of dkm,n. It is an associative Q-algebra generated by the same generators
aij and cij as those of dkm,n, subject to the same relations as those of
dkm,n, where we regard bracket symbol as commutator: [a, b] = ab − ba.
On the other hand, the powers of the augmentation ideal I = IPm,n define
a decreasing filtration of QPm,n. Thus one can construct the associated
graded AQPm,n :=

∏
k≥0 I

k/Ik+1 of the filtered algebra QPm,n.

Proposition 2.8. There is a canonical isomorphism of graded Q-algebras
AQPm,n

∼= Am,n, through which the class of αij − 1 corresponds to aij and
the class of τij − 1 to cij.

Proof. The proof is similar to the proof of the isomorphism AQPn
∼= U(dkn)

given in [14, Theorem 10.0.4], so we just give a sketch. We start with the
fact that there is a semi-direct product decomposition

Pm,n
∼= Pm,n−1 n Fm+n−1,

where Fm+n−1 is the free group generated by αin, 1 ≤ i ≤ m and τin,
1 ≤ i ≤ n−1 (see [19, Section 3]). Here, the action of Pm,n−1 on Fm+n−1 is by
conjugation and hence is trivial on the abelianization of Fm+n−1. Applying
[14, Proposition 8.5.7], one has AQPm,n

∼=
(
AQPm,n−1

)
]
(
AQFm+n−1

)
, where

] denotes the semi-direct product of Hopf algebras. Note that AQFm+n−1

is naturally isomorphic to assm+n−1, and Lemma 2.6 implies that there is
an isomorphism Am,n−1]assm+n−1

∼= Am,n. Hence we can prove AQPm,n
∼=

Am,n by induction on n. One can check that this isomorphism maps the
class of αij − 1 to aij and the class of τij − 1 to cij .

2.3 Operadic structure and coface maps

There are naturally defined operations on mixed braids. Let β ∈ Bm,n be a
mixed braid.

• Extension operations. We denote by δp0(β) (resp. δ
s
0(β)) be the mixed

braid of type (m + 1, n) (resp. of type (m,n + 1)) obtained from β
by adding a red (resp. blue) straight strand on the left. Similarly,
we define δpm+n+1(β) (resp. δ

s
m+n+1(β)) by adding a red strand (resp.

blue strand) on the right. For example,

δp0

  = and δs5

  = .

• Cabling operations. For 1 ≤ i ≤ m + n, let δi(β) be the mixed braid
obtained from β by doubling its ith strand, where we count strands
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at the bottom end of β. The two strands newly created inherits the
color of the original strand. For example,

δ1

  = and δ4

  = .

• Changing a pole to a strand. For 1 ≤ i ≤ m, let ϑi(β) be the mixed
braid obtained from β by changing the ith red strand to a blue strand.
For example,

ϑ1

  = .

The operations defined above have counterparts in dkm,n.

• Extension operations. Let δ0 = δp0 : dkm,n → dkm+1,n (resp. δm+n+1 =
δsm+n+1 : dkm,n → dkm,n+1) be the Lie homomorphism defined by
aij 7→ a(i+1)j and cij 7→ cij (resp. aij 7→ aij and cij 7→ cij).

• Cabling operations. For 1 ≤ k ≤ m, we define the Lie homomorphism
δk : dkm,n → dkm+1,n by

δk(aij) =


aij (1 ≤ i ≤ k − 1)

akj + a(k+1)j (i = k)

a(i+1)j (k + 1 ≤ i ≤ m)

, δk(cij) = cij .

For 1 ≤ k ≤ n, we define δm+k : dkm,n → dkm,n+1 by

δm+k(aij) =


aij (1 ≤ j ≤ k − 1)

aik + ai(k+1) (j = k)

ai(j+1) (k + 1 ≤ j ≤ n)

and

δm+k(cij) =



cij (j < k)

cik + ci(k+1) (j = k)

ci(j+1) (i < k < j)

ck(j+1) + c(k+1)(j+1) (i = k)

c(i+1)(j+1) (k < i)

.

• Changing a pole to a strand. For the sake of simplicity we only in-
troduce this operation applied to the last pole. Let ϑm : dkm,n →
dkm−1,n+1 be the Lie homomorphism defined by

ϑm(aij) =

{
ai(j+1) (i < m)

c1(j+1) (i = m)
, ϑm(cij) = c(i+1)(j+1).

12



Using these operations, we define coface maps and a differential on dkm,n.

Definition 2.9. For 0 ≤ k ≤ m + n + 1, we define the map dk = dm,n
k :

dkm,n → dkm,n+1 as follows:

dk =

{
ϑm+1 ◦ δk (0 ≤ k ≤ m)

δk (m+ 1 ≤ k ≤ m+ n+ 1)
.

Furthermore, we set dm,n :=
∑m+n+1

k=0 (−1)kdk : dkm,n → dkm,n+1.

The family of maps {dm,n}n is indeed a differential.

Lemma 2.10. We have dm,n+1 ◦ dm,n = 0 : dkm,n → dkm,n+2.

Proof. The proof is straightforward by using the relation di ◦ dj = dj+1 ◦ di
for i ≤ j, which can be checked directly.

3 Emergent braids and chord diagrams

In this section, we introduce the notion of emergent braids and chord dia-
grams. In particular, we describe the structure of the emergent version of
the Drinfeld-Kohno Lie algebra.

3.1 Emergent braids

The group Bstd
m,n acts on its normal subgroup Pm,n by conjugation, and this

extends linearly to an action on the group algebra QPm,n. We denote by
J the two-sided ideal of QPm,n generated by τij − 1, 1 ≤ i < j ≤ n. The
powers J l, l ≥ 0, define a Bstd

m,n-invariant decreasing filtration of QPm,n.

Definition 3.1. For each k ≥ 1 we set QP /k
m,n := QPm,n/J

k. In particular,
the algebra of emergent pure braids of type (m,n) is defined to be

QP em
m,n := QP /2

m,n = QPm,n/J
2.

Remark 3.2. Why “emergent”? In primary school language, “Dror has an
emergent knowledge of the French language” means “Dror knows French just

a bit better than nothing at all”. In a similar way, QP /1
m,n means “no braiding

phenomenon yet”, for in QP /1
m,n the blue strands are fully transparent to each

other, and QP /2
m,n is “emergent braiding”, for after moding out by J2 just a

whiff of braiding remains.

The ideal J of QPm,n = MB(ostdm,n, o
std
m,n)1m,n and its powers extend to

a multiplicative filtration of the category MB in the following way. Let
o, o′ ∈Wm,n for some m,n ≥ 0 and let σ ∈ S (o, o′). One can take mixed
braids β ∈ Bm,n(o

std
m,n, o) and β

′ ∈ Bm,n(o
std
m,n, o

′) such that σ = π(β)−1π(β′).
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Then, the mapQPm,n → MB(o, o′)σ, u 7→ β−1uβ′ is aQ-linear isomorphism.
Since the ideal J is Bstd

m,n-invariant, it follows that the subspaces J l
σ :=

β−1J lβ′, l ≥ 0, are independent of the choice of β and β′. The collection
{J l

σ}l≥0,σ∈S is multiplicative in the sense that J l
σ · J l′

σ′ ⊂ J l+l′

σσ′ holds for
any l, l′ ≥ 0 whenever σ and σ′ are composable.

For each k ≥ 1, we define the category MB/k as follows. The set of
objects is W . For o, o′ ∈W , the set of morphisms from o to o′ is

MB/k(o, o′) :=


⊔

σ∈S (o,o′)

MB(o, o′)σ
Jk
σ

if o and o′ have the same type,

∅ otherwise.

The composition in MB/k is induced from the composition in MB. Our
main focus is on the case k = 2: we set EB := MB/2.

3.2 Emergent version of the Drinfeld-Kohno Lie algebra

Let c = cm,n be the Lie ideal of dkm,n generated by cij for 1 ≤ i 6= j ≤ n.

Definition 3.3. The emergent Drinfeld-Kohno Lie algebra of type (m,n)
is the quotient Lie algebra edkm,n := dkm,n/[c, c].

Remark 3.4. Similarly, for each k ≥ 1 one can define the quotient Lie

algebra dk
/k
m,n := dkm,n/c

(k), where c(k) is the Lie ideal of dkm,n inductively

defined by c(1) = c and c(k) = [c(k−1), c]. One has edkm,n = dk
/2
m,n.

In what follows we describe the structure of edkm,n.

Lemma 3.5. We have a Q-linear graded direct sum decomposition

edkm,n
∼= edkm,n−1 ⊕

(
lie(a1n, . . . , amn)⊕

n−1⊕
i=1

ass(a1n, . . . , amn)[−1]

)
.

Here, ass(a1n, . . . , amn)[−1] is the degree shift of ass(a1n, . . . , amn) by −1:
the constant term has degree 1, the generators x1, . . . , xm have degree 2, and
so on.

Proof. Let c0 be the Lie ideal of lie(a, c) generated by cin, 1 ≤ i ≤ n − 1.
Through the semi-direct decomposition of Lemma 2.6 the ideal [cm,n, cm,n]
corresponds to [cm,n−1, cm,n−1]⊕[c0, c0] in dkm,n−1⊕ lie(a, c), because cm,n =
cm,n−1 ⊕ c0 and [cm,n−1, c0] ⊂ [c0, c0]. Thus we obtain

edkm,n
∼= edkm,n−1 ⊕

(
lie(a, c)/[c0, c0]

)
as a Q-linear space. By the Lazard elimination theorem [11, Chap II §2.9,
Proposition 10], we have the following Q-linear direct sum decomposition

lie(a, c) ∼= lie(a1n, . . . , amn)⊕ lie({adw(cin)}w,i).

14



Here, lie({adw(cin)}w,i) is the free Lie algebra generated by all elements of
the form adw(cin) = adw1 · · · adwλ

(cin), where 1 ≤ i ≤ n − 1 and w =
w1 · · ·wλ with w1, . . . , wλ ∈ {a1n, . . . , amn} runs over all associative words
in a1n, . . . , amn (including the empty word). Hence

lie(a, c)/[c0, c0] ∼= lie(a1n, . . . , amn)⊕
n−1⊕
i=1

⊕
w

Q adw(cin).

This proves the lemma.

Repeated use of Lemma 3.5 yields a Q-linear graded direct sum decom-
position

edkm,n
∼=

n⊕
i=1

(liem)i ⊕
⊕

1≤i<j≤n

(assm[−1])ij , (8)

where the meaning of the components (liem)i and (assm[−1])ij is as follows:

(liem)i 3 u(x1, . . . , xm)i 7→ u(a1i, . . . , ami) ∈ edkm,n,

(assm[−1])ij 3 w(x1, . . . , xm)ij 7→ adwj (cij) ∈ edkm,n.

Here, u = u(x1, . . . , xm) ∈ liem, w = w(x1, . . . , xm) ∈ assm and we write
wj = w(a1j , . . . , amj) ∈ ass(a1j , . . . , amj).

Example 3.6. (i) edk2,1 ∼= lie2.

(ii) edk1,2 ∼= (lie1)1 ⊕ (lie1)2 ⊕ (ass1[−1])12 ∼= Qx1 ⊕Qx2 ⊕ ass(x)[−1].

(iii) edk2,2 ∼= lie(x, y)1 ⊕ lie(x, y)2 ⊕ (ass(x, y)[−1])12.

In order to describe the Lie bracket on edkm,n in view of the direct sum
decomposition (8), we need to recall the partial differential operators on
liem with respect to the generators x1, . . . , xm. Let a ∈ liem. Viewed as an
element in assm, it is uniquely written as

a =
m∑
i=1

(∂ia)xi =
m∑
i=1

xi(∂
ia),

where ∂ia, ∂
ia ∈ assm. Furthermore, we have ∂ia = ι(∂ia). The operator

∂i = ∂xi : liem → assm satisfies the following formula: for any u, v ∈ liem,

∂i([u, v]) = u(∂iv)− v(∂iu). (9)

The following proposition describes the Lie bracket on edkm,n.

Proposition 3.7. Let u = u(x1, . . . , xm), v = v(x1, . . . , xm) ∈ liem and
w = w(x1, . . . , xm), w′ = w′(x1, . . . , xm) ∈ assm.
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(i) For any 1 ≤ j ≤ n, we have [uj , vj ] = [u, v]j. For any 1 ≤ j < k ≤ n,

[uj , vk] =

(
m∑
i=1

(∂iv)xiι(∂iu)

)
jk

. (10)

(ii) Let 1 ≤ i ≤ n and 1 ≤ j < k ≤ n. If i /∈ {j, k}, we have [ui, wjk] = 0.
Furthermore, we have [uk, wjk] = (uw)jk and [uj , wjk] = −(wu)jk.

(iii) We have [wij , w
′
kl] = 0 for any 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n.

We need a lemma.

Lemma 3.8. For w = w(x1, . . . , xm) ∈ assm and 1 ≤ j 6= k ≤ n, we have

adwk
(cjk) = adwj (cjk).

Proof. We may assume that w is a monomial of degree d ≥ 1. So let
w = xi1 · · ·xid . If d = 1, the formula holds true since [ai1k, cjk] = −[ai1j , cjk].
Let d ≥ 2 and assume that the formula holds true in degrees less than d.
Set w′ = xi2 · · ·xid . Using the inductive assumption, we compute

adai1k···aidk(cjk) = adai1kadai2k···aidk(cjk) = adai1kadai2j ···aidj (cjk)

= (−1)d−1
d∑

p=2

adaidj · · · ad[ai1k,aipj ] · · · adai2j (cjk) + adai2j ···aidj ([ai1k, cjk]).

Since [ai1k, aipj ] = −δi1ip [cjk, aipj ] ∈ c, the first term vanishes in edkm,n.
Therefore, adai1k···aidk(cjk) is equal to

adai2j ···aidj ([ai1k, cjk]) = −adai2j ···aidj [ai1j , cjk] = adai1j ···aidj (cjk).

This completes the proof.

Proof of Proposition 3.7. First of all, the formula [uj , vj ] = [u, v]j in (i) is
clear. In what follows, we will use this formula without mentioning explicitly.

(iii) Since the expressions wij and w
′
kl viewed as elements in dkm,n are in

the ideal c, their commutator lies in [c, c]. Therefore [wij , w
′
kl] = 0 ∈ edkm,n.

(ii) To prove [ui, wjk] = 0 when i /∈ {j, k}, it is sufficient to consider the
case where u is of degree 1 and w is a monomial. So we may assume that
u = xq for some 1 ≤ q ≤ m and w = xi1 · · ·xid . We compute

[ui, wjk] = [aqi, adwk
(cjk)]

=

d∑
p=1

adai1k · · · ad[aqi,aipk] · · · adaidk(cjk) + adwk
([aqi, cjk]).
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The first term vanishes since [aqi, aipk] = −δqip [cik, aipk] ∈ c. The second
term vanishes as well, since [aqi, cjk] = 0 by the commutation relation.

To prove the other two formulas, we first prove that

[uk, adwk
(cjk)] = ad(uw)k(cjk) (11)

for any 1 ≤ i ≤ n and 1 ≤ j 6= k ≤ n. We may assume that u is homogeneous
and proceed by induction on deg u. When deg u = 1, we have [uk, wjk] =
aduk

adwk
(cjk) = ad(uw)k(cjk) = (uw)jk. Let deg u > 2 and assume that

the formula holds true in degrees less than deg u and that u is of the form
u = [u′, u′′]. We compute

[uk, adwk
(cjk)] = [[u′k, adwk

(cjk)], u
′′
k] + [u′k, [u

′′
k, adwk

(cjk)]]

= [ad(u′w)k(cjk), u
′′
k] + [u′k, ad(u′′w)k(cjk)]

= −ad(u′′u′w)k(cjk) + ad(u′u′′w)k(cjk)

= ad(uw)k(cjk).

In the second and third lines, we have used the inductive assumption.
Equation (11) shows that [uk, wjk] = (uw)jk for j < k. To prove

[uj , wjk] = −(wu)jk we compute

[uj , wjk] = [uj , adwj (cjk)] = adujwj (cjk) = adwkuk
(cjk) = −adwkuk

(cjk).

Here, we have used Lemma 3.8 in the first and third equalities, formula (11)
in the second equality, and the fact that uk = −uk in the last equality.

(i) It remains to prove formula (10). Setting Φ(u, v) :=
∑m

i=1(∂iv)xiι(∂iu),
let us prove that [uj , vk] = Φ(u, v)jk for any homogeneous elements u, v ∈
liem. We use the induction on the bidegree (deg u, deg v). Since [ai1j , ai2k] =
δi1i2 [ai2k, cjk] = δi1i2(xi2)jk, the case (deg u, deg v) = (1, 1) is done. We
first increase deg u. Let deg u > 1 and assume that u = [u′, u′′] for some
u′, u′′ ∈ liem satisfying [u′j , vk] = Φ(u′, v)jk and [u′′j , vk] = Φ(u′′, v)jk. On the
one hand, using these assumptions we compute

[uj , vk] = [[u′j , vk], u
′′
j ] + [u′j , [u

′′
j , vk]]

= [Φ(u′, v)jk, u
′′
j ] + [u′j ,Φ(u

′′, v)jk]

=
(
Φ(u′, v)u′′ − Φ(u′′, v)u′

)
jk
.

In the last line, we have used (ii). On the other hand, using (9) and the fact
that ι acts as minus the identity on liem, we see that Φ(u, v) = Φ([u′, u′′], v) =
Φ(u′, v)u′′ − Φ(u′′, v)u′. Hence we conclude that [uj , vk] = Φ(u, v)jk. A
similar argument works for increasing deg v. This completes the proof.

Let Aem
m,n = U(edkm,n) be the universal enveloping algebra of edkm,n. It

is the quotient of Am,n = U(dkm,n) by the span of monomials in aij and cij
which contain at least two generators of type cij .
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The augmentation ideal of QPm,n projects to a two-sided ideal Ī of
QP em

m,n. Let AQP em
m,n

:=
∏

k≥0 Ī
k/Īk+1 be the completed associated graded

algebra. The following proposition is a consequence of Proposition 2.8.

Proposition 3.9. There is a canonical isomorphism of graded Q-algebras
AQP em

m,n
∼= Aem

m,n, through which the class of αij−1 (resp. τij−1) corresponds
to aij (resp. cij).

3.3 Description of operadic operations on edkm,n

The operadic operations introduced in Section 2.3 naturally induce opera-
tions on emergent braids and chord diagrams. Let us describe the operations
on edkm,n in view of the direct sum decomposition (8). In what follows, let
u = u(x1, . . . , xm) ∈ liem and w = w(x1, . . . , xm) ∈ assm.

First, we have

δ0(ui) = u(x2, . . . , xm+1)i, δ0(wij) = w(x2, . . . , xm+1)ij , (12)

and for 1 ≤ k ≤ m,

δk(ui) = u(x1, . . . , xk + xk+1, . . . , xm+1)i,

δk(wij) = w(x1, . . . , xk + xk+1, . . . , xm+1)ij . (13)

Second, we describe the cabling operations with respect to blue strands.
Let R : liem → assm be the unique Q-linear map satisfying R(xi) = 0 for
i = 1, . . . ,m and for any a, b ∈ liem,

R([a, b]) = [R(a), b] + [a,R(b)] +

m∑
i=1

((∂ib)xiι(∂ia)− (∂ia)xiι(∂ib)) . (14)

Lemma 3.10. For 1 ≤ k ≤ n, we have the following:

δm+k(ui) =


ui (i < k)

uk + uk+1 +R(u)k(k+1) (i = k)

ui+1 (i > k)

,

and

δm+k(wij) =



wij (j < k)

wik + wi(k+1) (j = k)

wi(j+1) (i < k < j)

wk(j+1) + w(k+1)(j+1) (i = k)

w(i+1)(j+1) (k < i)

.

Proof. We will prove the formula δm+k(uk) = uk + uk+1 + R(u)k(k+1) and
δm+k(wik) = wik + wi(k+1) only. The proof of the other formulas is rather
straightforward, so we omit it.
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First we prove that δm+k(uk) = uk + uk+1 +R(u)k(k+1). This is true in
degree one, since δm+k(aik) = aik+ai(k+1). Assume that deg u > 1, we have
u = [a, b] for some homogeneous elements a, b, and

δm+k(ak) = ak + ak+1 +R(a)k(k+1), δm+k(bk) = bk + bk+1 +R(b)k(k+1)

for some R(a), R(b) ∈ assm. Then, we have

δm+k(uk) = [δm+k(ak), δm+k(bk)]

= [ak + ak+1 +R(a)k(k+1), bk + bk+1 +R(b)k(k+1)].

Computing the right hand side using Proposition 3.7, we obtain

uk +uk+1 +
(
[R(a), b] + [a,R(b)] +

m∑
i=1

((∂ib)xiι(∂ia)− (∂ia)xiι(∂ib))
)
k(k+1)

.

This completes the proof.
Next we show that δm+k(wik) = wik + wi(k+1). We have

δm+k(wik) = adw(a1k+a1(k+1),...,amk+am(k+1))(cik + ci(k+1))

= adw(a1k+a1(k+1),...,amk+am(k+1))(cik)

+ adw(a1k+a1(k+1),...,amk+am(k+1))(ci(k+1)).

Since aj(k+1) and cik commute and the Lie bracket of ajk and al(k+1) lies in
c, the first term is equal to adw(a1k,...,amk)(cik) = wik. Similarly, the second
term is equal to wi(k+1). This completes the proof.

Finally, we describe the map ϑm.

Lemma 3.11. We have the following:

ϑm(ui) = u(x1, . . . , xm−1, 0)i+1 +
(
(∂mu)(x1, . . . , xm−1, 0)

)
1(i+1)

,

ϑm(wij) = w(x1, . . . , xm−1, 0)(i+1)(j+1).

Proof. The proof of the first formula is similar to the proof of the formula
for δm+k(uk) in Lemma 3.10. We denote by H(u) the right hand side of the
formula. We first check that the formula holds true in degree one. Now let
a, b ∈ liem and assume that ϑm(ai) = H(a) and ϑm(bi) = H(b). Then, by
a direct computation using Proposition 3.7 and formula (9), we verify that
ϑm([a, b]i) = [H(a),H(b)] is equal to H([a, b]). Since this is straightforward,
we omit the detail.

To prove the second formula, modulo [c, c] we compute

ϑm(wij) = adw(a1(j+1),...,a(m−1)(j+1),c1(j+1))(c(i+1)(j+1))

= adw(a1(j+1),...,a(m−1)(j+1),0)(c(i+1)(j+1))

= w(x1, . . . , xm−1, 0)(i+1)(j+1).
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4 Homomorphic expansions for mixed braids

In [7], the category PaB of parenthesized braids was introduced, and it was
shown that the Drinfeld associators give rise to 1-formality isomorphisms
(homomorphic expansions) for this category. In this section, we extend this
formalism to mixed braids.

4.1 Parenthesized mixed braids and chord diagrams

We need some notation. Let Par =
⊔

m,n≥0Parm,n be the set of paren-
thesized words in two letters and , where Parm,n is the subset con-
sisting of parenthesized words with m red bullets and n blue bullets. For
example, ( ) ∈ Par2,1 and ( ( )) ∈ Par3,1. For O ∈ Parm,n, let
f(O) = O ∈ Parm,0 be the parenthesized word in obtained by forgetting
all the blue bullets in O, and let p(O) = o ∈Wm,n be the word obtained by
forgetting the parenthesization of O. For example, if O = ( ( )), then
O = ( ) and o = .

First we define the category PaMB of parenthesized mixed braids. The
set of objects is Par . Let O,O′ ∈ Par with f(O) = O, f(O′) = O′,
p(O) = o and p(O′) = o′. Then the set of morphisms from O to O′ is

PaMB(O,O′) :=

{
MB(o, o′) if O = O′,

∅ otherwise.

The composition is defined using that of MB. Note that there are no mor-
phisms from O to O′ unless O = O′. For example, we have no morphism
from ( ) to ( ). When we draw pictures of morphisms in PaMB,
which are represented by linear combinations of mixed braids, we use the
same convention used for PaB in [7]. Namely, we draw the bottom and top
ends of mixed braids so that their distances respect their “distances” in the
parenthesization of the source and domain of the morphism.

Example 4.1. In the following two pictures, the first one shows a morphism
from ( ) to ( ), and the second one from ( ( )) to ( )( ).

Next we define the category PaMCD. The set of objects is the same as
the set of objects of PaMB, namely Par . The set of morphisms from O
to O′ is

PaMCD(O,O′) :=

{
Am,n ×S (o, o′) if O = O′,

∅ otherwise.
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Here, in the first case, (m,n) is the type of o ∈ Wm,n. By definition, a
morphism in PaMCD is of the form (u, σ), where u ∈ Am,n and σ is a
mixed permutation of type (m,n). Recall that u is expressed as a linear
combination of words in aij and cij , which are interpreted as horizontal
chords. We draw u on the picture of σ so that aij (resp. cij) becomes
a chord connecting the ith red strand and jth blue strand (resp. the ith
and jth blue strands), where we count the strands at the bottom. We also
express the information on the parenthesization using the distances between
endpoints. For example,

is a morphism from ( ) to ( ) which corresponds to
(
c12a12,

)
. In this

view point, the composition in PaMCD is given by stacking of diagrams.
For example, one has

· = = .

More formally, the composition of (composable) morphisms (u, σ) and (u′, σ′)
is given by (uσ(u′), σσ′). Here, through the restriction to the blue bullets,
σ induces a permutation of {1, . . . , n} and hence acts on Am,n.

The operadic operations to mixed braids and chord diagrams introduced
in Section 2.3 extend naturally to their parenthesized enhancements PaMB
and PaMCD, with an extra care for parenthesizations. For the extension
operations, we draw the ends of the added strand outer-most in the picture.
For the cabling operations, we draw the ends of the two newly created
strands closest to each other. For example,

δs0

( )
= and δ1

( )
= .

To compare the categories PaMB and PaMCD, we need to consider
their completions. On the one hand, PaMB is filtered. By the same argu-
ment used for the ideal J in Section 3.1, the augmentation ideal I = IPm,n

and its powers extend naturally to a multiplicative filtration of the category
MB and hence of PaMB. Therefore, one can define the I-adic completion

P̂aMB and the associated graded grPaMB. On the other hand, PaMCD
is graded. The grading comes from the grading of the algebra Am,n. Thus

one can define the degree completion ̂PaMCD, where Am,n is replaced

with its degree completion Âm,n. The operadic operations on PaMB and
PaMCD extend to their completions.
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The isomorphism AQPm,n
∼= Am,n proven in Proposition 2.8 extends

naturally to a canonical isomorphism

grPaMB ∼= PaMCD (15)

which is the identity on the objects. Moreover, one checks that this isomor-
phism respects all the operadic operations.

Proposition 4.2. The category PaMB is generated by the following mor-
phisms, their inverses, and their images by repeated applications of the op-
eradic operations in PaMB:

σ+ps = , σ−ps = , αpps := , αpsp := , αspp := .

(16)

Sketch of proof. We say that a parenthesized mixed braid is basic if it is one
of the morphisms listed in the statement of the proposition. Let m,n ≥ 0
and O

∗
m ∈ Parm,0. Joining O

∗
m and the left-nested parenthesization of n

blue bullets, we obtain a parenthesized word O∗
m,n ∈ Parm,n. For example,

if O
∗
4 = ( )( ) then O∗

4,3 = (( )( ))(( ) ).

Let m,n ≥ 0 and O,O′ ∈ Parm,n such that O
∗
m := O = O′. Given any

parenthesized mixed braids β ∈ PaMB(O∗
m,n, O) and β′ ∈ PaMB(O∗

m,n, O
′),

any morphism ξ from O to O′ decomposes as ξ = β−1(βξβ′−1)β′. There-
fore, to prove the proposition it is sufficient to show the following: given any
parenthesization O

∗
m ∈ Parm,0,

(i) any parenthesized mixed braid from O∗
m,n to itself decomposes into a

product of basic morphisms, and

(ii) for any O ∈ Parm,n with O = O
∗
m, there is morphism from O∗

m,n to O
which decomposes into a product of basic morphisms.

To prove (i), note that the underlying mixed braid of a parenthesized one
lies in the group Bstd

m,n introduced in Section 2.1. Since this group is gener-
ated by αij ’s and the simple braids among blue strands [19, Section 4], it is
sufficient to deal with these generators. We give two sample computations:

= = δp0(αsss) ◦ δp0(δ
s
0(σss)) ◦ δ

p
0(α

−1
sss ),
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where we set σss = ϑ1(σ
+
ps) and αsss = ϑ1(ϑ2(αpps)), and

= = ξ ◦ δs4(δ
p
3(σ

+
ps)) ◦ δs4(δ

p
3(σ

−
ps)) ◦ ξ−1,

where ξ = δ1(δ
p
0(σ

−1
ss )) ◦ δ1(ϑ2(α−1

pps)) ◦ δs4(αpps) ◦ δs4(δ
p
0(σ

−
ps)) ◦ δs4(α−1

psp).
For (ii), we give one example:

= = δ1(ϑ2(α
−1
pps)) ◦ δs4(δ2(σ+ps)) ◦ δs4(α−1

spp) ◦ ϑ1(δ1(αpps)).

In a similar fashion to the definition of PaMB, for each k ≥ 1 we
define the parenthesized version of the category MB/k, which we denote by
PaMB/k. Likewise, for each k ≥ 1 we define the category PaMCD/k. The
isomorphism (15) descends to an isomorphism grPaMB/k ∼= PaMCD/k.
For k = 2, we use the special notation PaEB = PaMB/2 and PaECD =
PaMCD/2.

4.2 Homomorphic expansions for mixed braids

Here comes the concept of homomorphic expansions for the category PaMB:

Definition 4.3. A homomorphic expansion for PaMB is a functor Zmb :

PaMB → ̂PaMCD which is the identity on the objects, preserves the
filtrations, induces the identity at the associated graded, respects all the
operadic operations, and is group-like.

The group-like condition in the above definition means that for each
mixed braid β of type (m,n) one has Zmb(β) = (exp(u), π(β)), where u is

an element in d̂km,n, the degree completion of dkm,n.
For each k ≥ 1, we can formulate the concept of a homomorphic ex-

pansion for PaMB/k: it is defined to be a functor Zmb/k : PaMB/k →
̂PaMCD/k satisfying the same conditions required for Zmb in Definition 4.3.
Homomorphic expansions for PaMB exist by the following
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Proposition 4.4. Any Drinfeld associator gives rise to a homomorphic
expansion for PaMB and consequently to a homomorphic expansion for
PaMB/k for any k ≥ 1.

Proof. Let Φ be a Drinfeld associator. It is of the form Φ = exp(ϕ), where
ϕ = ϕ(x, y) ∈ l̂ie2 is a Lie series without linear term. As shown in [7,

Proposition 3.4], Φ extends to a functor Zpb : PaB → P̂aCD, where the
target is the degree completion of the category of parenthesized (horizontal)
chord diagrams. The category PaB is generated (in the same sense as in

Proposition 4.2) by the elements σ = and α = (see [7, Claim 2.6]).

The functor Zpb is specified by the values on these generators:

Zpb(σ) :=

(
exp

(
1

2
t12

)
,

)
, Zpb(α) :=

(
Φ(t12, t23),

)
.

There are functors PaMB → PaB and ̂PaMCD → P̂aCD obtained
by forgetting the colors of poles and strands. These functors are faithful.
For the former, this follows from the fact that Pm,n is a subgroup of Pm+n.
For the latter, this follows from the injectivity of the map dkm,n → dkm+n;
see Remark 2.7.

We will show that Zpb induces a functor Zmb : PaMB → ̂PaMCD
which is the identity on the objects. In view of the faithfulness of the
forgetful functors above, it is sufficient to prove the following claim:

Claim. Let β be a mixed braid with m poles and n strands which represents
a morphism inPaMB. Let β0 be the parenthesized braid obtained by forget-
ting the colors of β and write Zpb(β0) = (B, π(β0)), where B ∈ exp(d̂km+n)
and π(β0) is the parenthesized permutation induced by β0. Then, B lies in

exp(d̂km,n), where we view dkm,n as a Lie subalgebra of dkm+n.

Proof of the claim. Basically, this is because there is no crossing between
the strands in β0 which were poles of β. More details are as follows.

Step 1. Assume that β is one of the elements in (16). Then, β0 is either

σ± or α. If β0 = σ±, then B = exp
(
±1

2 t12
)
= exp

(
±1

2a11
)
∈ exp(d̂k1,1). If

β0 = α, there are three possibilities: (i) β = αpps; (ii) β = αpsp; (iii) β =
αspp. Since ϕ has no linear term, we have ϕ(−t13 − t23, t23) = ϕ(t12, t23) =
ϕ(t12,−t12 − t13). Hence, we have B = Φ(−a11 − a21, a21) in case (i), B =
Φ(a11, a21) in case (ii), and B = Φ(a11,−a11−a21) in case (iii). In all cases,

we obtain that B ∈ exp(d̂k2,1).
Step 2. By Proposition 4.2 we can decompose β into a product of basic

morphisms (in the sense of the proof of Proposition 4.2). By Step 1, any basic

morphism is sent by Zpb to a morphism in P̂aCD whose first component
lies in exp(d̂km,n). Hence the same is true for β, and the claim follows.
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The functor Zpb is filtration-preserving, induces the identity at the asso-
ciated graded, and respects all the operadic operations in PaB. Therefore,
the induced functor Zmb satisfies all the required properties for a homomor-
phic expansion for PaMB. This completes the proof of Proposition 4.4.

Are there any other ways to obtain homomorphic expansions for PaMB?
By Proposition 4.2, any Zmb is specified by values on the basic morphisms
in (16). For the first and second elements, the group-like condition for Zmb

implies that Zmb(σ+ps) =
(
exp(λa11),

)
and Zmb(σ−ps) =

(
exp(µa11),

)
for

some λ, µ ∈ Q. Applying the operation ϑ1 to the first equation, we obtain
Zmb

( )
=
(
exp(λc12),

)
and Zmb

(
(τ11, )

)
= Zmb

( )
=
(
exp(2λc12),

)
=(

1 + 2λc12,
)
. Since grZmb is the identity, we obtain λ = 1/2. Similarly,

we obtain µ = −1/2. In summary, we have

Zmb(σ+ps) =

(
exp

(
1

2
a11

)
,

)
, Zmb(σ−ps) =

(
exp

(
−1

2
a11

)
,

)
.

(17)
For the other three morphisms in (16), we write

Zmb(αpps) =

(
Φpps,

)
, Zmb(αpsp) =

(
Φpsp,

)
,

Zmb(αspp) =

(
Φspp,

)
.

By the group-like condition for Zmb, the first component of these three
elements lie in exp(d̂k2,1) ⊂ Â2,1 so that one can write Φpps = exp(ϕpps),

Φpsp = exp(ϕpsp), and Φspp = exp(ϕspp) for some ϕpps, ϕpsp, ϕspp ∈ d̂k2,1.
To obtain a well-defined functor Zmb, the values Φpps, Φpsp and Φspp

have to satisfy several equations coming from equalities among parenthe-
sized mixed braids. To give a complete description, we need to know the
presentation of the category PaMB in terms of the generators in (16). We
do not pursue this issue in the present paper. We focus on the following
ppss-pentagon equality

=

as morphisms from (( ) ) to ( ( )). It can be written as

d4(αpps)d
2(αpps)d

0(αpps) = d1(αpps)d
3(αpps).
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Applying Zmb, we obtain

d4(Φpps)d
2(Φpps)d

0(Φpps) = d1(Φpps)d
3(Φpps). (18)

The linearization of this equation, which takes the following form:

d4(ϕpps) + d2(ϕpps) + d0(ϕpps) = d1(ϕpps) + d3(ϕpps), (19)

namely, d2,1(ϕpps) = 0. We call this the linearized ppss-pentagon equation.

4.3 Emergent pentagon equation

From now on, we consider the case k = 2, namely PaMB/2 = PaEB, and
focus on the linearized ppss-pentagon equation (19) in edk2,2.

Proposition 4.5. Let ϕ = ϕ(x, y) ∈ lie2. Then, ϕ1 = ϕ(a11, a21) ∈ edk2,1
satisfies d2,1(ϕ1) = 0 ∈ edk2,2 if and only if ϕ satisfies the following two
equations:

ϕ(y, 0)− ϕ(x+ y, 0) = 0, (20)

(∂yϕ)(x, y) + (∂yϕ)(y, 0)− (∂yϕ)(x+ y, 0)−R(ϕ) = 0. (21)

Proof. Using formulas (12), (13) and Lemmas 3.10, 3.11, we obtain that

d0(ϕ1) = ϕ(y, 0)2 + (∂yϕ)(y, 0)12,

d1(ϕ1) = ϕ(x+ y, 0)2 + (∂yϕ)(x+ y, 0)12,

d2(ϕ1) = ϕ(x, y)2 + (∂yϕ)(x, y)12,

d3(ϕ1) = ϕ(x, y)1 + ϕ(x, y)2 +R(ϕ)12,

d4(ϕ1) = ϕ(x, y)1.

The assertion follows from this.

Remark 4.6. Equation (20) says that the coefficient of x in ϕ is zero. One
can check that in degree one, solutions to equation (21) are scalar multiples
of x. Hence, there is no nontrivial solution to d2,1(ϕ1) = 0 in degree one,
and equation (20) is redundant in degrees at least two.

Recall the definition of the Grothendieck-Teichmüller Lie algebra grt1 by
Drinfeld [13]. It is the space of ψ ∈ lie2 which satisfy the following relations:

ψ(x, y) = −ψ(y, x),
ψ(x, y) + ψ(y,−x− y) + ψ(−x− y, x) = 0,

ψ(t12, t2(34)) + ψ(t(12)3, t34) = ψ(t23, t34) + ψ(t1(23), t(23)4) + ψ(t12, t23).

(22)
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Here, the last equation (22), called the pentagon equation, takes place in
dk4 and t2(34) = t23 + t24, etc. It is known that nontrivial elements in grt1
have degrees at least three.

The pentagon equation can be described in terms of a certain differential
on dkn. In fact, the differential on edkm,n is induced from this differential.
Assume that ψ ∈ lie2 has degree at least two. Then, it can be considered
as an element in dk3 by the substitution ψ 7→ ψ(t12, t23). There are maps
di : dk3 → dk4 for 0 ≤ i ≤ 4 defined in terms of extension and cabling
operations, and ψ is a solution to the pentagon equation if and only if
d3(ψ) =

∑4
i=0(−1)idi(ψ) = 0. Furthermore, through the isomorphism

dk3 ∼= Q(t12 + t13 + t23)⊕ lie(t13, t23),

ψ(t12, t23) corresponds to ψ(−t13 − t23, t23) ∈ lie(t13, t23). Now, identify
lie(t13, t23) with dk2,1 = lie(a11, a21) ∼= edk2,1 by t13 7→ a11 and t23 7→ a21.
Since the coface maps on dk3 and edk2,1 are compatible with this identi-
fication, it follows that any ψ = ψ(x, y) ∈ lie2 with d3(ψ) = 0 satisfies
d2,1(ψ(−x− y, y)) = 0.

We now want to introduce the emergent version of the Grothendieck-
Teichmüller Lie algebra as the space of solutions to the linearized ppss-
pentagon equation. For a technical reason, we put an additional condition
coming from the following fact proved by Drinfeld [13, equation (5.19)]:
any ψ ∈ grt1 satisfies [x, ψ(−x − y, x)] + [y, ψ(−x − y, y)] = 0, and hence
ϕ(x, y) = ψ(−x− y, y) satisfies

[x, ϕ(y, x)] + [y, ϕ(x, y)] = 0. (23)

Definition 4.7. Let

grtem1 := {ϕ ∈ lie2 | ϕ satisfies equations (20), (21) and (23)}.

By definition, we have an injection grt1 ↪→ grtem1 , ψ(x, y) 7→ ψ(−x−y, y).

Remark 4.8. A computer experiment shows that up to degree 17, the space
of solutions to equations (20) and (21) coincides with grt1. Furusho [15]
showed that the pentagon equation (22) implies the other two defining equa-
tions for grt1. We do not know whether an analogous result holds true for
grtem1 , namely whether equations (20) and (21) imply equation (23).

Remark 4.9. There is a topological explanation for the source of condi-
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tion (23). Consider the following hexagonal equalities:

= , =

From the first equality and (17), we obtain

e
x+y
2 = Φpps e

y
2 Φ−1

psp e
x
2 Φspp. (24)

This shows a relationship among the elements Φpps, Φpsp and Φspp. From
the second equality, we obtain

ex+y = Φpps e
y
2 Φ−1

psp e
xΦpsp e

y
2 Φ−1

pps. (25)

Now, we apply the reflection with respect to a vertical axis to the three α’s
in (16). Then αspp is mapped to the inverse of αpps and αpsp to its inverse,
where the order of red strands gets reversed. From this observation, let us
consider the following condition:

Φspp(x, y) = Φpps(y, x)
−1, Φpsp(x, y) = Φpsp(y, x)

−1. (26)

We do not know if any homomorphic expansion Zmb satisfies these condi-
tions. Under this hypothesis, the element Φpps and equation (24) determine
the other two elements Φpsp and Φspp. Moreover, equations (24), (25) and
(26) imply that

ex+y = e
x+y
2 Φpps(y, x) e

xΦpps(y, x)
−1 e−

x+y
2 Φpps e

y Φ−1
pps.

Taking the linearization of this equation yields condition (23).

5 Loop operations and Kashiwara-Vergne theory

In this section, we explain an interpretation of the Kashiwara-Vergne Lie
algebras in terms of surface topology [2, 3].

Fix a positive integer n and let Σ be an n-punctured disk, that is, a
closed unit disk in R2 with n distinct points in the interior removed. Choose
a basepoint ∗ in the boundary of Σ and let π = π1(Σ, ∗). Since the group π is
free of rank n, the associated graded quotient of the group algebra Qπ with
respect to the powers of the augmentation ideal is canonically isomorphic to
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the free associative algebra assn = ass(x1, . . . , xn), where the generator xi
corresponds to the homology class of the loop around the ith puncture:

Σ =

∗

◦ ◦ · · · ◦
1 2 · · · n

∗

◦ ◦ · · · ◦
x1 x2 · · · xn

Let A be an associative Q-algebra. The trace space |A| is defined to be
A/[A,A]. We denote by | | : A → |A| the natural projection. For instance,
the space |Qπ| is naturally identified with the set of homotopy classes of free
loops in Σ, and trn := |assn| is the space of cyclic words in x1, . . . , xn.

5.1 Loop operations on a punctured disk

We briefly recall several loop operations on Qπ and |Qπ|. Our focus is on
their linearized version, namely the associated graded operations on assn and
trn. For more details about the loop operations themselves, see [21, 20, 3].

The main cast in the sequel are the (associated graded operations of) the
homotopy intersection form [21] and the framed Turaev cobracket [2, 3]. The
former is a Q-linear map η : Qπ⊗2 → Qπ defined in terms of intersections of
two based loops in Σ, and the latter is a Q-linear map δf : |Qπ| → |Qπ|⊗2

defined in terms of self-intersections of a free loop in Σ. The operation δf

depends on the choice of a framing on Σ. Here, we choose the blackboard
framing associated with the inclusion Σ ⊂ R2. We give sample computations
of these operations:

◦ ◦ ◦
α

β

η(α, β) = ◦ ◦ ◦ − ◦ ◦ ◦

◦ ◦ ◦

γ

δf (γ) = ◦ ◦ ◦
γ1

∧ ◦ ◦ ◦

γ2

Here, γ1∧γ2 = γ1⊗γ2−γ2⊗γ1. In the first example, there are two intersec-
tions of α and β, and each of them contributes to a term in η(α, β). The sign
is determined by the local index at each intersection. In the second example,
γ has one self-intersection. In general, δf (γ) is obtained by splitting γ into
two free loops at each intersection. We also use a based loop version of δf ,
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namely a certain map µfr : Qπ → |Qπ| ⊗ Qπ introduced in [3, Section 2.3].

We set µf := (ε ⊗ id) ◦ µfr : Qπ → Qπ, where the map ε : |Qπ| → Q is
induced from the augmentation map of Qπ. Here is a sample computation
of µf :

◦ ◦ ◦

γ

µf (γ) = ◦ ◦ ◦ − ◦ ◦ ◦

There are two self-intersections of γ, and each of them contributes to a term
in µf (γ). The maps µf and η are related by the following formula: for any
a, b ∈ Qπ,

µf (ab) = aµf (b) + µf (a)b+ η(a, b). (27)

In fact, the operation µf recovers µfr and δf . The map µfr coincides with
the following composition

Qπ ∆−→Qπ ⊗Qπ id⊗µf

−−−−→ Qπ ⊗Qπ
id⊗((ι⊗id)◦∆)−−−−−−−−−→ Qπ ⊗Qπ ⊗Qπ (| |◦mult)⊗id−−−−−−−−→ |Qπ| ⊗Qπ. (28)

Here, ∆ and ι are the coproduct and antipode on Qπ defined by ∆(γ) = γ⊗γ
and ι(γ) = γ−1 for γ ∈ π, and in the last step we use the multiplication map
in the algebra Qπ. Furthermore, for any a ∈ Qπ we have

δf (|a|) = Alt ◦ (id⊗ | |) ◦ µfr (a) + |a| ∧ 1. (29)

Here, Alt(a⊗ b) = a⊗ b− b⊗ a and 1 is the class of the unit in Qπ.

Remark 5.1. (i) We give several comments about proofs of the formulas
above. First, one can derive formula (27) by applying (ε ⊗ id) to the
first equation in [3, Proposition 2.9 (i)]. A formula similar to (27)
was proved in [20, (3.3)] for a variant of the map µf . Second, the

decomposition (28) of the map µfr follows directly from the defining

formula of µfr . See [3, Section 2.3, formula (13)]. Finally, formula (29)
can be found in [3, Proposition 2.9 (ii)].

(ii) The map δf is a refinement of the Turaev cobracket [25], which is a Lie
cobracket on the quotient space |Qπ|/Q1. Turaev [24] also introduced
essentially the same operations as η and (an unframed version of) µf .

5.2 The associated graded operations

All the loop operations in the previous section descend to the associated
graded operations on assn and trn. We review their explicit formulas. For
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more details, see [3, Section 3]. The associated graded operation of η,

ηgr : assn
⊗2 → assn,

is a map of degree −1 and given by ηgr(1, v) = ηgr(u, 1) = 0 and

ηgr(a1 · · · al, b1 · · · bm) = −a1 · · · al−1z(al, b1)b2 · · · bm, (30)

where l,m ≥ 1, the elements a1, . . . , al, b1, . . . , bm are of degree 1, and z is
defined by z(xi, xj) = δijxi. The associated graded operation of µf ,

µfgr : assn → assn,

is a map of degree −1 and given by the formula

µfgr(a1 · · · am) = −
m−1∑
j=1

a1 · · · aj−1z(aj , aj+1)aj+2 · · · am, (31)

where a1, . . . , am are elements of degree 1. The associated graded version of
the relations (27), (28) and (29) holds true. First, for any a, b ∈ assn

µfgr(ab) = aµfgr(b) + µfgr(a)b+ ηgr(a, b). (32)

Of course, one can directly check this from formulas (30) and (31). Second,

the associated graded operation µfr,gr decomposes as

assn
∆−→assn ⊗ assn

id⊗µf
gr−−−−→ assn ⊗ assn

id⊗((ι⊗id)◦∆)−−−−−−−−−→ assn ⊗ assn ⊗ assn
(| |◦mult)⊗id−−−−−−−−→ trn ⊗ assn. (33)

Conversely, we have µfgr = (ε⊗ id) ◦ µfr,gr. Finally, for any a ∈ assn

δfgr(|a|) = Alt ◦ (id⊗ | |) ◦ µfr,gr(a). (34)

Note that the term |a| ∧ 1 in (29) does not contribute to the associated
graded operation, since it has filtration degree zero.

Lemma 5.2. For any a, b ∈ lien, we have ηgr(a, b) = −
∑n

i=1(∂ia)xiι(∂ib).

Proof. This follows from a =
∑n

i=1(∂ia)xi and b =
∑n

i=1 xiι(∂ib).

We show that the map µfgr is related to the map R introduced in Sec-
tion 3.3. This will be a key point for proving Theorem 1.1.

Proposition 5.3. The map R coincides with the restriction of µfgr to lien.
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Proof. We have µfgr(xi) = 0 for i = 1, . . . , n. Let a, b ∈ lien. Equation (32)

and Lemma 5.2 shows that µfgr([a, b]) = µfgr(ab)− µfgr(ba) is equal to

[µfgr(a), b] + [a, µfgr(b)] +
n∑

i=1

((∂ib)xiι(∂ia)− (∂ia)xiι(∂ib)) .

Therefore, the map µfgr restricted to lien satisfies the same recursive formula
as the map R. This proves the proposition.

Remark 5.4. In [20, §4.3], Massuyeau gave a 3-dimensional formula for µf

which involves the cabling operation for pure braids on a punctured disk. It
would be interesting to compare his formula with Proposition 5.3.

5.3 Kashiwara-Vergne Lie algebras

We recall the definition of the Kashiwara-Vergne Lie algebras [5, 2].
We begin with some preliminary materials. Let tdern = lien

⊕n. The
grading on lien makes tdern a graded Q-vector space. For ũ = (u1, . . . , un) ∈
tdern, let ρ(ũ) be a derivation on lien defined by ρ(ũ)(xi) = [xi, ui] for
i = 1, . . . , n. The space tdern has a structure of graded Lie algebra whose Lie
bracket is given by [ũ, ṽ] = w̃ = (w1, . . . , wn) with wi = [ui, vi] + ρ(ũ)(vi)−
ρ(ṽ)(ui) for i = 1, . . . , n, and the map ũ 7→ ρ(ũ) is a Lie algebra homomor-
phism to the derivation Lie algebra of lien. Through this homomorphism,
tdern acts on lien, assn, trn and their tensor products. Elements of tdern
are called tangential derivations. The space sdern of special derivations is
defined to be the set of ũ ∈ tdern annihilating the element x0 =

∑n
i=1 xi,

i.e., ρ(ũ)(x0) = 0. It forms a Lie subalgebra of tdern. The divergence cocycle
[5] is a Lie 1-cocycle defined by the following formula:

div : tdern → trn, ũ 7→
n∑

i=1

|xi(∂iui)|.

Definition 5.5. (i) The Kashiwara-Vergne Lie algebra krvn is the space
consisting of ũ ∈ sdern such that div(ũ) =

∑n
i=0 |fi(xi)| for some

formal power series f0(s), f1(s), . . . , fn(s) ∈ Q[[s]].

(ii) Let krv0n be the space of ũ ∈ sdern such that div(ũ) ∈
⊕n

i=1Q|xi|.

In the definition of krvn, the functions fi(s) actually agree with each
other modulo the linear part [2, Proposition 8.5]. In particular, if n = 2 and
ũ ∈ krv2 is of degree ≥ 3, then there exists an f(s) ∈ Q[[s]]≥2 such that

div(ũ) = |f(x1) + f(x2)− f(x1 + x2)|. (35)

We have the following sequence of inclusions of graded Lie algebras:

tdern ⊃ sdern ⊃ krvn ⊃ krv0n.
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The Lie algebras sdern, krvn and krv0n have the following characterizations
in terms of (the associated graded of) the loop operations.

Proposition 5.6. Let ũ = (u1, . . . , un) ∈ tdern. Then, the following three
conditions are equivalent:

(i) ũ ∈ sdern;

(ii) ∂jui = ∂iuj for any i, j ∈ {1, . . . , n};

(iii) ρ(ũ) commutes with ηgr, i.e., ρ(ũ) ◦ ηgr = ηgr ◦ (ρ(ũ)⊗ id + id⊗ ρ(ũ)).

Proof. The following computation proves the equivalence (i) ⇔ (ii):

ρ(ũ)(x0) =
n∑

i=1

[xi, ui] =
n∑

i=1

xiui −
n∑

j=1

ujxj =
n∑

i,j=1

(
xi(∂jui)xj − xi(∂

iuj)xj
)
.

To prove the equivalence (ii) ⇔ (iii), note that the map ηgr is a Fox
pairing [21]. This means that ηgr satisfies{

ηgr(ab, c) = aηgr(b, c) + ε(b)ηgr(a, c),

ηgr(a, bc) = ηgr(a, b)c+ ε(b)ηgr(a, c)

for any a, b, c ∈ assn. Thanks to this property, the condition (iii) is equivalent
to the commutativity of ρ(ũ) and ηgr on generators of assn, namely

(iii)′ u(ηgr(xi, xj)) = ηgr(u(xi), xj)+ηgr(xi, u(xj)) for any i, j ∈ {1, . . . , n}.

Now we compute u(ηgr(xi, xj)) = u(z(xi, xj)) = δiju(xi) = δij [xi, ui] and

ηgr(u(xi), xj) + ηgr(xi, u(xj)) = ηgr([xi, ui], xj) + ηgr(xi, [xj , uj ])

= xi(∂jui)xj − uiz(xi, xj)

+ z(xi, xj)uj − xi(∂
iuj)xj

= xi(∂jui − ∂iuj)xj + δij [xi, ui].

Hence the condition (iii)′ is equivalent to (ii). This completes the proof.

Remark 5.7. The equivalence (i) ⇔ (iii) in Proposition 5.6 is a special case
of (the infinitesimal version of) more general results [21, Lemmas 6.2 and
6.3], [22, Theorem 2.31].

Theorem 5.8. Let ũ = (u1, . . . , un) ∈ tdern.

(i) ũ ∈ krvn ⇐⇒ ρ(ũ) commutes with ηgr and δ
f
gr.

(ii) ũ ∈ krv0n ⇐⇒ ρ(ũ) commutes with ηgr and µ
f
gr.
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Proof. First note that in (ii) one can replace µfgr with µfr,gr, since µ
f
r,gr is

recovered from µfgr and vice versa.
In [3, Theorem 8.21], it was shown that the Kashiwara-Vergne groups

KRVn (resp. KRV0
n) is isomorphic to the group of tangential automorphisms

of (the completion of) assn that commute with the operations ηgr and δfgr
(resp. ηgr and µfr,gr). As krvn and krv0n are the Lie algebras of KRVn and
KRV0

n, respectively, the assertions (i) and (ii) follow from this result.

Remark 5.9. As the proof shows, Theorem 5.8 is essentially the linearized
version of [3, Theorem 8.21]. The key ingredients of the proof of the latter
are the following facts (see [2, 3]):

(i) The space trn has a Lie algebra structure. It arises as the associated
graded operation of the Goldman bracket [16] defined on |Qπ|.

(ii) There is a surjective Lie algebra homomorphism σgr : trn → sDern,
where sDern is the free associative version of sdern, namely the space
of ũ = (u1, . . . , un) ∈ assn

⊕n such that ρ(ũ)(x0) =
∑n

i=1[xi, ui] = 0.
One can naturally regard sdern as a Lie subalgebra of sDern. It holds
that ρ(σgr(a))(b) = [a, b] for any a, b ∈ trn.

(iii) There is a free associative version of the divergence cocycle, Div :
sDern → trn

⊗2. It satisfies Div(ũ) = ∆̃(div(ũ)) for any ũ ∈ sdern.
Here, ∆̃ : trn → trn

⊗2 is the injective map that is induced from (id ⊗
ι) ◦∆ : assn → assn

⊗2.

(iv) The linearized Turaev cobracket and the divergence cocycle are related
by the following formula:

δfgr = Div ◦ σgr.

(v) The center of the Lie algebra trn is spanned by |Q[[xi]]|, 0 ≤ i ≤ n (see
[2, Theorem 4.15] and [3, Theorem 3.18]).

For the convenience of the reader, let us illustrate how these facts lead
directly to the first statement of Theorem 5.8. We need more materials
from [2, 3] for the second statement, and so we omit it.

A direct proof of Theorem 5.8 (i). By Proposition 5.6, it is sufficient to prove
that for any ũ ∈ sdern the divergence condition for ũ is equivalent to the com-
mutativity of ρ(ũ) with δfgr. Since σgr is surjective, one can write ũ = σgr(b)
for some b ∈ trn. Let a ∈ trn. Using the facts (ii) and (iv) we compute

δfgr(ρ(ũ)(a))− ρ(ũ)(δfgr(a)) = Div(σgr(ρ(ũ)(a)))− σgr(b)(Div(σgr(a))

= Div(σgr([b, a]))− σgr(b)(Div(σgr(a)))

= −σgr(a)(Div(σgr(b))).
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In the last line, we have used the 1-cocycle property of Div. By the fact
(iii), it follows that σgr(a)(Div(σgr(b))) = 0 if and only if [a, div(σgr(b))] = 0.

Hence, ρ(ũ) commutes with δfgr if and only if div(ũ) lies in the center of the
Lie algebra trn. We can conclude by the fact (v).

6 Proof of the main result

In this section, we prove Theorem 1.1 in the introduction. When n = 2, we
use letters x, y for generators of lie2 instead of x1, x2.

6.1 KV equations from emergent associator equations

We prove the first statement of Theorem 1.1.
We simply write u = ρ(ũ) for ũ ∈ tdern. The action of ũ on tensor

products of assn and trn is abbreviated in a similar way. For instance, ũ acts
on trn ⊗ assn as ρ(ũ)⊗ id + id⊗ ρ(ũ), and we denote it by u.

Lemma 6.1. Let ũ ∈ sdern. Then, dũ := µfgr ◦u−u ◦µfgr is a derivation on

assn. Furthermore, the map Dũ := µfr,gr ◦u−u ◦µfr,gr from assn to trn⊗ assn
satisfies the following property: for any a, b ∈ assn,

Dũ(ab) = Dũ(a)(1⊗ b) + (1⊗ a)Dũ(b).

Proof. We simply write µ = µfgr and η = ηgr. Let a, b ∈ assn. We compute

µ(u(ab)) = µ(u(a)b+ au(b))

= µ(u(a))b+ u(a)µ(b) + η(u(a), b)

+ µ(a)u(b) + aµ(u(b)) + η(a, u(b)),

u(µ(ab)) = u(µ(a)b+ aµ(b) + η(a, b)

= u(µ(a))b+ µ(a)u(b) + u(a)µ(b) + au(µ(b)) + u(η(a, b)).

Since ũ ∈ sdern, we have η(u(a), b) + η(a, u(b)) = u(η(a, b)) by Proposi-
tion 5.6. Hence we see that dũ is a derivation on assn.

The map µfr,gr decomposes as shown in (33). Since the derivation u
commutes with the Hopf algebra operations on assn, the second assertion
follows from the first assertion.

Proposition 6.2. Let ũ ∈ sdern and assume that there is some c ∈ assn
such that µfgr(u(xi)) = [xi, c] for all i = 1, . . . , n. Then, ũ ∈ krvn.

Proof. By Theorem 5.8, it is enough to prove that u commutes with δfgr. A

straightforward computation using (33) yields µfr,gr(u(xi)) = |ι(c′)| ⊗ [xi, c
′′]

for all i = 1, . . . , n, where we write ∆(c) = c′ ⊗ c′′ using the Sweedler
notation.
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Let a = a1 · · · am ∈ assn be a product of m elements of degree 1. Note
that Dũ(ai) = |ι(c′)| ⊗ [ai, c

′′] since µfgr(ai) = 0. By Lemma 6.1, we have

Dũ(a) =

m∑
i=1

(1⊗ a1 · · · ai−1)Dũ(ai)(1⊗ ai+1 · · · am)

=

m∑
i=1

|ι(c′)| ⊗ a1 · · · ai−1[ai, c
′′]ai+1 · · · am

= |ι(c′)| ⊗ [a, c′′].

Since |[a, c′′]| = 0, we obtain (δfgr◦u−u◦δfgr)(|a|) = 0 by (34). This completes
the proof.

Proof of Theorem 1.1 (i). Let ϕ = ϕ(x, y) ∈ grtem1 . Then ϕ satisfies equa-
tion (21) and the tangential derivation νem(ϕ) = (ϕ(y, x), ϕ(x, y)) is special.
In particular, by Proposition 5.6 we have

∂yϕ = ∂yϕ = ι(∂yϕ). (36)

Put f(s) := −(∂yϕ)(s, 0) ∈ Q[[s]]. We will show that νem(ϕ) ∈ sder2
satisfies the assumption of Proposition 6.2. By Proposition 5.3, one may
replace µfgr with R. We first compute

R(νem(ϕ)(y)) = R([y, ϕ(x, y)])

= [y,R(ϕ)] + (∂yϕ)y − yι(∂yϕ)

= [y,R(ϕ)− ∂yϕ]

= [y, (∂yϕ)(y, 0)− (∂yϕ)(x+ y, 0)]

= [y, f(x+ y)].

Here, we have used formula (14) in the second line, equation (36) in the
third line, equation (21) in the fourth line, and the fact that y commutes
with any power series in y in the last line. Similarly, we compute

R(νem(ϕ)(x)) = R([x, ϕ(y, x)])

= [x,R(ϕ(y, x))] + ∂x(ϕ(y, x))x− xι(∂x(ϕ(y, x)))

= [x,R(ϕ)(y, x)− (∂yϕ)(y, x)]

= [x, (∂yϕ)(x, 0)− (∂yϕ)(y + x, 0)]

= [x, f(x+ y)].

This completes the proof.

6.2 Symmetric Kashiwara-Vergne Lie algebra

Recall from [5, Section 8] that the symmetric part of the Kashiwara-Vergne
Lie algebra krvsym2 is the invariant Lie subalgebra of krv2 by the involution
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(u(x, y), v(x, y)) 7→ (v(y, x), u(y, x)). In this section, we prove the second
statement of Theorem 1.1.

Lemma 6.3. Let ϕ = ϕ(x, y) ∈ lie2 be an element of degree at least two.
Then, R(ϕ)(0, y) = R(ϕ)(x, 0) = (∂yϕ)(0, y) = 0.

Proof. Notice that ϕ seen as an element of ass2 is a linear combination of
words which contain at least one x and at least one y. Formula (31) implies
that R(ϕ) is a linear combination of words with the same property. Hence
R(ϕ)(0, y) = R(ϕ)(x, 0) = 0. Similarly we have (∂yϕ)(0, y) = 0, since ∂yϕ is
a linear combination of words which contain at least one x.

Proof of Theorem 1.1 (ii). Let ũ = (ϕ(y, x), ϕ(x, y)) ∈ krvsym2 be homoge-
neous of degree at least two.

Step 1. We first consider the case where ũ ∈ krv02. By Theorem 5.8 (ii),

ũ commutes with µfgr = R. Hence

0 = ũ(R(y)) = R(ũ(y)) = R([y, ϕ]) = [y,R(ϕ)− ∂yϕ].

Therefore, we have R(ϕ)−∂yϕ ∈ Q[[y]]≥1. By Lemma 6.3, we obtain R(ϕ)−
∂yϕ = 0. Furthermore, (∂yϕ)(x, 0) = R(ϕ)(x, 0) = 0. Therefore, we obtain
equation (21) for ϕ. Hence ϕ ∈ grtem1 and ũ = νem(ϕ).

Step 2. We next consider the general case. Let l = degϕ. If l is even,
then div(ũ) = 0 by [5, Proposition 4.5]. Hence ũ ∈ krv02, and ũ is in the
image of νem by Step 1. Assume that l is odd (and ≥ 3). Recall that the
Drinfeld-Ihara generator σl ∈ grt1 satisfies the property

div(ν(σl)) = |xl + yl − (x+ y)l|

(see [5, Proposition 4.10]). Thus there exists a constant c ∈ Q such that
ũ− cν(σl) has the vanishing divergence, i.e., ũ− cν(σl) ∈ krv02. From Step 1,
we obtain that ũ−cν(σl) is in the image of νem. Let ψl(x, y) = σl(−x−y, y) ∈
grtem1 . Then ν(σl) = νem(ψl). Therefore, ũ = (ũ− cν(σl)) + cν(σl) is in the
image of νem. This completes the proof.
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