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Abstract

The works of Alekseev and Torossian [5] and Alekseev, Enriquez,
and Torossian [1] show that any solution of Drinfeld’s associator equa-
tions gives rise to a solution of the Kashiwara-Vergne (KV) equations
in an explicit way. Aiming at a topological understanding of their
works, we introduce a weak version of Drinfeld’s associator equations
that we call the emergent version of the original equations. We show
that solutions to the resulting emergent linearized Drinfeld’s equations
still lead to solutions to the linearized Kashiwara-Vergne equations.

The emergent Drinfeld equations arise within a natural topological
context of emergent braids, which we discuss. Our results are adjacent
to the results of Bar-Natan, Dancso, Hogan, Liu and Scherich [8] on
the relationship between emergent tangles and the Goldman-Turaev
Lie bialgebra. We hope that in time our results will play a role in
relating several bodies of work, on Drinfeld associators, Kashiwara-
Vergne equations, and on expansions for classical tangles, for w-tangles,
and for the Goldman-Turaev Lie bialgebra.

1 Introduction

1.1 Drinfeld associators and Kashiwara-Vergne equations

Alekseev and Torossian [5] proved that any Drinfeld associator gives rise to
a solution of the Kashiwara-Vergne (KV) problem [14]. They reformulated
the original KV problem in a universal form which involves the free Lie
algebra in two variables. The resulting (injective) map

Assoc; — SolKV (1)
from the set of Drinfeld associators (with coupling constant 1) to the set of
solutions to the KV problem has been made explicit by Alekseev, Enriquez
and Torossian [1]. There is also an explicit map between the corresponding
spaces of infinitesimal deformations:

(2)

where grt; is the Grothendieck-Teichmiiller Lie algebra [10, §5], and krva is
the Kashiwara-Vergne Lie algebra [5, §4]. These Lie algebras integrate to

v :grt; — krva,
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the groups GRT; and KRV3 which act freely and transitively on Assoc; and
SolKV, respectively, and the map (1) intertwines with these group actions.

As was initially pointed out in [10], the theory of Drinfeld associators
have a topological nature. Bar-Natan [6] gave an interpretation of Drinfeld
associators as 1-formality isomorphisms (homomorphic expansions) of the
category PaB of parenthesized braids. The KV theory admits similar topo-
logical interpretations too, at least in two ways. One is given by Bar-Natan
and Dancso [7] in terms of welded foams, a class of singular surfaces in R*.
The other is given by Alekseev, Kawazumi, Kuno and Naef [2, 3] in terms
of the Goldman-Turaev Lie bialgebra [13, 22], an algebraic structure on the
free homotopy classes of loops in an oriented surface.

With the topological interpretations of the Drinfeld associators and the
KV theory mentioned above in mind, the motivation for the present work
is to obtain a topological understanding of the maps (1) and (2). We intro-
duce a weak version of the Drinfeld’s associator equations that we call the
emergent version of the original equations, and a graded vector space grt{™
as the space of solutions to the linearized equations of it. We show that the
map v in (2) decomposes as

em

grt; = grts™ 'S krvy, (3)
and identify the image of v°™.

The emergent Drinfeld equations arise within a natural topological con-
text of emergent braids. As we will show, the defining equation for grt{™
involves operations of the linearized version of the Goldman-Turaev Lie bial-
gebra. We expect the emergent braids to serve as an intermediate object
relating the topological aspect of Drinfeld associators and the KV theory.
In a future work, we hope to continue our study towards a decomposition
of the map (1) from the perspective of emergent braids.

1.2 Emergent knotted objects

WIP. Dror, would you like to write something? (For example, expanding
the first paragraph in the first version of your abstract.)

1.3 Statement of the main result

WIP. I am trying to make this section as self-contained as possible.

Let lieg = lie(x,y) and assy = ass(x,y) be the free Lie algebra and free
associative algebra on two variables x and y. One can naturally regard lies
as a subspace of assy. The partial differential operators 9,0, : lieg — assy
are defined by the formula a = (0,a)x + (Oya)y for any a € lies. Let
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R : lieg — assy be the unique linear map satisfying R(z) = R(y) = 0 and

R([a,b]) =[R(a),b] + [a, R(D)]
+ (0zb)x 1(02a) — (Opa)x t(0xb) + (Oyb)y t(Oya) — (Oya)y t(Oyb)

for any a, b € lies. Here, ¢ is the anti-algebra homomorphism of asss defined
by ¢(x) = —z and «(y) = —y; for instance, t(zzy) = —yxz. Let grti™
be the space of Lie polynomials ¢ = ¢(z,y) € lieg satisfying the following
equations:

©(y,0) —p(z +y,0) =0,
(Oyp) (@, y) + (9y) (4, 0) = (Oyp) (2 +y,0) — R(p) =0,
[z, (y, 2)] + [y, p(2,y)] = 0.

Before we state our result, we need a few more detail about the embed-
ding (2). Recall that grt; is the space of Lie polynomials ¢ = ¥ (x,y) € lie
satisfying a certain set of equations (one pentagon and two hexagon equa-
tions), and that the elements of krva are pairs (u(z,y),v(x,y)) of two Lie
polynomials satisfying two equations (KV1) and (KV2). (See Section 5.3
for more precise definitions). Then the map v in (2) is given by

VW) = (%Z)(—»”U - Y, m)a@b(—ﬂf - yay))

+
_|_

By construction, there is an injection grt; — grt{™, ¥ (z,y) — ¥ (—x —
y,y). An element (u(x,y),v(z,y)) € krvy is called symmetric if v(x,y) =
u(y,x)). The space of symmetric elements in krve forms a Lie subalgebra
denoted by krvy”™ (see [5, Section 8]). For a Lie polynomial ¢ = ¢(z,y) €
lieg, set

v () i= (p(y, 2), (2, y)).

The main result of this paper is the following, which in particular proves
the decomposition of v given in (3).

Sym

Theorem 1.1. (i) For any ¢ € grt{™, we have v°™(p) € krvs
(ii) The map v°™ : grt$™ — (krvy ™) >2 is a graded linear isomorphism.

It turns out that the space grt{™ has a Lie algebra structure. Note that
it is not known whether krvi’™ coincides with krvy or not [5, Remark 8.10].

The map R used in the defining equation of grt{™ is closely related to an
operation for the linearization of the Goldman-Turaev Lie bialgebra. Our
proof of Theorem 1.1 is based on this fact and an interpretation of the KV
theory in terms of the (linearized) Goldman-Turaev Lie bialgebra [2, 3].

We mention several recent works related to the content of this paper.
Our results and the idea of emergent knotted objects are adjacent to a work

by Bar-Natan, Dancso, Hogan, Liu and Scherich [8], although there is a
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difference in the setting: the objects considered in [8] are the quotient of our
emergent objects by the HOMFLY (Conway) relation. Works by Alekseev,
Naef and Ren [4] and Naef and Betancourt [20] discuss essentially the same
object as ours but from different perspectives.

1.4

WIP.
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Notation

Throughout this paper we work over the rationals @Q, though all of our
argument holds true over any field of characteristic zero.

For a nonnegative integer n, let ass,, be the free associative algebra
on n free generators. When we need to specify generators, we write
ass,, = ass(z1,...,x,) for example.

The algebra ass,, has a structure of Hopf algebra whose coproduct,
antipode and augmentation are given on generators by A(z;) = x; ®
1+1®z;, t(x;) = —z; and e(z;) = 1. We also use the notation @ = ¢(a)
for the antipode.

We denote by lie, = lie(xy,...,z,) the free Lie algebra on n free
generators x1, ..., T,. One can identify lie, with the space of primitive
elements in ass,, namely lie, = {a € ass, | A(a) =a®@1+1®a}. It
holds that ¢(a) = —a for any a € lie,.

Let C be a groupoid or more generally a category, and O, O’ objects
in C. We denote by C(O,0’) the set of morphisms in C from O to O'.

2 Mixed braids and chord diagrams

We introduce the notion of mixed braids. Then we define the notion of
mixed chord diagrams as the corresponding associated graded object.

2.1

Mixed braids

For a nonnegative integer [, let B; be Artin’s braid group on [ strands. Our
convention about the product of B; is as follows: the product 83’ of two



braids 8 and ' is the braid obtained by placing 3 above 3. For example,

JERSh

Definition 2.1. Fix nonnegative integers m and n. A mixed braid of type
(m,n) is an element of B,, 1, equipped with a coloring of its strands with
either red or blue such that

e there are m red colored strands which we draw slightly thicker and n
blue colored strands which we draw slightly thinner, and

e if we forget all the blue colored strands and view the rest as an element
in By, we are left with the trivial m-braid.

A blue colored strand in a mixed braid is simply called a strand, and a
red colored strand is called a pole.

Example 2.2. In the following three pictures, the first two pictures are
mixed braids of type (2,2). Observe that their underlying braids on 2+2 = 4
strands are the same. However, the picture on the right is not a mixed braid.

N J N J

1
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We denote by By, the set of mixed braids of type (m,n). One can
construct the product of two mixed braids 3, 3’ of the same type when the
coloring of the strands of 3 at the top matches that of 3’ at the bottom. In
this manner, the set By, ,, forms a groupoid. Its set of objects is the set W, ,,
of words of length m +n consisting of m red (slightly bigger) bullets ® and n
blue (slightly smaller) bullets o. When o € Wy, ,,, the word o is called of type
(m,n). For 0,0’ € Wy, », we denote by By, »(0,0") the set of mixed braids
whose bottom and top ends match o and o', respectively. For example, the
leftmost picture in Example 2.2 is an element in By ;(@@ee, e0@0).

Definition 2.3. Let m,n > 0 and let 0,0’ € W, ,. A mixed permutation
(of type (m,n)) from o to o' is a permutation o of m + n letters such that

e for any 1 < i < m + n, the ith letter of o and the o(i)th letter of o’
have the same color, and

e if we forget all the blue letters in o and o and view the restriction of
o to the red bullets as a permutation of m letters, then it is trivial.



Alternatively, a mixed permutation is a mixed braid whose over/under
information at each crossing of strands is lost. For example,

i

is a mixed permutation from @eee to eee® given by 1 — 4,2 — 2,3 — 1,
and 4 — 3.

For 0,0 € Wy, ,, we denote by &,, (0, 0') the set of mixed permutations
from o to o'. The set &, = |_|070,6Wm L Smnlo, 0o') of all mixed permuta-
tions of type (m,n) naturally forms a gfoupoid. The forgetful map

T By — Gmn

is a homomorphism of groupoids.
Let oftd, ;=@ -@e---e € Wy, then the set B, := By n(0id,, 05i4)

m,n’ “m,n
m n
forms a group with respect to the groupoid structure of B,,,. One can

regard Bf,tfn a subgroup of B, in a natural way.

The trivial permutation of degree m + n defines the mixed permutation

1m,n = € Gm,n(oi:ﬁn7 O;ﬁfn)
m1 n
Then, P, = W_l(lm,n) is a normal subgroup of B,Sﬁfin. We call P,

the mixed pure braid group of type (m,n). In fact, Lambropoulou [16,
Sections 2 and 3] introduced the same group with the same notation and gave
its explicit presentation. In particular, P, , is generated by the following
elements o;j, where 1 <i <m, 1 < j <n, and 7;;, where 1 <7 < j < n:

(M (M
Q5 = I ‘ ) Tij = | ‘ .
? J n

J n 1 m1

3

Collecting all types of mixed braids and mixed permutations we con-
sider the groupoids Bee := |_|m7n>0 Bp,n and Gee = |_|m7n>0 Syn. Both
of them have Wee := ||, ;50 Wm,n as the set of objects. We define the
category MB of mixed braids as a Q-linear extension of the groupoid Bee
fibered over Gge, following the treatment in [6, Section 2.2.1]. Its set of
objects is Wee. Let 0,0 € Wee. If the types of 0 and o are different,
there is no morphism from o to o’. If not, then morphisms from o to o’ are
pairs (Z] ¢jPj,0), where 0 € Gge(0,0") and Zj ¢;Bj is a Q-linear combi-
nation of mixed braids such that 7(3;) = o for all j. Thus when the types



of 0 and o are the same, the set of morphisms from o to o/ decomposes
as MB(o0,0') = |_|G€6..(070,) MB(0,0'),, where the subscript o stands for
consisting of elements which have o as the second entry. The composition
in MB is naturally induced from the composition in Bege .

2.2 Mixed version of the Drinfeld-Kohno Lie algebra

Let n be a nonnegative integer. Recall that the Drinfeld-Kohno Lie algebra,
which we denote by dk,,, is the graded Lie algebra generated by degree one
elements t;; = tj; for 1 < i # j < n subject to the commutation relation
[tij, tre] = O for distinct indices 4, j, k,[, and the 4T relation [t;; + tjk, ti] =
0 for distinct indices 4,7, k. In a diagrammatic language, dk, is the Lie
algebra of horizontal chord diagrams on n vertical lines, and the generator
t;; corresponds to the chord diagram consisting of a single chord connecting
the ith and jth lines:

1 4 j n
For every n > 0, there is a semi-direct product decomposition
dk,, = dk,,—1 X |ie(t1n, S 7t(n71)n)- (4)

It is known that the universal enveloping algebra of dk,, is isomorphic
to the associated graded of the group algebra of the pure braid group on
n strands with respect to the powers of the augmentation ideal [15]. See
also [11, Theorem 10.0.4]. With this in mind, we introduce a variant of dk,
corresponding to the group P, .

Definition 2.4. For m,n > 0, let dk,,, ,, be the graded Lie algebra generated
by degree one elements a;; for 1 < i < m, 1 < j < n and ¢; = ¢j; for
1 < i # j < n, subject to the commutation and 47T relations among them,
where we regard a;; = ti(45) and ¢ij = t(4i)(m4j) as the corresponding
generators of dky,1p.

Diagrammatically, the generators of dk,, ,, are horizontal chord diagrams
with a single chord on m vertical red lines and n vertical blue lines:

ajj = ) Cij =

Remark 2.5. We have dkg ,, = dk,.
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The semi-direct product decomposition (4) generalizes to dkyy, p:

Lemma 2.6. There is a semi-direct product decomposition of Lie algebra
dkm’n = dkm,n—l X Iie(aln, e Amny Clngy - - - C(n—l)n)'

Proof. We simply write lie(a,c) = lie(a1n; - - -, @Gmn, Cins - -+, Cn—1)n)- First
we describe the Lie action p of dky,,—1 on lie(a,c) that is used in forming
the semi-direct product dky, ,—1 X lie(a,c). It is specified by the value on
generators of dkp, p—1: for 1 < i <m, 1 <j<n-1,1<k < m and
1<li<n—-1,

0 (i 4 k)

_[Cjnv akn] (Z = k)

0 (G #1)

—[ain, cm] (G =1)

p(aij)(alm) = { ) p(aij)(cln) = {

andfor 1 <i#j<n—-1,1<k<mand1<I<n-1,

plei)amn) =0, pleg)em) = 4 HEtnh,
—lejn,am] (=1
Note that these formulas are compatible with the Lie bracket in dky, .
For example, we have [a;j, ax,] = —[cjn, arn] by the 4T relation, and this
matches the value p(ax;)(arn) = —[¢jn, arn]. Now we define the map dky, , —
dkpmn—1 X lie(a, c) by

ain{(CLijaO) (J'Sn—l)7 cin{(Cij’O) G<n-1)
(0,ai,) (5 =n) 0,cm) (j =n)

Then one can check that this map is a Lie algebra isomorphism. O

Remark 2.7. By Lemma 2.6, we inductively see that the map dk,,, —
dkytn defined by aj; — timqy) and cij = (i) (mty) 1S an injective Lie
homomorphism. Therefore, one can identify dk,, , with the Lie subalgebra
of dkpyn generated by i) (1 < i < m, 1 < j < n) and ¢4n44)(my)
(1<i<j<n).

We show how the Lie algebra dk,,, and the group P, , are related.
On the one hand, let A, ,, = U(dkp, ) be the universal enveloping algebra
of dkp, . It is an associative Q-algebra generated by the same generators
a;; and c;; as those of dk,, ., subject to the same relations as those of
dkyn.n, where we regard bracket symbol as commutator: [a,b] = ab—ba. On
the other hand, the powers of the augumentation ideal I = 1P, , define
a decreasing filtration of QF,,,. Thus one can construct the associated
graded gr QFP,, , of the filtered algebra QF,, .

Proposition 2.8. There is a canonical isomorphism of graded Q-algebras
gr QP n = Ay, through which the class of a;; — 1 corresponds to a;; and
the class of T;j — 1 to c;j.

added a new re-
mark



Proof. The proof is similar to the proof of the isomorphism gr QF,, = U(dky,)
given in [11, Theorem 10.0.4], so we just give a sketch. We start with the
fact that there is a semi-direct product decomposition

Pm,n = m,n—1 X Fm—i—n—l)

where Fj,,—1 is the free group generated by aip, 1 <i < mand 7y, 1 <i <
n —1 (see [16, Section 3]). Here, the action of Py, ,—1 on Fy,4pn—1 is by con-
jugation and hence is trivial on the abelianization of F,, ,_1. Applying [11,
Proposition 8.5.7], one has gr QP,, », = (gr QP n—1) f (gr QF4n—1), where
f denotes the semi-direct product of Hopf algebras. Note that gr QF,, 1,1
is naturally isomorphic to ass;,yn—1, and Lemma 2.6 implies that there is
an isomorphism A,, ,—14assy+n—1 = A . Hence we can prove gr QF,, , =
A by induction on n. One can check that this isomorphism maps the

class of a;; — 1 to a;; and the class of 7;; — 1 to ¢;;. O
TODO: do
we need the
normalized i
2.3 Operadic structure and coface maps expression for
AP In

There are naturally defined operations on mixed braids. Let 5 € By, , be a particular,

do we need

leed braid. the formula
exp(zy + z2) =

e Extension operations. We denote by &} (3) (resp. 65(3)) be the mixed ) e e
Here,

braid of type (m + 1,n) (resp. of type (m,n + 1)) obtained from 8 r.) - (1 -

by adding a red (resp. blue) straight strand on the left. Similarly, © /= "

Recall the clas-

we define 67, ., (B) (resp. 65,,,,,1(B)) by adding a red strand (resp. sical case?
blue strand) on the rlght For example,

e Cabling operations. For 1 < i < m +n, let 6;(5) be the mixed braid
obtained from § by doubling its ith strand, where we count strands
at the bottom end of 5. The two strands newly created inherits the
color of the original strand. For example,

(R R

e Changing a pole to a strand. For 1 < i < m, let ¢;() be the mixed
braid obtained from /8 by changing the ith red strand to a blue strand.

For example, " O
1 1

9



The operations defined above have counterparts in dky, . TODO:  want
diagrammatic
. . explanations?
e Extension operations. Let dy = &) : dkp . = dKit1,n (T€SP. Opgnt1 = !
Opinit & dkmn — dk,n+1) be the Lie homomorphism defined by

A5 — Q(i+1)j and Cij F> Cij (resp. Qi = Q45 and Cij Cij).

e Cabling operations. For 1 < k < m, we define the Lie homomorphism
5k : dkm,n — dkm+1,n by

(5k(a,~j) = af; —+ Q(k+1)5 (Z = k) y 5k(cij) = Cij-

For 1 <k <n, we define 0,41 : dky,y — dkopy g1 by

agj (1<j<k-1)
Om+k(aij) =  aix + Giey1) (= k)
ai(j41) (k+1<j<n)
and
(cij (J<k)
Cik + Citkt1) (j=k)
Sm+k(Cij) = 4 i(j+1) (i <k<j)
Ch(j1) T kGt (0= F)
C(i+1)(j+1) (k<

e Changing a pole to a strand. For the sake of simplicity we only in-
troduce this operation applied to the last pole. Let ¥,, : dky, —
dkp—1,n+1 be the Lie homomorphism defined by

(i 1< m

I(aiy) =4 UHY (. ), Um(cij) = Ciir1)+1)-
cij+1y (i=m)

Using these operations, we define coface maps and a differential on dk,;, .

Definition 2.9. For 0 < k < m + n + 1, we define the map dj, = d,"" :

dkpm,n — dkpy ny1 as follows:

{ﬁmek 0<k<m)
dj, =

0% m+1<k<m+n+1)
Furthermore, we set d™" := Zﬁ]"ﬂ(—l)kdk sk — Ak 1.

The family of maps {d""},, is indeed a differential.
Lemma 2.10. We have d™"tlod™" =0 : dkpm,n — dkpy 2.

Proof. The proof is straightforward by using the relation d; o d; = dj41 0d;
for ¢ < j, which can be checked directly. O

10



3 Emergent braids and chord diagrams

In this section, we introduce the notion of emergent braids and chord dia-
grams. In particular, we describe the structure of the emergent version of
the Drinfeld-Kohno Lie algebra.

3.1 Emergent braids

The group Bfﬁf‘n acts on its normal subgroup P, , by conjugation, and this

extends linearly to an action on the group algebra QF,,,. We denote by
J the two-sided ideal of QF,, , generated by 7;; — 1,1 <i < j < n. The

powers J!, 1 > 0, define a Bﬁfn—invariant decreasing filtration of QF,, ;.

Definition 3.1. For each k£ > 1 we set QP,{fn = QPm’n/Jk. In particular,
the algebra of emergent pure braids of type (m,n) is defined to be

QP == QP2 = QP /J%

Remark 3.2. Why “emergent”? In primary school language, “Dror has an
emergent knowledge of the French language” means “Dror knows French just
a bit better than nothing at all”. In a similar way, QP#@ means “no braiding
phenomenon yet”, for in QPﬁn the blue strands are fully transparent to each

other, and QPﬁn is “emergent braiding”, for after moding out by J? just a
whiff of braiding remains.

The ideal J of QP = MB(05l,, 054 )1, . and its powers extend to a
multiplicative filtration of the Q-linear category MB in the following way.
Let 0,0 € Wy, for some m,n > 0 and let 0 € Gge(0,0’). One can
take mixed braids 8 € Bpmn(ofid,,0) and ' € Bpn(ofid, o)) such that
o = w(B)"tn(B’). Then, the map QP ,, — MB(0,0)y,u + B tup’ is a
Q-linear isomorphism. Since the ideal J is Bfflfln—invariant, it follows that
the subspaces Jf, = LI, 1 > 0, are independent of the choice of 3

and 3. The collection {Jé.}1207066. o is multiplicative in the sense that

JLoJ f;, C Jcl;;f/ holds for any [,!’ > 0 whenever o and ¢’ are composable.
For each k > 1, we define the Q-linear category MB/* as follows. The
set of objects is Wee. For 0,0’ € Wge, the set of morphisms from o to o is

MB(o0,0'),
MB/k(O, 0/) — UJEG.. (0,0") J;?
0 otherwise.

if 0 and o’ have the same type,

The composition in MB/* is induced from the composition in MB. Our
main focus is on the case k = 2: we set EB := MB/2,

11
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3.2 Emergent version of the Drinfeld-Kohno Lie algebra
Let ¢ = ¢y, be the Lie ideal of dk,, , generated by ¢;; for 1 <i# j < n.

Definition 3.3. The emergent version of the Drinfeld-Kohno Lie algebra of
type (m,n) is the quotient Lie algebra edky, , := dky, »/[c, c].

Remark 3.4. Similarly, for each £k > 1 one can define the quotient Lie
algebra dk{,ﬁn = dkmm/c(k), where c®) is the Lie ideal of dkp,,» inductively
defined by ¢ = c and c¢® = [c(*=1) ¢]. One has edkyy, , = dkg?n.

In what follows we describe the structure of the Lie algebra edk,, ..

Lemma 3.5. We have a Q-linear graded direct sum decomposition

n—1
edkpnn = edkyp 1 B (Iiem(aln, s ) ® €D assim(atn, - ,amn)[—l]) .

i=1
Here, assy,(ain, - - ., amn)[—1] is the degree shift of assy,(a1n, - - -, Gmn) by —1:
the constant term has degree 1, the generators x1, ..., T, have degree 2, and
80 on.

Proof. Let ¢y be the Lie ideal of lie(a, ) generated by ¢, 1 < i < n — 1.
Through the semi-direct decomposition of Lemma 2.6 the ideal (¢ r, Com n)
corresponds to [Cp n—1, Cm.n—1]B[Co, Co] in dky, n—1 Blie(a, ¢), because ¢y, p, =
Cmn—1 ® ¢ and [Cpyp—1,C0] C [Co, Co). Thus we obtain

edkp,n = edkp n—1 @ (lie(a, ¢)/[co, co))

as a Q-linear space. By the Lazard elimination theorem [9, Chap II §2.9,
Proposition 10], we have the following Q-linear direct sum decomposition

lie(a, c) = lie(ain, - - - amn) @ lie({ady (Cin) }w.i)-

Here, lie({ady(cin)}w,i) is the free Lie algebra generated by all elements of

the form ady(cin) = ady, ---ady, (¢in), where 1 < ¢ < n—1 and w =
wy -+~ wy with wy,...,wx € {ain,...,amn} runs over all associative words
in aip,...,am, (including the empty word). Hence

n—1
lie(a, ¢)/[co, co] == lie(atn, .- ., amn) © D ED Qadu (cin).

=1 w
This proves the lemma. O

Repeated use of Lemma 3.5 yields a Q-linear graded direct sum decom-

position
n

ek = P liem)i @ P (assm[—1))i;, (5)

i=1 1<i<j<n
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where the meaning of the components (lie;,); and (ass,,[—1]);; is as follows:

(Iiem)i = u(xl, R ,l‘m)i — u(au, S ,ami) S edkm,n,
(assm[—l})ij = w(:pl, ey flfm)ij — adwj (Cij) € edkmm.
Here, u = u(x1,...,2m) € lieg, w = w(wy,...,2m) € ass, and we write
w; = w(aij,...,amj) € ass(aij, ..., am;).

Example 3.6. (i) edky; = lies.
(ii) edky o = (lier)1 @ (lier)2 @ (assi[—1])12 = Qz1 & Qo @ ass(z)[—1].
(ili) edkgo = lie(z,y)1 @ lie(z,y)2 & (ass(x, y)[—1])12.

In order to describe the Lie bracket on edk,, , in view of the direct sum
decomposition (5), we need to recall the partial differential operators on
lie,, with respect to the generators z1,...,z,. Let a € lie,,. Viewed as an
element in ass,,, it is uniquely written as

a= i(ﬁia)xi = ixi(aia),
i=1 i=1

where 0;a,0%a € ass,,. Furthermore, we have d’a = 1(0;a). The operator
0; : liey, — ass,, satisfies the following formula: for any u,v € liey,,

0i([u, v]) = w(9;v) — v(du). (6)
The following proposition describes the Lie bracket on edky, ;.

Proposition 3.7. Let u = u(x1,...,2m),v = v(T1,...,Zm) € lie,, and
w=w(T1,..., Tm),w =w(r1,...,Tm) € assy,.

(i) For any 1 < j <mn, we have [u;,v;] = [u,v];. For anyl <j<k<mn,

[uj,vg] = (Z(aw)xib(aiu)> . (7)
gk

i=1

(i) Let 1 <i<mnandl1 <j<k<n. Ifié¢{j,k}, we have [u;,w;;] = 0.
Furthermore, we have [uy, wjr] = (uw) i and [uj, wjr] = —(wu)j.

(ili) We have [wij,wy,;] =0 forany1 <i<j<nandl1 <k<l<n.
We need a lemma.

Lemma 3.8. For w =w(xy,...,zy) € ass,, and 1 < j # k < n, we have

aduw, (cjx) = ady;, (cjk)-
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Proof. We may assume that w is a monomial of degree d > 1. So let
w = x;, - x;,. If d =1, the formula holds true since [a;,x, ¢ji] = —[as,j, ¢ji]-
Let d > 2 and assume that the formula holds true in degrees less than d.
Set w’' = x;, - - - x;,. Using the inductive assumption, we compute

a‘dailk"'aidk (Cjk> - adailkadaiQk"'aidk (Cjk> = adailkadm(cjk)
d
d—1
=(=1) Z adaz‘dj T ad[ailk,aipﬂ T adaiw‘ (¢ik) + adm([ailk’ cjr])-
p=2

Since [aj,k, @i, ;] = —0ii,[Cik, aiy5] € ¢, the first term vanishes in edky, .
Therefore, adg,, ,-a, , (¢jk) is equal to

ada; ;=a;; ([ai ks ¢ji]) = —ada=ai;(aig, ¢jr] = adar a7 (cjk)-
This completes the proof. O
Proof of Proposition 3.7. First of all, the formula [uj,v;] = [u,v]; in (i) is

clear. In what follows, we will use this formula without mentioning explicitly.
(iii) Since the expressions w;; and w}d viewed as elements in dk,, , are in
the ideal c, their commutator lies in [c,c]. Therefore [w;j, w};] = 0 € edkp, p.
(ii) To prove [u;, w;;] = 0 when i ¢ {j, k}, it is sufficient to consider the
case where u is of degree 1 and w is a monomial. So we may assume that
u = x4 for some 1 < g <m and w = x;, -- - x;,. We compute

[ui,wjk] = [aqia adwk (Cjk>]

d
= Z adailk T ad[aqi,a,—pk] T adaidk (Cjk> + adwk([a’qi’ cjk]>'
p=1

The first term vanishes since [ag;, ai,kx] = —dqi,[Cik, ai,k] € c. The second
term vanishes as well, since [ag;, ¢jx] = 0 by the commutation relation.
To prove the other two formulas, we first prove that

[ug, aduy, (k)] = ad (), (¢jk) (8)

forany 1 <i<nand1l < j# k <n. We may assume that u is homogeneous
and proceed by induction on degu. When degu = 1, we have [ug, wji] =
ady,ady, (cjk) = aduw), (¢jx) = (uw);g. Let degu > 2 and assume that
the formula holds true in degrees less than degwu and that u is of the form
u = [u/,u"]. We compute

[uk7 adwk (Cjk)] = Hu§c7 adwk (cjk)]’ u%] + [u;, [ulk/’ a‘dwk (C]k)“
= [ad(u’w)k(cjk)7 u’,é] + [U;C, ad(uuw)k(cjk)]
= _ad(u”u’w)k (Cjk) + ad(u/uuw)k(cjk)

= ad(uw)k (Cjk)~

14



In the second and third lines, we have used the inductive assumption.
Equation (8) shows that [uy, w;i| = (uw);i for j < k. To prove [u;, w;] =
—(wu) i, we compute

[uj, wik] = [uj, ady; (cjk)] = adu;wm,; (cjk) = adw,z, (¢jk) = —aduwyu, (cjk)-

Here, we have used Lemma 3.8 in the first and third equalities, formula (8)
in the second equality, and the fact that @, = —uy in the last equality.

(i) It remains to prove formula (7). Setting ®(u,v) := Y ;" (div)z;(Jiu),
let us prove that [uj,vi] = ®(u,v);; for any homogeneous elements u,v €
lie,,. We use the induction on the bidegree (deg u,degv). Since [a;,;, aiok] =
Oivio[@isks Cji] = 0iyiy(®iy)jk, the case (degu,degv) = (1,1) is done. We
first increase degu. Let degu > 1 and assume that u = [v/,u”] for some
u',u" € liey, satistying [u}, vi] = ®(u',v)j; and [u], vr] = ®(u”,v)j%. On the
one hand, using these assumptions we compute

[U’ja Uk] = [[U;, Uk]vugq + [ugv [u;{v Uk]]
= [(I)(ulv U)jkv u;/] + [u;’ (I)(u//’ U)jk]
= (®(v,v)u" — @(u”,v)u’)jk.
In the last line, we have used (ii). On the other hand, using (6) and the fact
that ¢ acts as minus the identity on lie,,, we see that ®(u,v) = ®([v/,u"],v) =
O (v, v)u” — ®(u”,v)u’. Hence we conclude that [uj,vi] = ®(u,v)j5. A
similar argument works for increasing degv. This completes the proof. [

Let A7, = U(edkm,n) be the universal enveloping algebra of edky, n.
It is the quotient of A,, , by the span of monomials in a;; and ¢;; which
contain at least two generators of type c;;.

The following proposition is a consequence of Proposition 2.8.

Proposition 3.9. There is a canonical isomorphism of graded Q-algebras
gr QP = AW, through which the class of a;; — 1 (resp. 7; — 1) corre-

m,n’
sponds to a;j (resp. cij).

3.3 Description of operadic operations on edk,, ,

The operadic operations introduced in Section 2.3 naturally induces opera-
tions on emergent braids and chord diagrams. Let us describe the operations
on edky, ,, in view of the direct sum decomposition (5). In what follows, let
u=u(r1,...,Ty) € liey, and w = w(xy,...,Ty) € assy,.

First, we have

do(ui) = u(z2, ..., Tmt1)is do(wij) = w(x2, ..., Tmt1)ijs 9)
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and for 1 <k <m,

5]4:(“1) = u(l‘la s T+ Tht1y--- uSUm—i-l)i,
5k(w,~j) :w(xl,...,xk+ﬂsk+1,...,xm+1),~j. (10)
Second, we describe the cabling operations with respect to blue strands.

Let R : lie,, — ass,, be the unique Q-linear map satisfying R(x;) = 0 for
i=1,...,m and for any a,b € lie,,,

m

R([a,b]) = [R(a),b] + [a, R®)] + > _ (0id)it(dia) — (da)zie(d;d)) . (11)

i=1

Lemma 3.10. For 1 <k <n, we have the following:

u; (1 < k)
Omtk(Ui) = § uk + up1 + R(uWprqry (E=F),
Uig1 (1> k)
and
rwij (J<k)
Wik + Wi(k11) (j=k)
Om+k(Wig) =  wij41) (i <k <j)
Wi(j1) + Wty (E=Fk)
W(i+1)(j+1) (k <)

Proof. We will prove the formula 0,4 % (uk) = up + ugr1 + R(u) 1) and
Om+k(Wik) = Wik, + Wi(g41) only. The proof of the other formulas is rather
straightforward, so we omit it.

First we prove that &, (ur) = ug + urt1 + R(u)g(k+1). This is true in
degree one, since 6,1 x(aik) = @ik + (k1) Assume that degu > 1, we have
u = [a, b] for some homogeneous elements a, b, and

Omk(ar) = ag + a1 + R(@)rk41)s  Omk(br) = bk + b1 + R(O)prr1)
for some R(a), R(b) € ass,,. Then, we have

Omk (k) = [Omik(ar), Omyk(br)]
= [a + ag1 + R(@)k(kr1): Ok + b1 + R(D) g1

Computing the right hand side using Proposition 3.7, we obtain

ug + g1 + ([R(a), 0] + [a, R(D)] + > ((8ib)zir(Dia) — (9;a)wit(Dib)) ) k(1)
=1

This completes the proof.
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Next we show that 0,41 (wix) = Wik, + wi(k41). We have

O+ (Wik) = adw(alk+a1(k+l)7~~aamk+am(k+1))(Cik + Ci(k+1))
= adw(a1k+a1(k+1)7--~7amk+am(k+1))(Cik)
+ adw(&1k+a1(k+1):--~7amk+am(k+1))(Ci(kJFl))’
Since aj(x41) and ¢;; commute and the Lie bracket of aji and a;(;1) lies in

¢, the first term is equal to ady(q,,,....a,) (Cik) = wik. Similarly, the second
terms is equal to wj(x41). This completes the proof. O

Finally, we describe the map 9,,.

Lemma 3.11. We have the following:

Om(ui) = u(@y, .. Bm1,0)ig1 + ((Omu) (21, ..., Tm1, 0))1(i+1),
19m(’u)”) = ’UJ(Il, ey m—1, 0)(Z+1)(j+1)

Proof. The proof of the first formula is similar to the proof of the formula
for 0,41 (ug) in Lemma 3.10. We denote by H (u) the right hand side of the
formula. We first check that the formula holds true in degree one. Now let
a,b € liey, and assume that J,,(a;) = H(a) and 9,,(b;) = H(b). Then, by
a direct computation using Proposition 3.7 and formula (6), we verify that
Im([a,b];) = [H(a), H(b)] is equal to H([a,b]). Since this is straightforward,
we omit the detail.
To prove the second formula, modulo [c,c] we compute

U (wij) = adw(“l(jﬂ)7---7a(m71)(j+1),C1<j+1>)(C(i+1)(j+1))

=w(T1, s Tm—1,0) (1) (j+1)- O

4 Homomorphic expansions for mixed braids

In [6], the category PaB of parenthesized braids was introduced, and it
was shown that the Drinfeld associators give rise to formality isomorphisms
(homomorphic expansions) for this category. In this section, we extend this
formalism to mixed braids.

4.1 Parenthesized mixed braids and chord diagrams

We need some notation. Let Parge = I_Im,n>0 Par,, ,, be the set of paren-
thesized words in two letters ® and e, where Par,, , is the subset con-
sisting of parenthesized words with m red bullets and n blue bullets. For
example, (e®@)e € Pary; and e(e(e®)) € Parg;. For O € Pary,,, let
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f(O) = O € Par,, o be the parenthesized word in @ obtained by forgetting
all the blue bullets in O, and let p(O) = o € Wy, 5, be the word obtained by
forgetting the parenthesization of O. For example, if O = @ (®(e®)), then
O =e(ee) and 0 = eeve.

First we define the category PaMB of parenthesized mixed braids. The
set of objects is Parge. Let 0,0’ € Parge with f(O) = O, f(O') = O,
p(O) = o and p(O') = o’. Then the set of morphisms from O to O’ is

PaMB(0,0) := {MB(O’ o) HO= o

0 otherwise.
The composition is defined using that of MB. Note that there are no mor-
phisms from O to O’ unless O = O’. For example, we have no morphism
from (e®)® to ®(@e®). When we draw pictures of morphisms in PaMB,
which are represented by linear combinations of mixed braids, we use the
same convention used for PaB in [6]. Namely, we draw the bottom and top
ends of mixed braids so that their distances respect their “distances” in the
parenthesization of the source and domain of the morphism.

Example 4.1. In the following two pictures, the first one shows a morphism
from (e®@)e to ®(@e), and the second one from @ (e(e®)) to (e@)(e®).

PR
/| Y%

Next we define the category PaMCD. The set of objects is the same as
the set of objects of PaMB, namely Parge. The set of morphisms from O
to O is

PaMCD(0,0) = {Amﬁn el

0 otherwise.
Here, in the first case, (m,n) is the type of o € Wy, ,,. By definition, a
morphism in PaMCD is of the form (u,0), where v € A,,, and o is a
mixed permutation of type (m,n). Recall that u is expressed as a linear
combination of words in a;; and ¢;;, which are interpreted as horizontal
chords. We draw u on the picture of o so that a;; (resp. ¢;;) becomes
a chord connecting the ith red strand and jth blue strand (resp. the ith
and jth blue strands), where we count the strands at the bottom. We also
express the information on the parenthesization using the distances between

endpoints. For example,
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is a morphism from (se)® to e (e®) which corresponds to (ci2a12, X |). In this
view point, the composition in PaMCD is given by stacking of diagrams.

For example, one has

More formally, the composition of (composable) morphisms (u, o) and (v, o”)
is given by (uo(u'),00’). Here, through the restriction to the blue bullets,
o induces a permutation of {1,...,n} and hence acts on A, 5.

The operadic operations to mixed braids and chord diagrams introduced
in Section 2.3 extends naturally to their parenthesized enhancements PaMB
and PaMCD, with an extra care for parenthesizations. For the extension
operations, we draw the ends of the added strand outer-most in the picture.
For the cabling operations, we draw the ends of the two newly created
strands closest to each other. For example,

58(%):‘ x and 51(x>=%-

To compare the categories PaMB and PaMCD, we need to consider
their completions. On the one hand, PaMB is filtered. By the same argu-
ment used for the ideal J in Section 3.1, the augmentation ideal I = I P, ,,
and its powers extend naturally to a multiplicative filtration of the Q-linear
category MB and hence of PaMB. Therefore, one can define the I-adic
completion PaMB and the associated graded grPaMB. On the other
hand, PaMCD is graded. The grading comes from the grading of the al-

gebra A, ,. Thus one can define the degree completion Pa/l\/I\CD, where

A n is replaced with its degree completion .Zmn The operadic operations
on PaMB and PaMCD extends to their completions.

The isomorphism gr QFP,,, = A, proven in Proposition 2.8 extends
naturally to a canonical isomorphism

grPaMB = PaMCD (12)

of graded Q-linear categories which is the identity on the objects. Moreover,
one checks that this isomorphism respects all the operadic operations.

Proposition 4.2. The category PaMB is generated by the following mor-
phisms, their inverses, and their images by repeated applications of the op-

eradic operations in PaMB:
(13

O';_S = X, Ops = r\), Qpps = ‘/‘, Qpsp i=
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Sketch of proof. We say that a parenthesized mixed braid is basic if it is one
of the morphisms listed in the statement of the proposition. Let m,n > 0
and O,, € Par,, o. Joining 5; and the left-nested parenthesization of n
blue bullets, we obtain a parenthesized word Oy, ,, € Pary, ;. For example,
it O; = (@®)(@) then O] ; = ((0@)(08))((se)s).

Let m,n > 0 and O,0’ € Par,, ,, such that 5;; := O = O'. Given any
parenthesized mixed braids 8 € PaMB(O;, ,,,O) and ' € PaMB(O;, ,,,0'),
any morphism ¢ from O to O’ decomposes as £ = S71(8¢3'~1)3". There-
fore, to prove the proposition it is sufficient to show the following: given any
parenthesization 6:1 € Par,, o,

(i) any parenthesized mixed braid from Oy, ,, to itself decomposes into a
product of basic morphisms, and

(ii) for any O € Par,,,, with O = O,,, there is morphism from Oy, 10 O
which decomposes into a product of basic morphisms.

To prove (i), note that the underlying mixed braid of a parenthesized one
lies in the group Bf;fn introduced in Section 2.1. Since this group is gener-
ated by «;;’s and the simple braids among blue strands [16, Section 4], it is
sufficient to deal with these generators. We give two sample computations:

= £063(85(071) 0 55(0 (7)) 0 €71,

where & = 61 (05 (051)) © 01 (F2(ps)) © 03 (apps) © 05(3F (0)) 0 05 (g

psp)'
For (ii), we give one example:

M‘_ M.

b= 01(Da(apps)) © 05(d2(0 %)) © 85 () © V1(61 (apps))-
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In a similar fashion to the definition of PaMB, for each kK > 1 we
define the parenthesized version of the category MB/*, which we denote
by PaMB/F. Likewise, for each k¥ > 1 we define the Q-linear category
PaMCD/*. The isomorphism (12) descends to an isomorphism gr PaMB/* =~
PaMCD/*. For k = 2, we use the special notation PaEB = PaMB/? and
PaECD = PaMCD/2.

4.2 Homomorphic expansions for mixed braids

Here comes the concept of homomorphic expansions for the category PaMB:

Definition 4.3. A homomorphic expansion for PaMB is a functor Z™P :
PaMB — PaMCD which is the identity on the objects, preserves the
filtrations, induces the identity at the associated graded, respects all the
operadic operations, and is group-like.

The group-like condition in the above definition means that for each
mixed braid 3 of type (m,n) one has Z™P(3) = (exp(u), 7(3)), where u is
an element in akmm, the degree completion of dky, .

For each & > 1, we can formulate the concept of a homomorphic ex-
pansion for PaMB/%: it is defined to be a functor Z™P/* . PaMB/*F —

PaMCD/* satisfying the same conditions required for Z™ in Definition 4.3.
Homomorphic expansions for PaMB exist by the following

Proposition 4.4. Any Drinfeld associator gives rise to a homomorphic

expansion for PaMB and consequently to a homomorphic expansion for
PaMB’* for any k > 1.

Proof. Let ® be a Drinfeld associator. It is of the form ® = exp(y), where
v = p(x,y) € liey is a Lie series without linear term. As shown in 6,
Proposition 3.4], ® extends to a functor ZPP . PaB — @), where the
target is the degree completion of the category of parenthesized (horizontal)
chord diagrams. The category PaB is generated (in the same sense as in

Proposition 4.2) by the elements 0 = ¥ and o = |/| (see [6, Claim 2.6]).

The functor ZP is specified by the values on these generators: Unlucky crash
of notation. We
are using o for

1 )(“,l']l“l‘rl’]lri()]lﬁ!
Zpb(a) = (exp <2t12> ,><> , Zpb(a) = ((I)(tlg,tzg),|/|> . I

There are functors PaMB — PaB and PaMCD — PaCD obtained
by forgetting the colors of poles and strands. These functors are faithful.
For the former, this follows from the fact that P, , is a subgroup of P4y,
the pure braid group of m + n strands. For the latter, this follows from the
injectivity of the map dky, , — dkp,4+n; see Remark 2.7.
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We will show that ZP" induces a functor Z™" : PaMB — PaMCD
which is the identity on the objects. In view of the faithfulness of the
forgetful functors above, it is sufficient to prove the following claim:

Claim. Let § be a mixed braid with m poles and n strands which represents
a morphism in PaMB. Let 8° be the parenthesized braid obtained by forget-
ting the colors of 3 and write ZP"(5%) = (B, 7(5°)), where B € exp(dkaL)
and 7(B") is the parenthesized permutation induced by B°. Then, B lies in
exp(akmm), where we view dky, , as a Lie subalgebra of dky, .

Proof of the claim. Basically, this is because there is no crossing between
the strands in A% which were poles of 5. More details are as follows.

Step 1. Assume that 3 is one of the elements in (13). Then, 3° is either
ot or a. If 50 = oF, then B = exp (:l: tlg) = exp (:l:%au) € exp(aﬁm). If
B° = «, there are three possibilities: (1) 8 = apps; (i) 8 = apsp; (iii) B =
Qgpp- Since ¢ has no linear term, we have o(—t13 — t23,t23) = p(t12,t23) =
o(t12, —t12 — t13). Hence, we have B = ®(—aj; — ag1,az1) in case (i), B =
®(ay1,a91) in case (ii), and B = ®(a11, —a11 — az21) in case (iii). In all cases,
we obtain that B € exp(akll).

Step 2. By Proposition 4.2 we can decompose 3 into a product of basic
morphisms (in the sense of the proof of Proposition 4.2). By Step 1, any basic

morphism is sent by ZPP to a morphism in PaCD whose first component
lies in exp(dkyy, ). Hence the same is true for 3, and the claim follows. [

The functor ZPP is filtration-preserving, induces the identity at the asso-
ciated graded, and respects all the operadic operations in PaB. Therefore,
the induced functor Z™P satisfies all the required properties for a homomor-
phic expansion for PaMB. This completes the proof of Proposition 4.4. [

Are there any other ways to obtain homomorphic expansions for PaMB?
By Proposition 4.2, any Z™ is specified by values on the basic morphisms
n (13). For the first and second elements, the group-like condition for Z™P
implies that Z™" (o) = (exp(Aa11), X) and 2™ (o) = (exp(parr), X) for
some A, ;4 € Q. Applying the operation #; to the first equation, we obtain

27 (%) = (exp(Aez), X) and 2™ ((111,] ) = 2™ (@) = (exp(2Aci2),| |) =
(1+ 2Xci2,[). Since gr Z™b is the identity, we obtain A = 1/2. Similarly,
we obtain p = —1/2. In summary, we have

20550 (e (L) X) 2050 = (o (L ’X)(.M)

For the other three morphisms in (13), we write

2 o) = (Bl /). 200 = (0| /)
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(20l /1)-

By the group-like condition for 7™ the first component of these three
elements lie in exp(dk2 1) C A2 1 so that one can write ®pps = exp(«ppps)
Dpsp = exp(@psp), and Pgpp = exp(@spp) for some Yy, Ppsps Pspp € dk271

To obtain a well-defined functor Z™P, the values Dpps, Ppsp and Pgp,
have to satisfy several equations coming from equalities among parenthe-
sized mixed braids. To give a complete description, we need to know the
presentation of the category PaMB in terms of the generators in (13). We
do not pursue this issue in the present paper. We focus on the following
ppss-pentagon equality

zZ b(aspp

as morphisms from ((e®@)e)e to ® (@ (ee
d4(app5)d2(app5)d0(apps)

Applying Z™P, we obtain
d4(q)pp5)d2(q)pp5)d0(‘bpp8) = dl(q)pPS)dg(‘I)pm)'

We will be interested in the linearization of this equation, which takes the
following form:

)). It can be written as

=d' (apps)d?)(apps)'

(15)

d4(‘Ppp8) + d2(‘PppS) + do(‘PPPS) = dl(Sopps) + dg(@pp8)7 (16)

namely, d2’1(cppps) = 0. We call this the linearized ppss-pentagon equation.

4.3 Emergent pentagon and (doubled) hexagon equations

From now on, we consider the case k = 2, namely PaMB/? = PaEB, and

focus on the linearized ppss-pentagon equation (16) in edks .

Proposition 4.5. Let ¢ = p(x,y) € liea. Then, p1 = ¢(ai1,a21) € edkg
satisfies d>'(p1) = 0 € edks o if and only if ¢ satisfies the following two
equations:

©(y,0) —¢(z +y,0) =0,

(Oye) (@, y) + (Oyp) (¥, 0) — (Oyp)(x +y,0) — R(p) = 0.
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Proof. Using formulas (9), (10) and Lemmas 3.10, 3.11, we obtain that

do(1) = ¢(y,0)2 + (9y) (v, 0)12,
di(p1) = (x4 y,0)2 + (Oy) (@ +y,0)12,
da (1) = p(x,y)2 + (9yp) (T, Y)12,
ds3(p1) = p(z,y)1 + o(z,y)2 + R(p)12,
da(p1) = @(z,y)1.
The assertion follows from this. O

Remark 4.6. Equation (17) says that the coefficient of x in ¢ is zero.
One can check that in degree one, solutions to equation (18) are scalar
multiples of z. Hence, there is no solution to d®!(¢1) = 0 in degree one,
and equation (17) is redundant in degrees at least two.

Recall the definition of the Grothendieck-Teichmiiller Lie algebra grt; by
Drinfeld [10]. It is the space of 1) € lies which satisfy the following relations:

¢($ay) = _w(ywx)a
U, y) + oy, —v —y) +¥(—z —y,z) =0,

V(t12, ta(za)) + PV (t12)3, t34) = P (tas, t3a) + P (t1(23) L23)a) + P (12, L23).
(19)

Here, the last equation (19), called the pentagon equation, takes place in
dks and t9(34) = t23 + t24, etc. It is known that nontrivial elements in grt;
have degrees at least three.

The pentagon equation can be described in terms of a certain differential
on dk,. In fact, the differential on edk,, , is induced from this differential.
Assume that 1 € lies has degree at least two. Then, it can be considered
as an element in dks by the substitution ) +— 1(t12,t23). There are maps
d; : dkg — dkg for 0 < ¢ < 4 defined in terms of extension and cabling
operations, and 1 is a solution to the pentagon equation if and only if
d3 (1) = Z?:O(—l)idi(q/}) = 0. Furthermore, through the isomorphism

dks = Q(t12 + t1g + ta3) @ lie(t1s, tas),

¢(t12,t23) COI‘I“eSpODdS to ¢(—t13 — t23,t23) € |ie(t13,t23). NOW, identify
Iie(t13,t23) with dk271 = |ie(a11,a21) = edk2,1 by t13 — ail and tog — a91.
Since the coface maps on dk3 and edks; are compatible with this identi-
fication, it follows that any ¥ = ¥(x,y) € lieg with d3(¢)) = 0 satisfies
> (Y(—z —y,y)) = 0.

We now want to introduce the emergent version of the Grothendieck-
Teichmiiller Lie algebra as the space of solutions to the linearized ppss-
pentagon equation. For a technical reason, we put an additional condition
coming from the following fact proved by Drinfeld [10, equation (5.19)]:
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any v € grt; satisfies [z, (—2 — y, )] + [y,%(—2 — y,9)] = 0, and hence
o(x,y) = (- — y,y) satisfies

[z, 0(y, 2)] + [y, oz, y)] = 0. (20)
Definition 4.7. Let
grtf™ := {p € lieg | ¢ satisfies equations (17), (18) and (20)}.
By definition, we have the injection grt; < grt{™, ¥ (z,y) — Y(—zx—y, y).

Remark 4.8. A computer experiment shows that up to degree 17, the space
of solutions to equations (17) and (18) coincides with grt;. (Recall from
Remark 4.6 that (17) is automatically satisfied in degrees at least two.) We
do not know if one can eliminate condition (20) from the definition of grt{™.

Remark 4.9. There is a topological explanation for the source of condi-
tion (20). Consider the following hexagonal equalities:

From the first equality and (14), we obtain

zty ¥y o 1 z
ez =®Qppe2 D g e? Dy (21)

This shows a relationship among the elements ®,,s, ®psp and Pgp,. From
the second equality, we obtain

et = D 2 @;Slp e’ Ppep es @;pls. (22)
Now, we apply the reflection with respect to a vertical axis to the three a’s
in (13). Then ogpp, is mapped to the inverse of apps and apgp to its inverse,
where the order of red strands gets reversed. From this observation, let us
consider the following condition:

(I)Spp(xa y) = (I)pps(y, x)_lv (I)PSp(xv y) = (I)psp(y, x)_l' (23)

We do not know if any homomorphic expansion Z™P satisfies these condi-
tions. Under this hypothesis, the element ®,,s and equation (21) determines
the other two elements @, and ®gy,. Moreover, equations (21), (22) and
(23) imply that
zty o1 _zty _
e*tY = e 2 Qs (v, ) € Ppps(y, ) Lem= Qs €Y <I>ppls.

Taking the linearization of this equation yields condition (20).
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5 Loop operations and Kashiwara-Vergne theory

In this section, we explain an interpretation of the Kashiwara-Vergne Lie
algebras in terms of surface topology [2, 3].

Fix a positive integer n and let ¥ be an n-punctured disk, that is, a
closed unit disk in R? with n distinct points in the interior removed. Choose
a basepoint  in the boundary of ¥ and let 7 = 71 (X, *). Since the group  is
free of rank n, the associated graded quotient of the group algebra Qm with
respect to the powers of the augmentation ideal is canonically isomorphic to
the free associative algebra ass, = ass(z1,...,zy), where the generator z;
corresponds to the homology class of the loop around the ith puncture:

Let A be an associative Q-algebra. The trace space |A| is defined to be
A/[A, A]l. We denote by | | : A — |A]| the natural projection. For instance,
the space |Qn| is naturally identified with the set of homotopy classes of free
loops in X, and tr,, := |ass,| is the space of cyclic words in x1,...,2y,.

5.1 Loop operations on a punctured disk

We briefly recall several loop operations on Qm and |Qn|. Our focus is
on their associated graded operations on ass, and tr,, which are actually
needed for us. For more details about the loop operations themselves, see
[18, 17, 3].

The main cast in the sequel are the (associated graded operations of) the
homotopy intersection form [18] and the framed Turaev cobracket [2, 3]. The
former is a Q-linear map 7 : Qr®? — Qr defined in terms of intersections of
two based loops in ¥, and the latter is a Q-linear map &/ : |Qn| — |Qn|®2
defined in terms of self-intersections of a free loop in ¥. The operation 6/
depends on the choice of a framing on . Here, we choose the blackboard
framing associated with the inclusion ¥ C R2. We give sample computations
of these operations:
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Y 72

71
d0=(D e ) a (o)

Here, y1 Ay2 = 71 ®v2 —¥2 ®1. In the first example, there are two intersec-
tions of a and f each of which contributes to a term in 7(«, 8). The sign is
determined by the local index at each intersection. In the second example,
7 has one self-intersection. In general, §/() is obtained by splitting v into
two free loops at each intersection. We also use a based loop version of 67
a certain map ,uf : Qr — |Qn| ® Qr introduced in [3, Section 2.3]. We set
p! = (e ®id) o ,uf : Qr — Qm, where the map ¢ : |Qn| — Q is induced
from the augmentation map of Qr. The maps pf and n are related by the
following formula: for any a,b € Qm,

i (ab) = apef (5) + 1 (@)b + n(a, b). (24)
In fact, the operation uf recovers uf and 67. The map ,uf coincides with
the following composition

i f
Qm Aﬂ@ﬂ@@ﬂ%@ﬂ@@w

id®((1®id)oA) | |omult)®id
R A% —_—

Qr ® Qr @ Qr - Qr|®Qr.  (25)

Here, A and ¢ are the coproduct and antipode on Qm defined by A(v) = y®~
and ¢(y) = y~! for v € 7, and in the last step we use the multiplication map
in the algebra Qm. Furthermore, for any a € Qm we have

6/ (la]) = Alto (id ® | |) o pf (a) + |a| A 1. (26)
Here, Alt(a®b) =a®b—b® a and 1 is the class of the unit in Q.

Remark 5.1. (i) We give several comments about proofs of the formulas
above. First, one can derive formula (24) by applying (¢ ® id) to the
first equation in [3, Proposition 2.9 (i)]. A formula similar to (24)
was proved in [17, (3.3)] for a variant of the map u/. Second, the
decomposition (25) of the map uff follows directly from the defining
formula of xf. See [3, Section 2.3, formula (13)]. Finally, formula (26)
can be found in [3, Proposition 2.9 (ii)].

(ii) The map 6/ is a refinement of the Turaev cobracket [22], which is a Lie
cobracket on the quotient space |Qn|/Q1. Turaev [21] also introduced
essentially the same operations as 7 and (an unframed version of) /.
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5.2 The associated graded operations

All the loop operations in the previous section descend to the associated
graded operations on ass,, and tr,. We review their explicit formulas. For
more details, see [3, Section 3|. The associated graded operation of 7,

®2 _, ass,,

Tlgr © ASSy,
is a map of degree —1 and given by 7 (1,v) = 1gr(u,1) = 0 and
Nge(a1 -+ ap, b1 byn) = —a1 -+ ai—13(ar, b1)ba -+ - bim, (27)

where [, m > 1, the elements aq,...,a;,b1,...,by, are of degree 1, and j is
defined by 3(z;, zj) = d;jz;. The associated graded operation of ut,

ng : ass,, — ass,,

is a map of degree —1 and given by the formula

m—1
pl(ar- - am) = — Z ar - aj-13(aj, aj11)a42 - G, (28)
j=1
where a1, ..., an are elements of degree 1. The associated graded version of

the relations (24), (25) and (26) holds true. First, for any a,b € ass,,

i (ab) = aply (8) + pfy (@) + nge(a,D). (29)

Of course, one can directly check this from formulas (27) and (28). Second,
the associated graded operation u{f,gr decomposes as

A id@pudy
ass,, —ass,, ® ass,, ——— ass,, ¥ ass,

. id)oA o i
DD, ass,, @ ass, @ assy N, b, @ass,. (30)

Conversely, we have uér =(e®id)o uff, gr- Finally, for any a € ass,,
5L (lal) = Alto (ild @ | |) o pf 5, (). (31)

Note that the term |a| A 1 in (26) does not contribute to the associated
graded operation, since it is of filtration degree zero.

Lemma 5.2. For any a,b € lie,, we have ng(a,b) = — > 1" | (0;a)x;1(0;b).
Proof. This follows from a = > | (d;a)x; and b= | x;.(d;b). O

We show that the map ,ugr is related to the map R introduced in Sec-

tion 3.3. This will be a key point for proving Theorem 1.1.
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Proposition 5.3. The map R coincides with the restriction of ,ugr to liey.

Proof. We have ,ugr(aji) =0fori=1,...,n. Let a,b € lie,. Equation (29)

and Lemma 5.2 shows that ,ugr([a, b)) = ,ugr (ab) — ugr(ba) is equal to

[ud(a), b] + [a, 1, (B)] + Z ((0ib)zi1(0ia) — (9ia)xit(9;b)) .

=1
Therefore, the map ng restricted to lie,, satisfies the same recursive formula
in (11) as the map R. This proves the proposition. O

Remark 5.4. In [17, §4.3], Massuyeau gave a 3-dimensional formula for zf
which involves the cabling operation for pure braids on a punctured disk. It
would be interesting to compare his formula with Proposition 5.3.

5.3 Kashiwara-Vergne Lie algebras

We recall the definition of the Kashiwara-Vergne Lie algebras [5, 2].

We begin with some preliminary materials. Let tder, = lie,®*". The
grading on lie,, makes tder,, a graded Q-vector space. For @& = (uq,...,uy) €
tder,,, let p(@) be a derivation on lie, defined by p(a)(x;) = [z, u,] for
i =1,...,n. The space tder, has a structure of graded Lie algebra whose Lie
bracket is given by [4, 0] = w = (w1, ..., wy) with w; = [u;, v;] + p(@)(v;) —
p(0)(u;) for i = 1,...,n, and the map @ — p(u) is a Lie algebra homomor-
phism to the derivation Lie algebra of lie,. Through this homomorphism,
tder,, acts on lie,, ass,, tr, and their tensor products. Elements of tder,,
are called tangential derivations. The space sder,, of special derivations is
defined to be the set of @ € tder,, annihilating the element xg = > | x;, i.e.,
p(t)(zg) = 0. It forms a Lie subalgebra of tder,,. The divergence cocycle [5]
is a Lie 1-cocycle defined by the following formula:

n
div : tdery, — try, @ Y |zi(Ogui)].
=1

Definition 5.5. (i) The Kashiwara-Vergne Lie algebra krv,, is the space
consisting of @ € sder, such that div(a) = .. |fi(z;)| for some
formal power series fo(s), f1(s),. .., fn(s) € Q[[s]].

(i) Let krv? be the space of @ € sder,, such that div(@) € @}, Q|zi.

In the definition of krv,, the functions f;(s) actually agree with each
other modulo the linear part [2, Proposition 8.5]. In particular, if n = 2 and
@ € krvg is of degree > 3, then there exists an f(s) € Q[[s]]>2 such that

div(@) = |f(21) + f(w2) — Flr +w2)]. (32)
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We have the following sequence of inclusions of graded Lie algebras:
tder,, D sder,, D krv,, D krvg.

The Lie algebras sder,,, krv,, and krvg have the following characterizations
in terms of (the associated graded of) the loop operations.

Theorem 5.6. Let & = (uq,...,u,) € tder,. Then, the following three
conditions are equivalent:

(i) @ € sdery;
(ii) Oju; = O'uj for anyi,j € {1,...,n};
(iii) p(a) commutes with ng, i.e., p(@) 0 Ngr = Ngr © (p(4) ®id +id ® p(a)).

Proof. The following computation proves the equivalence (i) < (ii):

p(i)(wo) = Y s w] =Y miws — » wjwy = > (2i(Qjui)w; — xi(0'uy)z;).
i=1 i=1 j=1 ij=1

To prove the equivalence (ii) < (iii), note that the map 7y is a Fox
pairing [18]. This means that 7, satisfies

{ngr<ab, ¢) = ang:(b,¢) + £(b)11r(a, 0),
Ner(a, bc) = Ngr(a,b)c + e(b)ng:(a, c)

for any a, b, ¢ € ass,,. Thanks to this property, the condition (iii) is equivalent
to the commutativity of p(@) and 7, on generators of ass,,, namely

(iv) u(nge(wi, z5)) = nge(u(xi), ) +ngr (i, u(z;)) for any i,j € {1,...,n}.
Now we compute u(ngr(x;, ;) = u(3(x:, xj)) = diju(x;) = dijlas, u;) and
Ugr(u(l"i)v xj) + ngr(% U(sﬂj)) = ngr([xiv g, xj) + ngr(xia [xja UJ])
= zi(Ojui)rj — wi3(wi, ;)
+ 3($i, l’j)Uj — xi(ﬁzuj):rj
= xz(ajul — 8iuj)xj + (51']' [xz', uz]
Hence the condition (iv) is equivalent to (ii). This completes the proof. [

Remark 5.7. The equivalence (i) < (iii) in Theorem 5.6 is a special case
of (the infinitesimal version of) more general results [18, Lemmas 6.2 and
6.3], [19, Theorem 2.31].

Theorem 5.8. Let 4 = (uy,...,u,) € tder,.

(i) @ € krvy, <= p(a) commutes with ng, and 5gr.
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(i) @ € krv® <= p(@) commutes with ng and ,uér.
f

Proof. First note that in (ii) one can replace pg with ,uffygr, since ,uf:gr is
recovered from ,ugr and vice versa.

In [3, Theorem 8.21], it was shown that the Kashiwara-Vergne groups
KRV, (resp. KRV%) is isomorphic to the group of tangential automorphisms
of (the completion of) ass,, that commute with the operations 7y and (5gr
(resp. mgr and ,u,{gr). As krv,, and krv® are the Lie algebras of KRV, and
KRV, respectively, the assertions (i) and (ii) follow from this result. O

6 Proof of the main result

In this section, we prove Theorem 1.1 in the introduction. When n = 2, we
use the letters x,y for generators of lies instead of x1, xo.

6.1 KV equations from emergent associator equations

We prove the first statement of Theorem 1.1.

We simply write w = p(a) for @ € tder,. Furthermore, we do this
abbreviation for the action of % on tensor products of ass, and tr,. For
instance, @ acts on tr, ® assy, as p(u) ®id+1d ® p(u), and we denote it by wu.

Lemma 6.1. Let u € sder,,. Then, d; := uér ou—uo Mgr 18 a dertvation on
assy,. Furthermore, the map Dy := M{,gr oU—1uUo ,u{f,gr from ass,, to tr, ® ass,
satisfies the following property: for any a,b € ass,,

Di(ab) = Dy(a)(1 ®@0b) + (1 ® a)Dy(b).

Proof. We abbreviate y = Mér and 1 = ng.. Let a,b € ass,. We compute

p(u(ab)) = p(u(a)b + au(d))
= p(u(a))b + u(a)p(d) +n(u(a),b)
+ pla)u(d) + ap(u(b)) + nla, u(d)),
u(p(ab)) = u(p(a)b + ap(b) + n(a; b)
= u(p(a))b + p(a)u(d) + u(a)u(b) + au(u(b)) + u(n(a,b)).

Since 4 € sder,,, we have n(u(a),b)+n(a,u(b)) = u(n(a,b)) by Theorem 5.6.
Hence we see that d; is a derivation on ass,,.

The map H?Jf,gr decomposes as shown in (30). Since the derivation u
commutes with the Hopf algebra operations on ass,, the second assertion
follows from the first assertion. O

Proposition 6.2. Let u € sder, and assume that there is some ¢ € ass,
such that ugr(u(xi)) = [z, c] for alli=1,...,n. Then, @ € krv,,.
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Proof. By Theorem 5.8, it is enough to prove that u commutes with 5%;. A
stralghtforward computation using (30) yields uy, glp( (i) = [o()| @ [, "]
for all i = 1,...,n, where we write A(c) = ¢ ® ¢ using the Sweedler
notation.

Let a = aq---a., € ass, be a product of m elements of degree 1. Note
that Dg(a;) = [¢()| @ [as, ¢ since pdy(a;) = 0. By Lemma 6.1, we have

m
Z ®ay - a;i—1)Da(a;)(1 @ a1 - am)

~.
[y

Z ) ®ar---ai—1ai, a1 - am

1=

1
()| @ la, .

Since |[a, ¢]| = 0, we obtain (5£rou—u0(5gr)(\a|) = 0 by (31). This completes
the proof. O

Proof of Theorem 1.1 (i). Let ¢ = ¢(x,y) € grt{™. Then ¢ satisfies equa-
tion (18) and the tangential derivation v°™(¢) = (¢(y, x), ¢(x,y)) is special.
In particular, by Theorem 5.6 we have

Oy = 0% = 1(0yyp). (33)

Put f(s) == —(9yp)(s,0) € Q[[s]]. We will show that v*"(¢) € sdery
satisfies the assumption of Proposition 6.2. By Proposition 5.3, one may
replace uér with R. We first compute

R™(¢)(y)) = R([y, ¢(z,9)])

= [y, R(p)] + (Oyp)y — yt(Iyp)

= [y, R(p) — ySO]

= [y, (Oy)(y,0) — (Oyep)(z + y,0)]
= [y, f(z +y)].

Here, we have used formula (11) in the second line, equation (33) in the
third line, equation (18) in the fourth line, and the fact that y commutes
with any power series in y in the last line. Similarly, we compute

R (p)(2)) = B[z, ¢(y, z)
x)

1)
z, R(p(y, )] + 0:(p(y, )2 — 2(02((y, 7))
R(p )

=
= [z, R(¢)(y, x) — (9y) (y, v)]
= [z, (9y)(x,0) — (Oyp)(y + =,0)]
= [z, f(z +y)].
This completes the proof. ]
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6.2 Symmetric Kashiwara-Vergne Lie algebra

Recall from [5, Section 8] that the symmetric part of the Kashiwara-Vergne
Lie algebra krvy’™ is the invariant Lie subalgebra of krva by the involution
(u(z,y),v(x,y)) — (v(y,x),u(y,z)). In this section, we prove the second
statement of Theorem 1.1.

Lemma 6.3. Let ¢ = p(x,y) € liea be an element of degree at least two.
Then, R(#)(0,y) = R(p)(x,0) = (9y¢)(0,y) = 0.

Proof. Notice that ¢ seen as an element of assy is a linear combination of
words which contain at least one x and at least one y. Formula (28) implies
that R(y) is a linear combination of words with the same property. Hence
R(¢)(0,y) = R(¢)(x,0) = 0. Similarly we have (9y¢)(0,y) = 0, since dy¢ is
a linear combination of words which contain at least one x. O

Proof of Theorem 1.1 (ii). Let u = (¢(y,z),¢(z,y)) € krvd™ be homoge-
neous of degree at least two.
Step 1. We first consider the case where @ € krv). By Theorem 5.8 (ii),

o commutes with ué; = R. Hence

0=a(R(y)) = R(u(y)) = R(ly, ¢]) = [y, R(¢) — Iyl

Therefore, we have R(¢)—0y¢ € Q[[y]]>1. By Lemma 6.3, we obtain R(y)—
Oy = 0. Furthermore, (9,¢)(x,0) = R(¢)(z,0) = 0. Therefore, we obtain
equation (18) for ¢. Hence ¢ € grt{™ and u = v*™(y).

Step 2. We next consider the general case. Let | = degy. If [ is even,
then div(@) = 0 by [5, Proposition 4.5]. Hence @ € krvy, and @ is in the
image of v*™ by Step 1. Assume that [ is odd (and > 3). Recall that the
Drinfeld-Ihara generator o; € grt; satisfies the property

div(v(or)) = |zt + 4! — (x + )]

(see [5, Proposition 4.10]). Thus there exists a constant ¢ € Q such that
@i — cv(0y) has the vanishing divergence, i.e., @ — cv(0y) € krvd. From Step 1,
we obtain that @—cv(o;) is in the image of v*™. Let ¢y(x,y) = oy(—z—y,y) €
grt¢™. Then v(o;) = v*™ (). Therefore, 4 = (4 — cv(07)) + cv(oy) is in the
image of v°™. This completes the proof. O
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