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We present a step-by-step approach to the theory of Drinfeld associ-
ators, which is based on the Vassiliev invariants of braids on disks with
various number of punctures. We focus on the degree one invariants,
the first step of our approach which captures the knotting phenomenon
of the braids. The corresponding topological objects are called emer-
gent braids. As an application, we give another proof for a result
of Alekseev and Torossian on the embedding of the Grothendieck-
Teichmüller Lie algebra into the Kashiwara-Vergne Lie algebra.

1 Introduction
Two objectives
of the paper.
(1) Foun-
dations for
the category
of mixed
braids and
its formality.
(2) To show
that the first
step (emergent
quotient) is
already useful:
it is related to
KV.

Remark/Excuse:
(1) is not com-
plete and
hopefully to
be continued.
(2) is not
completely sat-
isfactory and
hopefully to be
continued.

A Drinfeld associator [8] is a group-like formal power series Φ = Φ(x, y)
in two non-commutative variables satisfying a pentagon equation and two
hexagon equations which take values in the algebra of horizontal chord dia-
grams on several vertical strands.

As was initially pointed out in [8], the Drinfeld associators have a topo-
logical nature, and they play important roles in knot theory. A choice of
Φ gives rise to universal Vassiliev invariants (Kontsevich invariant) of var-
ious knotted objects in 3-space. In [5] the category PaB of parenthesized
braids was introduced, and it was shown that one can identify the set of 1-
formality isomorphisms of this category with the set of Drinfeld associators
(with coupling constant 1). In more detail, Φ, regarded as a formal sum of
horizontal chord diagrams by a substitution of variables, is the value for the

parenthesized braid which corresponds to the associativity constraint in

braided monoidal category. In this formulation, the pentagon equation for
Φ comes from the following equality of parenthesized braids:

=

The other equations (the two hexagons) arise similarly.
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Drinfeld’s associator equations are “hard to solve”. By a remarkable re-
sult by Furusho [10], the two hexagon equations are actually a consequence
of the pentagon equation. However, it is still hard. All known solutions are
obtained by some transcendental method, for instance the monodromy of
the Knizhnik-Zamolodchikov connection. It is also known that one can con-
struct a Drinfeld associator iteratively [5], but with no explicit example thus
constructed. We do not know an example of a rational Drinfeld associator
whose coefficients are determined in all degrees.

In this paper, we present a step-by-step approach to Drinfeld’s associator
equations. We consider these equations in certain subquotients (quotients
of a subalgebra) of the algebra of horizontal chord diagrams.

To explain our subquotients in more detail, let us fix some notation. Re-
call that the Drinfeld-Kohno Lie algebra dkn, also known as the Lie algebra
of infinitesimal Lie algebra, is the graded Lie algebra generated by degree
one elements tij for 1 ≤ i < j ≤ n subject to some relations. Pictorially
these generators are the horizontal chord diagrams on n vertical lines which
connect the two lines corresponding to their indices:

tij =

· · · · · · · · ·
1 i j n

.

The pentagon equation for Φ takes values in Û(dk4), the degree completion
of the universal enveloping algebra of dk4.

Now let dk2,2 be the Lie subalgebra of dk4 generated by five elements
t13, t23, t14, t24 and t34. If we draw the first two strands in red and the last
two strands in blue, these generators look as follows:

t13 = , t23 = , t14 = , t24 = , t34 = .

There are no chords between red strands. Since any Φ is of the form Φ =
exp(ϕ), where ϕ is a Lie series without linear term, we can regard the value

for determined by Φ as a series in t13 and t23, two of the three generators

in dk3. From this simple observation, we see that the pentagon equation for
Φ actually takes values in Û(dk2,2). In this space, there is no t12 which plays
the role of detecting the braiding phenomenon between the first and second
strands. Thus, we are naturally led to consider the braids on a punctured
disk, where we view the red colored strands as the Cartesian product of
the punctures and the interval. The crossing changes between blue strands
defines the Vassiliev filtration on the algebra spanned by such braids. For the
corresponding space of chord diagrams, this filtration amounts to counting
the number of chords connecting blue strands. Let c be the Lie ideal of dk2,2
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generated by t34 and let c(k) the kth commutator ideal (c(1) = c, c(2) = [c, c]
and so on). Our subquotients are defined to be Û(dk2,2/c

(k)) for any k ≥ 1.
In this quotient, we will consider the pentagon equation for a given Φ.

It is possible to view our pentagon equation valued in Û(dk2,2/c
(k)) as

a piece of the set of equations required for a 1-formality isomorphism for
braids on disks with various number of punctures. For precise formulation,
we need to introduce the category PaMB of parenthesized mixed braids
and its truncated version PaMB/k to which Sections 2 and 4 are devoted. central

definition:
1-formality
isomorphisms
for these
categories. the
exposition is
incomplete in
the sense that
we do not know
a complete set
of relations.

When k = 1, the braids in PaMB/1 are considered only up to homotopy,
and thus one cannot detect any braiding phenomenon. In Section 3, we
consider the case k = 2, which amounts to the degree one Vassiliev invariants
of braids on punctured disks. We call the corresponding topological objects
emergent braids. This will be the focus of the present paper.

One motivation for studying emergent braids lies in its relationship with
the Kashiwara-Vergne theory. In [4], Alekseev and Torossian introduced
a graded Lie algebra krv2 called the Kashiwara-Vergne Lie algebra. Its
elements are pairs (u(x, y), v(x, y)) of two Lie polynomials satisfying some
conditions (see Section 5.3 for more precise definition). The Lie algebra
krv2 describes the infinitesimal deformations to solutions to the Kashiwara-
Vergne equations. Alekseev and Torossian showed that there is a Lie algebra
embedding TODO: say

more about KV
and grt1.ν : grt1 ↪→ krv2

from the Grothendieck-Teichmüller Lie algebra, and in addition proved that
any Drinfeld’s associator Φ gives rise to a solution to the Kashiwara-Vergne
equations. We will mainly work in the infinitesimal setting and give another
proof for the embedding above. the conjec-

ture grt1 =
lie(σ3, σ5, . . .).
the conjec-
ture krv2 =
Qt ⊕ ν(grt1).

Let us state a main application of our approach to the Kashiwara-Vergne
theory. We define grtem1 to be the space of Lie polynomials ϕ = ϕ(x, y) sat-
isfying the linearization of a certain pentagon equation valued in dk2,2/c

(2)

and an additional technical condition [x, ϕ(y, x)] + [y, ϕ(x, y)] = 0 (for more
precise definition, see Section 4.3). By construction, we have a natural
embedding grt1 ↪→ grtem1 . An element (u(x, y), v(x, y)) ∈ krv2 is called sym-
metric if v(x, y) = u(y, x)). The space of symmetric elements in krv2 forms
a Lie subalgebra denoted by krvsym2 (see [4, Section 8]). For a Lie series
ϕ = ϕ(x, y) ∈ lie2, set

νem(ϕ) := (ϕ(y, x), ϕ(x, y)).

Theorem 1.1. (i) For any ϕ ∈ grtem1 , we have νem(ϕ) ∈ krvsym2 .

(ii) The map νem : grtem1 → (krvsym2 )≥2 is a graded Q-linear isomorphism.

It turns out that the space grtem1 has a Lie algebra structure. Note that
it is not known whether krvsym2 coincides with krv2 or not [4, Remark 8.10].
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The proof of Theorem 1.1 will be given in Section 6. Our proof uses an
interpretation of the Kashiwara-Vergne theory in terms of surface topology
[1, 2], which will be explained in Section 5.

The idea of emergent braids stems from an ongoing joint work of the
first-named author with Dancso, Hogan, Liu and Scherich [6]. Recent works
by Alekseev, Naef and Ren [3] and Naef and Betancourt [15] study the same
quotient dk2,2/c

(2) and closely related topics to ours.

Acknowledgements

The authors thank... The first-named author is supported by... The second-
named author is supported by...

Notation

• Throughout this paper we work over the rationals Q, though all of our
argument holds true over any field of characteristic zero.

• For a nonnegative integer n, let assn be the free associative algebra
on n free generators. When we need to specify generators, we write
assn = ass(x1, . . . , xn) for example.

• The algebra assn has a structure of Hopf algebra whose coproduct,
antipode and augmentation are given on generators by ∆(xi) = xi ⊗
1+1⊗xi, ι(xi) = −xi and ε(xi) = 1. We also use the notation a = ι(a)
for the antipode.

• We denote by lien = lie(x1, . . . , xn) the free Lie algebra on n free
generators x1, . . . , xn. One can identify lien with the space of primitive
elements in assn, namely lien = {a ∈ assn | ∆(a) = a ⊗ 1 + 1 ⊗ a}. It
holds that ι(a) = −a for any a ∈ lien.

• Let C be a groupoid or more generally a category, and O,O′ objects
in C. We denote by C(O,O′) the set of morphisms in C from O to O′.

2 Mixed braids and chord diagrams

We introduce the notion of mixed braids. Then we define the notion of
mixed chord diagrams as the corresponding associated graded object.

2.1 Mixed braids

For a nonnegative integer l, let Bl be Artin’s braid group on l strands. Our
convention about the product of Bl is as follows: the product ββ′ of two
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braids β and β′ is the braid obtained by placing β′ above β. For example,

· = .

Definition 2.1. Fix nonnegative integers m and n. A mixed braid of type
(m,n) is an element of Bm+n equipped with a coloring of its strands with
either red or blue such that

• there are m red colored strands which we draw slightly thicker and n
blue colored strands which we draw slightly thinner, and

• if we forget all the blue colored strands and view the rest as an element
in Bm, we are left with the trivial m-braid.

A blue colored strand in a mixed braid is simply called a strand, and a
red colored strand is called a pole.

Example 2.2. In the following three pictures, the first two pictures are
mixed braids of type (2, 2). Observe that their underlying braids on 2+2 = 4
strands are the same. However, the picture on the right is not a mixed braid.

non-example:

We denote by Bm,n the set of mixed braids of type (m,n). One can
construct the product of two mixed braids β, β′ of the same type when the
coloring of the strands of β at the top matches that of β′ at the bottom. In
this manner, the set Bm,n forms a groupoid. Its set of objects is the setWm,n

of words of length m+n consisting of m red (slightly bigger) bullets and n
blue (slightly smaller) bullets . When o ∈Wm,n, the word o is called of type
(m,n). For o, o′ ∈ Wm,n, we denote by Bm,n(o, o

′) the set of mixed braids
whose bottom and top ends match o and o′, respectively. For example, the
leftmost picture in Example 2.2 is an element in B2,2( , ).

Definition 2.3. Let m,n ≥ 0 and let o, o′ ∈ Wm,n. A mixed permutation
(of type (m,n)) from o to o′ is a permutation σ of m+ n letters such that

• for any 1 ≤ i ≤ m + n, the ith letter of o and the σ(i)th letter of o′

have the same color, and

• if we forget all the blue letters in o and o′ and view the restriction of
σ to the red bullets as a permutation of m letters, then it is trivial.
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Alternatively, a mixed permutation is a mixed braid whose over/under
information at each crossing of strands is lost. For example,

is a mixed permutation from to given by 1 7→ 4, 2 7→ 2, 3 7→ 1,
and 4 7→ 3.

For o, o′ ∈Wm,n, we denote by Sm,n(o, o
′) the set of mixed permutations

from o to o′. The set Sm,n =
⊔

o,o′∈Wm,n
Sm,n(o, o

′) of all mixed permuta-

tions of type (m,n) naturally forms a groupoid. The forgetful map

π : Bm,n → Sm,n

is a homomorphism of groupoids.
Let ostdm,n := · · ·︸ ︷︷ ︸

m

· · ·︸ ︷︷ ︸
n

∈ Wm,n, then the set Bstd
m,n := Bm,n(o

std
m,n, o

std
m,n)

forms a group with respect to the groupoid structure of Bm,n. One can
regard Bstd

m,n a subgroup of Bm+n in a natural way.
The trivial permutation of degree m+ n defines the mixed permutation

1m,n :=
· · · · · ·

1 m 1 n

∈ Sm,n(o
std
m,n, o

std
m,n).

Then, Pm,n := π−1(1m,n) is a normal subgroup of Bstd
m,n. We call Pm,n

the mixed pure braid group of type (m,n). In fact, Lambropoulou [11,
Sections 2 and 3] introduced the same group with the same notation and gave
its explicit presentation. In particular, Pm,n is generated by the following
elements αij , where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and τij , where 1 ≤ i < j ≤ n:

αij =

· · · · · · · · · · · ·
1 i m 1 j n

, τij =

· · · · · · · · · · · ·
1 m 1 i j n

.

Collecting all types of mixed braids and mixed permutations we con-
sider the groupoids B :=

⊔
m,n≥0Bm,n and S :=

⊔
m,n≥0Sm,n. Both

of them have W :=
⊔

m,n≥0Wm,n as the set of objects. We define the
category MB of mixed braids as a Q-linear extension of the groupoid B
fibered over S , following the treatment in [5, Section 2.2.1]. Its set of
objects is W . Let o, o′ ∈ W . If the types of o and o′ are different,
there is no morphism from o to o′. If not, then morphisms from o to o′ are
pairs (

∑
j cjβj , σ), where σ ∈ S (o, o′) and

∑
j cjβj is a Q-linear combi-

nation of mixed braids such that π(βj) = σ for all j. Thus when the types
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of o and o′ are the same, the set of morphisms from o to o′ decomposes
as MB(o, o′) =

⊔
σ∈S (o,o′)MB(o, o′)σ, where the subscript σ stands for

consisting of elements which have σ as the second entry. The composition
in MB is naturally induced from the composition in B .

2.2 Mixed version of the Drinfeld-Kohno Lie algebra

Let n be a nonnegative integer. Recall that the Drinfeld-Kohno Lie algebra,
which we denote by dkn, is the graded Lie algebra generated by degree one
elements tij = tji for 1 ≤ i 6= j ≤ n subject to the commutation relation
[tij , tkl] = 0 for distinct indices i, j, k, l, and the 4T relation [tij + tjk, tik] =
0 for distinct indices i, j, k. In a diagrammatic language, dkn is the Lie
algebra of horizontal chord diagrams on n vertical lines, and the generator
tij corresponds to the chord diagram consisting of a single chord connecting
the ith and jth lines:

tij =

· · · · · · · · ·
1 i j n

.

For every n > 0, there is a semi-direct product decomposition

dkn = dkn−1 n lie(t1n, . . . , t(n−1)n). (1)

It is known that the universal enveloping algebra of dkn is isomorphic
to the associated graded of the group algebra of the pure braid group on n
strands with respect to the powers of the augmentation ideal. With this in TODO:

reference?
Kohno “Série
de Poincaré-
Koszul...”
or, Fresse’s
textbook...

mind, we introduce a variant of dkn corresponding to the group Pm,n.

Definition 2.4. Form,n ≥ 0, let dkm,n be the graded Lie algebra generated
by degree one elements aij for 1 ≤ i ≤ m, 1 ≤ j ≤ n and cij = cji for
1 ≤ i 6= j ≤ n, subject to the commutation and 4T relations among them,
where we regard aij = ti(m+j) and cij = t(m+i)(m+j) as the corresponding
generators of dkm+n.

Diagrammatically, the generators of dkm,n are horizontal chord diagrams
with a single chord on m vertical red lines and n vertical blue lines:

aij =

· · · · · · · · · · · ·
1 i m 1 j n

, cij =

· · · · · · · · · · · ·
1 m 1 i j n

.

Remark 2.5. We have dk0,n = dkn.

The semi-direct product decomposition (1) generalizes to dkm,n:
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Lemma 2.6. There is a semi-direct product decomposition of Lie algebra

dkm,n = dkm,n−1 n lie(a1n, . . . , amn, c1n, . . . , c(n−1)n).

Proof. We simply write lie(a, c) = lie(a1n, . . . , amn, c1n, . . . , c(n−1)n). First
we describe the Lie action ρ of dkm,n−1 on lie(a, c) that is used in forming
the semi-direct product dkm,n−1 n lie(a, c). It is specified by the value on
generators of dkm,n−1: for 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1, 1 ≤ k ≤ m and
1 ≤ l ≤ n− 1,

ρ(aij)(akn) =

{
0 (i 6= k)

−[cjn, akn] (i = k)
, ρ(aij)(cln) =

{
0 (j 6= l)

−[ain, cln] (j = l)
,

and for 1 ≤ i 6= j ≤ n− 1, 1 ≤ k ≤ m and 1 ≤ l ≤ n− 1,

ρ(cij)(akn) = 0, ρ(cij)(cln) =

{
0 (l /∈ {i, j})
−[cjn, cln] (i = l)

.

Note that these formulas are compatible with the Lie bracket in dkm,n.
For example, we have [akj , akn] = −[cjn, akn] by the 4T relation, and this
matches the value ρ(akj)(akn) = −[cjn, akn]. Now we define the map dkm,n →
dkm,n−1 n lie(a, c) by

aij 7→

{
(aij , 0) (j ≤ n− 1)

(0, ain) (j = n)
, cij 7→

{
(cij , 0) (j ≤ n− 1)

(0, cin) (j = n)
.

Then one can check that this map is a Lie algebra isomorphism.
added a new re-
markRemark 2.7. By Lemma 2.6, we inductively see that the map dkm,n →

dkm+n defined by aij 7→ ti(m+j) and cij 7→ t(m+i)(m+j) is an injective Lie
homomorphism.

We show how the Lie algebra dkm,n and the group Pm,n are related.
On the one hand, let Am,n = U(dkm,n) be the universal enveloping algebra
of dkm,n. It is an associative Q-algebra generated by the same generators
aij and cij as those of dkm,n, subject to the same relations as those of
dkm,n, where we regard bracket symbol as commutator: [a, b] = ab− ba. On
the other hand, the powers of the augumentation ideal I = IPm,n define
a decreasing filtration of QPm,n. Thus one can construct the associated
graded grQPm,n of the filtered algebra QPm,n.

Proposition 2.8. There is a canonical isomorphism of graded Q-algebras
grQPm,n

∼= Am,n, through which the class of αij − 1 corresponds to aij and
the class of τij − 1 to cij.
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Proof. The proof is similar to the proof of the isomorphism grQPn
∼= U(dkn)

given in [9, Theorem 10.0.4], so we just give a sketch. We start with the fact
that there is a semi-direct product decomposition

Pm,n
∼= Pm,n−1 n Fm+n−1,

where Fm+n−1 is the free group generated by αin, 1 ≤ i ≤ m and τin, 1 ≤ i ≤
n− 1 (see [11, Section 3]). Here, the action of Pm,n−1 on Fm+n−1 is by con-
jugation and hence is trivial on the abelianization of Fm+n−1. Applying [9,
Proposition 8.5.7], one has grQPm,n

∼= (grQPm,n−1) ] (grQFm+n−1), where
] denotes the semi-direct product of Hopf algebras. Note that grQFm+n−1

is naturally isomorphic to assm+n−1, and Lemma 2.6 implies that there is
an isomorphism Am,n−1]assm+n−1

∼= Am,n. Hence we can prove grQPm,n
∼=

Am,n by induction on n. One can check that this isomorphism maps the
class of αij − 1 to aij and the class of τij − 1 to cij .

TODO: do
we need the
normalized
expression for
elements in
Aem

m,n? In

particular,
do we need
the formula
exp(x1 + x2) =
exp(x1) exp(x2)+
exp(x1) exp(x2)E(x)12?
Here,
E(x) = ((1 −
e−x)/x) − 1.

2.3 Operadic structure and coface maps

Recall the clas-
sical case?

There are naturally defined operations on mixed braids. Let β ∈ Bm,n be a
mixed braid.

• Extension operations. We denote by δp0(β) (resp. δ
s
0(β)) be the mixed

braid of type (m + 1, n) (resp. of type (m,n + 1)) obtained from β
by adding a red (resp. blue) straight strand on the left. Similarly,
we define δpm+n+1(β) (resp. δ

s
m+n+1(β)) by adding a red strand (resp.

blue strand) on the right. For example,

δp0

  = and δs5

  = .

• Cabling operations. For 1 ≤ i ≤ m + n, let δi(β) be the mixed braid
obtained from β by doubling its ith strand, where we count strands
at the bottom end of β. The two strands newly created inherits the
color of the original strand. For example,

δ1

  = and δ4

  = .

• Changing a pole to a strand. For 1 ≤ i ≤ m, let ϑi(β) be the mixed
braid obtained from β by changing the ith red strand to a blue strand.
For example,

ϑ1

  = .
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The operations defined above have counterparts in dkm,n. TODO: want
diagrammatic
explanations?

• Extension operations. Let δ0 = δp0 : dkm,n → dkm+1,n (resp. δm+n+1 =
δsm+n+1 : dkm,n → dkm,n+1) be the Lie homomorphism defined by
aij 7→ a(i+1)j and cij 7→ cij (resp. aij 7→ aij and cij 7→ cij).

• Cabling operations. For 1 ≤ k ≤ m, we define the Lie homomorphism
δk : dkm,n → dkm+1,n by

δk(aij) =


aij (1 ≤ i ≤ k − 1)

akj + a(k+1)j (i = k)

a(i+1)j (k + 1 ≤ i ≤ m)

, δk(cij) = cij .

For 1 ≤ k ≤ n, we define δm+k : dkm,n → dkm,n+1 by

δm+k(aij) =


aij (1 ≤ j ≤ k − 1)

aik + ai(k+1) (j = k)

ai(j+1) (k + 1 ≤ j ≤ n)

and

δm+k(cij) =



cij (j < k)

cik + ci(k+1) (j = k)

ci(j+1) (i < k < j)

ck(j+1) + c(k+1)(j+1) (i = k)

c(i+1)(j+1) (k < i)

.

• Changing a pole to a strand. For the sake of simplicity we only in-
troduce this operation applied to the last pole. Let ϑm : dkm,n →
dkm−1,n+1 be the Lie homomorphism defined by

ϑm(aij) =

{
ai(j+1) (i < m)

c1(j+1) (i = m)
, ϑm(cij) = c(i+1)(j+1).

Using these operations, we define coface maps and a differential on dkm,n.

Definition 2.9. For 0 ≤ k ≤ m + n + 1, we define the map dk = dm,n
k :

dkm,n → dkm,n+1 as follows:

dk =

{
ϑm+1 ◦ δk (0 ≤ k ≤ m)

δk (m+ 1 ≤ k ≤ m+ n+ 1)
.

Furthermore, we set dm,n :=
∑m+n+1

k=0 (−1)kdk : dkm,n → dkm,n+1.

The family of maps {dm,n}n is indeed a differential.

Lemma 2.10. We have dm,n+1 ◦ dm,n = 0 : dkm,n → dkm,n+2.

Proof. The proof is straightforward by using the relation di ◦ dj = dj+1 ◦ di
for i ≤ j, which can be checked directly.
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3 Emergent braids and chord diagrams

In this section, we introduce the notion of emergent braids and chord dia-
grams.

3.1 Emergent braids

The group Bstd
m,n acts on its normal subgroup Pm,n by conjugation, and this

extends linearly to an action on the group algebra QPm,n. We denote by
J the two-sided ideal of QPm,n generated by τij − 1, 1 ≤ i < j ≤ n. The
powers J l, l ≥ 0, define a Bstd

m,n-invariant decreasing filtration of QPm,n.

Definition 3.1. For each k ≥ 1 we set QP /k
m,n := QPm,n/J

k. In particular,
the algebra of emergent pure braids of type (m,n) is defined to be

QP em
m,n := QP /2

m,n = QPm,n/J
2.

Remark 3.2. Why “emergent”? In primary school language, “Dror has an
emergent knowledge of the French language” means “Dror knows French just

a bit better than nothing at all”. In a similar way, QP /1
m,n means “no braiding

phenomenon yet”, for in QP /1
m,n the blue strands are fully transparent to each

other, and QP /2
m,n is “emergent braiding”, for after moding out by J2 just a

whiff of braiding remains.

The ideal J of QPm,n = MB(ostdm,n, o
std
m,n)1m,n and its powers extend to a

multiplicative filtration of the Q-linear category MB in the following way.
Let o, o′ ∈ Wm,n for some m,n ≥ 0 and let σ ∈ S (o, o′). One can
take mixed braids β ∈ Bm,n(o

std
m,n, o) and β′ ∈ Bm,n(o

std
m,n, o

′) such that
σ = π(β)−1π(β′). Then, the map QPm,n → MB(o, o′)σ, u 7→ β−1uβ′ is a
Q-linear isomorphism. Since the ideal J is Bstd

m,n-invariant, it follows that

the subspaces J l
σ := β−1J lβ′, l ≥ 0, are independent of the choice of β

and β′. The collection {J l
σ}l≥0,σ∈S is multiplicative in the sense that

J l
σ · J l′

σ′ ⊂ J l+l′

σσ′ holds for any l, l′ ≥ 0 whenever σ and σ′ are composable.

For each k ≥ 1, we define the Q-linear category MB/k as follows. The
set of objects is W . For o, o′ ∈W , the set of morphisms from o to o′ is

MB/k(o, o′) :=


⊔

σ∈S (o,o′)

MB(o, o′)σ
Jk
σ

if o and o′ have the same type,

∅ otherwise.

The composition in MB/k is induced from the composition in MB. Our
main focus is on the case k = 2: we set EB := MB/2.
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3.2 Emergent version of the Drinfeld-Kohno Lie algebra

Let c = cm,n be the Lie ideal of dkm,n generated by cij for 1 ≤ i 6= j ≤ n.

Definition 3.3. The emergent version of the Drinfeld-Kohno Lie algebra of
type (m,n) is the quotient Lie algebra edkm,n := dkm,n/[c, c].

Remark 3.4. Similarly, for each k ≥ 1 one can define the quotient Lie

algebra dk
/k
m,n := dkm,n/c

(k), where c(k) is the Lie ideal of dkm,n inductively

defined by c(1) = c and c(k) = [c(k−1), c]. One has edkm,n = dk
(2)
m,n.

In what follows we describe the structure of the Lie algebra edkm,n.

Lemma 3.5. We have a Q-linear graded direct sum decomposition

edkm,n
∼= edkm,n−1 ⊕

(
liem(a1n, . . . , amn)⊕

n−1⊕
i=1

assm(a1n, . . . , amn)[−1]

)
.

Here, assm(a1n, . . . , amn)[−1] is the degree shift of assm(a1n, . . . , amn) by −1:
the constant term has degree 1, the generators x1, . . . , xm have degree 2, and
so on.

Proof. Let c0 be the Lie ideal of lie(a, c) generated by cin, 1 ≤ i ≤ n − 1.
Through the semi-direct decomposition of Lemma 2.6 the ideal [cm,n, cm,n]
corresponds to [cm,n−1, cm,n−1]⊕[c0, c0] in dkm,n−1⊕ lie(a, c), because cm,n =
cm,n−1 ⊕ c0 and [cm,n−1, c0] ⊂ [c0, c0]. Thus we obtain

edkm,n
∼= edkm,n−1 ⊕

(
lie(a, c)/[c0, c0]

)
as a Q-linear space. By the Lazard elimination theorem [7, Chap II §2.9,
Proposition 10], we have the following Q-linear direct sum decomposition

lie(a, c) ∼= lie(a1n, . . . , amn)⊕ lie({adw(cin)}w,i).

Here, lie({adw(cin)}w,i) is the free Lie algebra generated by all elements of
the form adw(cin) = adw1 · · · adwλ

(cin), where 1 ≤ i ≤ n − 1 and w =
w1 · · ·wλ with w1, . . . , wλ ∈ {a1n, . . . , amn} runs over all associative words
in a1n, . . . , amn (including the empty word). Hence

lie(a, c)/[c0, c0] ∼= lie(a1n, . . . , amn)⊕
n−1⊕
i=1

⊕
w

Q adw(cin).

This proves the lemma.

Repeated use of Lemma 3.5 yields a Q-linear graded direct sum decom-
position

edkm,n
∼=

n⊕
i=1

(liem)i ⊕
⊕

1≤i<j≤n

(assm[−1])ij , (2)
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where the meaning of the components (liem)i and (assm[−1])ij is as follows:

(liem)i 3 u(x1, . . . , xm)i 7→ u(a1i, . . . , ami) ∈ edkm,n,

(assm[−1])ij 3 w(x1, . . . , xm)ij 7→ adwj (cij) ∈ edkm,n.

Here, u = u(x1, . . . , xm) ∈ liem, w = w(x1, . . . , xm) ∈ assm and we write
wj = w(a1j , . . . , amj) ∈ ass(a1j , . . . , amj).

Example 3.6. (i) edk2,1 ∼= lie2.

(ii) edk1,2 ∼= (lie1)1 ⊕ (lie1)2 ⊕ (ass1[−1])12 ∼= Qx1 ⊕Qx2 ⊕ ass(x)[−1].

(iii) edk2,2 ∼= lie(x, y)1 ⊕ lie(x, y)2 ⊕ (ass(x, y)[−1])12.

In order to describe the Lie bracket on edkm,n in view of the direct sum
decomposition (2), we need to recall the partial differential operators on
liem with respect to the generators x1, . . . , xm. Let a ∈ liem. Viewed as an
element in assm, it is uniquely written as

a =
m∑
i=1

(∂ia)xi =
m∑
i=1

xi(∂
ia),

where ∂ia, ∂
ia ∈ assm. Furthermore, we have ∂ia = ι(∂ia). The operator

∂i : liem → assm satisfies the following formula: for any u, v ∈ liem,

∂i([u, v]) = u(∂iv)− v(∂iu). (3)

The following proposition describes the Lie bracket on edkm,n.

Proposition 3.7. Let u = u(x1, . . . , xm), v = v(x1, . . . , xm) ∈ liem and
w = w(x1, . . . , xm), w′ = w(x1, . . . , xm) ∈ assm.

(i) For any 1 ≤ j ≤ n, we have [uj , vj ] = [u, v]j. For any 1 ≤ j < k ≤ n,

[uj , vk] =

(
m∑
i=1

(∂iv)xiι(∂iu)

)
jk

. (4)

(ii) Let 1 ≤ i ≤ n and 1 ≤ j < k ≤ n. If i /∈ {j, k}, we have [ui, wjk] = 0.
Furthermore, we have [uk, wjk] = (uw)jk and [uj , wjk] = −(wu)jk.

(iii) We have [wij , w
′
kl] = 0 for any 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n.

We need a lemma.

Lemma 3.8. For w = w(x1, . . . , xm) ∈ assm and 1 ≤ j 6= k ≤ n, we have

adwk
(cjk) = adwj (cjk).
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Proof. We may assume that w is a monomial of degree d ≥ 1. So let
w = xi1 · · ·xid . If d = 1, the formula holds true since [ai1k, cjk] = −[ai1j , cjk].
Let d ≥ 2 and assume that the formula holds true in degrees less than d.
Set w′ = xi2 · · ·xid . Using the inductive assumption, we compute

adai1k···aidk(cjk) = adai1kadai2k···aidk(cjk) = adai1kadai2j ···aidj (cjk)

= (−1)d−1
d∑

p=2

adaidj · · · ad[ai1k,aipj ] · · · adai1j (cjk) + adai2j ···aidj ([ai1k, cjk]).

Since [ai1k, aipj ] = −δi1ip [cjk, aipj ] ∈ c, the first term vanishes in edkm,n.
Therefore, adai1k···aidk(cjk) is equal to

adai2j ···aidj ([ai1k, cjk]) = −adai2j ···aidj [ai1j , cjk] = adai1j ···aidj (cjk).

This completes the proof.

Proof of Proposition 3.7. First of all, the formula [uj , vj ] = [u, v]j in (i) is
clear. In what follows, we will use this formula without mentioning explicitly.

(iii) Since the expressions wij and w
′
kl viewed as elements in dkm,n are in

the ideal c, their commutator lies in [c, c]. Therefore [wij , w
′
kl] = 0 ∈ edkm,n.

(ii) To prove [ui, wjk] = 0 when i /∈ {j, k}, it is sufficient to consider the
case where u is of degree 1 and w is a monomial. So we may assume that
u = xq for some 1 ≤ q ≤ m and w = xi1 · · ·xid . We compute

[ui, wjk] = [aqi, adwk
(cjk)]

=

d∑
p=1

adai1k · · · ad[aqi,aipk] · · · adaidk(cjk) + adwk
([aqi, cjk]).

The first term vanishes since [aqi, aipk] = −δqip [cik, aipk] ∈ c. The second
term vanishes as well, since [aqi, cjk] = 0 by the commutation relation.

To prove the other two formulas, we first prove that

[uk, adwk
(cjk)] = ad(uw)k(cjk) (5)

for any 1 ≤ i ≤ n and 1 ≤ j 6= k ≤ n. We may assume that u is homogeneous
and proceed by induction on deg u. When deg u = 1, we have [uk, wjk] =
aduk

adwk
(cjk) = ad(uw)k(cjk) = (uw)jk. Let deg u > 2 and assume that

the formula holds true in degrees less than deg u and that u is of the form
u = [u′, u′′]. We compute

[uk, adwk
(cjk)] = [[u′k, adwk

(cjk)], u
′′
k] + [u′k, [u

′′
k, adwk

(cjk)]]

= [ad(u′w)k(cjk), u
′′
k] + [u′k, ad(u′′w)k(cjk)]

= −ad(u′′u′w)k(cjk) + ad(u′u′′w)k(cjk)

= ad(uw)k(cjk).
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In the second and third lines, we have used the inductive assumption.
Equation (5) shows that [uk, wjk] = (uw)jk for j < k. To prove [uj , wjk] =

−(wu)jk we compute

[uj , wjk] = [uj , adwj (cjk)] = adujwj (cjk) = adwkuk
(cjk) = −adwkuk

(cjk).

Here, we have used Lemma 3.8 in the first and third equalities, formula (5)
in the second equality, and the fact that uk = −uk in the last equality.

(i) It remains to prove formula (4). Setting Φ(u, v) :=
∑m

i=1(∂iv)xiι(∂iu),
let us prove that [uj , vk] = Φ(u, v)jk for any homogeneous elements u, v ∈
liem. We use the induction on the bidegree (deg u, deg v). Since [ai1j , ai2k] =
δi1i2 [ai2k, cjk] = δi1i2(xi2)jk, the case (deg u, deg v) = (1, 1) is done. We
first increase deg u. Let deg u > 1 and assume that u = [u′, u′′] for some
u′, u′′ ∈ liem satisfying [u′j , vk] = Φ(u′, v)jk and [u′′j , vk] = Φ(u′′, v)jk. On the
one hand, using these assumptions we compute

[uj , vk] = [[u′j , vk], u
′′
j ] + [u′j , [u

′′
j , vk]]

= [Φ(u′, v)jk, u
′′
j ] + [u′j ,Φ(u

′′, v)jk]

=
(
Φ(u′, v)u′′ − Φ(u′′, v)u′

)
jk
.

In the last line, we have used (ii). On the other hand, using (3) and the fact
that ι acts as minus the identity on liem, we see that Φ(u, v) = Φ([u′, u′′], v) =
Φ(u′, v)u′′ − Φ(u′′, v)u′. Hence we conclude that [uj , vk] = Φ(u, v)jk. A
similar argument works for increasing deg v. This completes the proof.

Let Aem
m,n = U(edkm,n) be the universal enveloping algebra of edkm,n.

It is the quotient of Am,n by the span of monomials in aij and cij which
contain at least two generators of type cij .

The following proposition is a consequence of Proposition 2.8.

Proposition 3.9. There is a canonical isomorphism of graded Q-algebras
grQP em

m,n
∼= Aem

m,n, through which the class of αij − 1 (resp. τij − 1) corre-
sponds to aij (resp. cij).

3.3 Description of operadic operations on edkm,n

The operadic operations introduced in Section 2.3 naturally induces opera-
tions on emergent braids and chord diagrams. Let us describe the operations
on edkm,n in view of the direct sum decomposition (2). In what follows, let
u = u(x1, . . . , xm) ∈ liem and w = w(x1, . . . , xm) ∈ assm.

First, we have

δ0(ui) = u(x2, . . . , xm+1)i, δ0(wij) = w(x2, . . . , xm+1)ij , (6)
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and for 1 ≤ k ≤ m,

δk(ui) = u(x1, . . . , xk + xk+1, . . . , xm+1)i,

δk(wij) = w(x1, . . . , xk + xk+1, . . . , xm+1)ij . (7)

Second, we describe the cabling operations with respect to blue strands.
Let R : liem → assm be the unique Q-linear map satisfying R(xi) = 0 for
i = 1, . . . ,m and for any a, b ∈ liem,

R([a, b]) = [R(a), b] + [a,R(b)] +
m∑
i=1

((∂ib)xiι(∂ia)− (∂ia)xiι(∂ib)) . (8)

Lemma 3.10. For 1 ≤ k ≤ n, we have the following:

δm+k(ui) =


ui (i < k)

uk + uk+1 +R(u)k(k+1) (i = k)

ui+1 (i > k)

,

and

δm+k(wij) =



wij (j < k)

wik + wi(k+1) (j = k)

wi(j+1) (i < k < j)

wk(j+1) + w(k+1)(j+1) (i = k)

w(i+1)(j+1) (k < i)

.

Proof. We will prove the formula δm+k(uk) = uk + uk+1 + R(u)k(k+1) and
δm+k(wik) = wik + wi(k+1) only. The proof of the other formulas is rather
straightforward, so we omit it.

First we prove that δm+k(uk) = uk + uk+1 +R(u)k(k+1). This is true in
degree one, since δm+k(aik) = aik+ai(k+1). Assume that deg u > 1, we have
u = [a, b] for some homogeneous elements a, b, and

δm+k(ak) = ak + ak+1 +R(a)k(k+1), δm+k(bk) = bk + bk+1 +R(b)k(k+1)

for some R(a), R(b) ∈ assm. Then, we have

δm+k(uk) = [δm+k(ak), δm+k(bk)]

= [ak + ak+1 +R(a)k(k+1), bk + bk+1 +R(b)k(k+1)].

Computing the right hand side using Proposition 3.7, we obtain

uk +uk+1 +
(
[R(a), b] + [a,R(b)] +

m∑
i=1

((∂ib)xiι(∂ia)− (∂ia)xiι(∂ib))
)
k(k+1)

.

This completes the proof.
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Next we show that δm+k(wik) = wik + wi(k+1). We have

δm+k(wik) = adw(a1k+a1(k+1),...,amk+am(k+1))(cik + ci(k+1))

= adw(a1k+a1(k+1),...,amk+am(k+1))(cik)

+ adw(a1k+a1(k+1),...,amk+am(k+1))(ci(k+1)).

Since aj(k+1) and cik commute and the Lie bracket of ajk and al(k+1) lies in
c, the first term is equal to adw(a1k,...,amk)(cik) = wik. Similarly, the second
terms is equal to wi(k+1). This completes the proof.

Finally, we describe the map ϑm.

Lemma 3.11. We have the following:

ϑm(ui) = u(x1, . . . , xm−1, 0)i+1 +
(
(∂mu)(x1, . . . , xm−1, 0)

)
1(i+1)

,

ϑm(wij) = w(x1, . . . , xm−1, 0)(i+1)(j+1).

Proof. The proof of the first formula is similar to the proof of the formula
for δm+k(uk) in Lemma 3.10. We denote by H(u) the right hand side of the
formula. We first check that the formula holds true in degree one. Now let
a, b ∈ liem and assume that ϑm(ai) = H(a) and ϑm(bi) = H(b). Then, by
a direct computation using Proposition 3.7 and formula (3), we verify that
ϑm([a, b]i) = [H(a),H(b)] is equal to H([a, b]). Since this is straightforward,
we omit the detail.

To prove the second formula, modulo [c, c] we compute

ϑm(wij) = adw(a1(j+1),...,a(m−1)(j+1),c1(j+1))(c(i+1)(j+1))

= adw(a1(j+1),...,a(m−1)(j+1),0)(c(i+1)(j+1))

= w(x1, . . . , xm−1, 0)(i+1)(j+1).

4 Homomorphic expansions for mixed braids

In [5], the category PaB of parenthesized braids was introduced, and it
was shown that the Drinfeld associators give rise to formality isomorphisms
(homomorphic expansions) for this category. In this section, we extend this
formalism to mixed braids.

4.1 Parenthesized mixed braids and chord diagrams

We need some notation. Let Par =
⊔

m,n≥0Parm,n be the set of paren-
thesized words in two letters and , where Parm,n is the subset con-
sisting of parenthesized words with m red bullets and n blue bullets. For
example, ( ) ∈ Par2,1 and ( ( )) ∈ Par3,1. For O ∈ Parm,n, let
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f(O) = O ∈ Parm,0 be the parenthesized word in obtained by forgetting
all the blue bullets in O, and let p(O) = o ∈Wm,n be the word obtained by
forgetting the parenthesization of O. For example, if O = ( ( )), then
O = ( ) and o = .

First we define the category PaMB of parenthesized mixed braids. The
set of objects is Par . Let O,O′ ∈ Par with f(O) = O, f(O′) = O′,
p(O) = o and p(O′) = o′. Then the set of morphisms from O to O′ is

PaMB(O,O′) :=

{
MB(o, o′) if O = O′,

∅ otherwise.

The composition is defined using that of MB. Note that there are no mor-
phisms from O to O′ unless O = O′. For example, we have no morphism
from ( ) to ( ). When we draw pictures of morphisms in PaMB,
which are represented by linear combinations of mixed braids, we use the
same convention used for PaB in [5]. Namely, we draw the bottom and top
ends of mixed braids so that their distances respect their “distances” in the
parenthesization of the source and domain of the morphism.

Example 4.1. In the following two pictures, the first one shows a morphism
from ( ) to ( ), and the second one from ( ( )) to ( )( ).

Next we define the category PaMCD. The set of objects is the same as
the set of objects of PaMB, namely Par . The set of morphisms from O
to O′ is

PaMCD(O,O′) :=

{
Am,n ×S (o, o′) if O = O′,

∅ otherwise.

Here, in the first case, (m,n) is the type of o ∈ Wm,n. By definition, a
morphism in PaMCD is of the form (u, σ), where u ∈ Am,n and σ is a
mixed permutation of type (m,n). Recall that u is expressed as a linear
combination of words in aij and cij , which are interpreted as horizontal
chords. We draw u on the picture of σ so that aij (resp. cij) becomes
a chord connecting the ith red strand and jth blue strand (resp. the ith
and jth blue strands), where we count the strands at the bottom. We also
express the information on the parenthesization using the distances between
endpoints. For example,
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is a morphism from ( ) to ( ) which corresponds to
(
c12a12,

)
. In this

view point, the composition in PaMCD is given by stacking of diagrams.
For example, one has

· = = .

More formally, the composition of (composable) morphisms (u, σ) and (u′, σ′)
is given by (uσ(u′), σσ′). Here, through the restriction to the blue bullets,
σ induces a permutation of {1, . . . , n} and hence acts on Am,n.

The operadic operations to mixed braids and chord diagrams introduced
in Section 2.3 extends naturally to their parenthesized enhancements PaMB
and PaMCD, with an extra care for parenthesizations. For the extension
operations, we draw the ends of the added strand outer-most in the picture.
For the cabling operations, we draw the ends of the two newly created
strands closest to each other. For example,

δs0

( )
= and δ1

( )
= .

To compare the categories PaMB and PaMCD, we need to consider
their completions. On the one hand, PaMB is filtered. By the same argu-
ment used for the ideal J in Section 3.1, the augmentation ideal I = IPm,n

and its powers extend naturally to a multiplicative filtration of the Q-linear
category MB and hence of PaMB. Therefore, one can define the I-adic

completion P̂aMB and the associated graded grPaMB. On the other
hand, PaMCD is graded. The grading comes from the grading of the al-

gebra Am,n. Thus one can define the degree completion ̂PaMCD, where

Am,n is replaced with its degree completion Âm,n. The operadic operations
on PaMB and PaMCD extends to their completions.

The isomorphism grQPm,n
∼= Am,n proven in Proposition 2.8 extends

naturally to a canonical isomorphism

grPaMB ∼= PaMCD (9)

of graded Q-linear categories which is the identity on the objects. Moreover,
one checks that this isomorphism respects all the operadic operations.

Proposition 4.2. The category PaMB is generated by the following mor-
phisms, their inverses, and their images by repeated applications of the op-
eradic operations in PaMB:

σ+ps = , σ−ps = , αpps := , αpsp := , αspp := .

(10)
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Sketch of proof. We say that a parenthesized mixed braid is basic if it is one
of the morphisms listed in the statement of the proposition. Let m,n ≥ 0
and O

∗
m ∈ Parm,0. Joining O

∗
m and the left-nested parenthesization of n

blue bullets, we obtain a parenthesized word O∗
m,n ∈ Parm,n. For example,

if O
∗
4 = ( )( ) then O∗

4,3 = (( )( ))(( ) ).

Let m,n ≥ 0 and O,O′ ∈ Parm,n such that O
∗
m := O = O′. Given any

parenthesized mixed braids β ∈ PaMB(O∗
m,n, O) and β′ ∈ PaMB(O∗

m,n, O
′),

any morphism ξ from O to O′ decomposes as ξ = β−1(βξβ′−1)β′. There-
fore, to prove the proposition it is sufficient to show the following: given any
parenthesization O

∗
m ∈ Parm,0,

(i) any parenthesized mixed braid from O∗
m,n to itself decomposes into a

product of basic morphisms, and

(ii) for any O ∈ Parm,n with O = O
∗
m, there is morphism from O∗

m,n to O
which decomposes into a product of basic morphisms.

To prove (i), note that the underlying mixed braid of a parenthesized one
lies in the group Bstd

m,n introduced in Section 2.1. Since this group is gener-
ated by αij ’s and the simple braids among blue strands [11, Section 4], it is
sufficient to deal with these generators. We give two sample computations:

= = δp0(αsss) ◦ δp0(δ
s
0(σss)) ◦ δ

p
0(α

−1
sss ),

where we set σss = ϑ1(σ
+
ps) and αsss = ϑ1(ϑ2(αpps)), and

= = ξ ◦ δs4(δ
p
3(σ

+
ps)) ◦ δs4(δ

p
3(σ

−
ps)) ◦ ξ−1,

where ξ = δ1(δ
p
0(σ

−1
ss )) ◦ δ1(ϑ2(α−1

pps)) ◦ δs4(αpps) ◦ δs4(δ
p
0(σ

−
ps)) ◦ δs4(α−1

psp).
For (ii), we give one example:

= = δ1(ϑ2(α
−1
pps)) ◦ δs4(δ2(σ+ps)) ◦ δs4(α−1

spp) ◦ ϑ1(δ1(αpps)).
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In a similar fashion to the definition of PaMB, for each k ≥ 1 we
define the parenthesized version of the category MB/k, which we denote
by PaMB/k. Likewise, for each k ≥ 1 we define the Q-linear category
PaMCD/k. The isomorphism (9) descends to an isomorphism grPaMB/k ∼=
PaMCD/k. For k = 2, we use the special notation PaEB = PaMB/2 and
PaECD = PaMCD/2.

4.2 Homomorphic expansions for mixed braids

Here comes the concept of homomorphic expansions for the category PaMB:

Definition 4.3. A homomorphic expansion for PaMB is a functor Zmb :

PaMB → ̂PaMCD which is the identity on the objects, preserves the
filtrations, induces the identity at the associated graded, respects all the
operadic operations, and is group-like.

The group-like condition in the above definition means that for each
mixed braid β of type (m,n) one has Zmb(β) = (exp(u), π(β)), where u is

an element in d̂km,n, the degree completion of dkm,n.
For each k ≥ 1, we can formulate the concept of a homomorphic ex-

pansion for PaMB/k: it is defined to be a functor Zmb/k : PaMB/k →
̂PaMCD/k satisfying the same conditions required for Zmb in Definition 4.3.
Homomorphic expansions for PaMB exist by the following

Proposition 4.4. Any Drinfeld associator gives rise to a homomorphic
expansion for PaMB and consequently to a homomorphic expansion for
PaMB/k for any k ≥ 1.

Proof. Let Φ be a Drinfeld associator. It is of the form Φ = exp(ϕ), where
ϕ = ϕ(x, y) ∈ l̂ie2 is a Lie series without linear term. As shown in [5,

Proposition 3.4], Φ extends to a functor Zpb : PaB → P̂aCD, where the
target is the degree completion of the category of parenthesized (horizontal)
chord diagrams. The category PaB is generated (in the same sense as in

Proposition 4.2) by the elements σ = and α = (see [5, Claim 2.6]).

The functor Zpb is specified by the values on these generators: Unlucky crash
of notation. We
are using σ for
permutations!

Zpb(σ) :=

(
exp

(
1

2
t12

)
,

)
, Zpb(α) :=

(
Φ(t12, t23),

)
.

There are functors PaMB → PaB and ̂PaMCD → P̂aCD obtained
by forgetting the colors of poles and strands. These functors are faithful.
For the former, this follows from the fact that Pm,n is a subgroup of Pm+n,
the pure braid group of m+ n strands. For the latter, this follows from the
injectivity of the map dkm,n → dkm+n; see Remark 2.7.
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We will show that Zpb induces a functor Zmb : PaMB → ̂PaMCD
which is the identity on the objects. In view of the faithfulness of the
forgetful functors above, it is sufficient to prove the following claim:

Claim. Let β be a mixed braid with m poles and n strands which represents
a morphism inPaMB. Let β0 be the parenthesized braid obtained by forget-
ting the colors of β and write Zpb(β0) = (B, π(β0)), where B ∈ exp(d̂km+n)
and π(β0) is the parenthesized permutation induced by β0. Then, B lies in

exp(d̂km,n), where we view dkm,n as a Lie subalgebra of dkm+n.

Proof of the claim. Basically, this is because there is no crossing between
the strands in β0 which were poles of β. More details are as follows.

Step 1. Assume that β is one of the elements in (10). Then, β0 is either

σ± or α. If β0 = σ±, then B = exp
(
±1

2 t12
)
= exp

(
±1

2a11
)
∈ exp(d̂k1,1). If

β0 = α, there are three possibilities: (i) β = αpps; (ii) β = αpsp; (iii) β =
αspp. Since ϕ has no linear term, we have ϕ(−t13 − t23, t23) = ϕ(t12, t23) =
ϕ(t12,−t12 − t13). Hence, we have B = Φ(−a11 − a21, a21) in case (i), B =
Φ(a11, a21) in case (ii), and B = Φ(a11,−a11−a21) in case (iii). In all cases,

we obtain that B ∈ exp(d̂k2,1).
Step 2. By Proposition 4.2 we can decompose β into a product of basic

morphisms (in the sense of the proof of Proposition 4.2). By Step 1, any basic

morphism is sent by Zpb to a morphism in P̂aCD whose first component
lies in exp(d̂km,n). Hence the same is true for β, and the claim follows.

The functor Zpb is filtration-preserving, induces the identity at the asso-
ciated graded, and respects all the operadic operations in PaB. Therefore,
the induced functor Zmb satisfies all the required properties for a homomor-
phic expansion for PaMB. This completes the proof of Proposition 4.4.

Are there any other ways to obtain homomorphic expansions for PaMB?
By Proposition 4.2, any Zmb is specified by values on the basic morphisms
in (10). For the first and second elements, the group-like condition for Zmb

implies that Zmb(σ+ps) =
(
exp(λa11),

)
and Zmb(σ−ps) =

(
exp(µa11),

)
for

some λ, µ ∈ Q. Applying the operation ϑ1 to the first equation, we obtain
Zmb

( )
=
(
exp(λc12),

)
and Zmb

(
(τ11, )

)
= Zmb

( )
=
(
exp(2λc12),

)
=(

1 + 2λc12,
)
. Since grZmb is the identity, we obtain λ = 1/2. Similarly,

we obtain µ = −1/2. In summary, we have

Zmb(σ+ps) =

(
exp

(
1

2
a11

)
,

)
, Zmb(σ−ps) =

(
exp

(
−1

2
a11

)
,

)
.

(11)
For the other three morphisms in (10), we introduce the notation

Φpps := Zmb(αpps), Φpsp := Zmb(αpsp), Φspp := Zmb(αspp).
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By the group-like condition for Zmb, the Â2,1-component of these three

elements lie in exp(d̂k2,1) ⊂ Â2,1 so that one can write Φpps = exp(ϕpps),

Φpsp = exp(ϕpsp), and Φspp = exp(ϕspp) for some ϕpps, ϕpsp, ϕspp ∈ d̂k2,1.
To obtain a well-defined functor Zmb, the values Φpps, Φpsp and Φspp

have to satisfy several equations coming from equalities among parenthe-
sized mixed braids. To give a complete description, we need to know the
presentation of the category PaMB in terms of the generators in (10). We
do not pursue this issue in the present paper. We focus on the following
ppss-pentagon equality TODO: do we

want to explain
other 5-gons?
pssp, psps,...

TODO: should
we write on
solving the psss
5-gon?

=

as morphisms from (( ) ) to ( ( )). It can be written as

d4(αpps)d
2(αpps)d

0(αpps) = d1(αpps)d
3(αpps).

Applying Zmb, we obtain

d4(Φpps)d
2(Φpps)d

0(Φpps) = d1(Φpps)d
3(Φpps). (12)

We will be interested in the linearization of this equation, which takes the
following form:

d4(ϕpps) + d2(ϕpps) + d0(ϕpps) = d1(ϕpps) + d3(ϕpps), (13)

namely, d2,1(ϕpps) = 0. We call this the linearized ppss-pentagon equation.

4.3 Emergent pentagon and (doubled) hexagon equations

From now on, we consider the case k = 2, namely PaMB/2 = PaEB, and
focus on the linearized ppss-pentagon equation (13) in edk2,2.

Proposition 4.5. Let ϕ = ϕ(x, y) ∈ lie2. Then, ϕ1 = ϕ(a11, a21) ∈ edk2,1
satisfies d2,1(ϕ1) = 0 ∈ edk2,2 if and only if ϕ satisfies the following two
equations:

ϕ(y, 0)− ϕ(x+ y, 0) = 0, (14)

(∂yϕ)(x, y) + (∂yϕ)(y, 0)− (∂yϕ)(x+ y, 0)−R(ϕ) = 0. (15)
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Proof. Using formulas (6), (7) and Lemmas 3.10, 3.11, we obtain that

d0(ϕ1) = ϕ(y, 0)2 + (∂yϕ)(y, 0)12,

d1(ϕ1) = ϕ(x+ y, 0)2 + (∂yϕ)(x+ y, 0)12,

d2(ϕ1) = ϕ(x, y)2 + (∂yϕ)(x, y)12,

d3(ϕ1) = ϕ(x, y)1 + ϕ(x, y)2 +R(ϕ)12,

d4(ϕ1) = ϕ(x, y)1.

The assertion follows from this.

Remark 4.6. Equation (14) says that the coefficient of x in ϕ is zero. One
can check that in degree one, solutions to equation (15) are scalar multiples
of x. Hence, one concludes that there are no solution to d2,1(ϕ1) = 0 in
degree one, and equation (14) is redundant in degrees at least two.

Recall the definition of the Grothendieck-Teichmüller Lie algebra grt1 by
Drinfeld [8]. It is the space of ψ ∈ lie2 which satisfy the following relations:

ψ(x, y) = −ψ(y, x),
ψ(x, y) + ψ(y,−x− y) + ψ(−x− y, x) = 0,

ψ(t12, t2(34)) + ψ(t(12)3, t34) = ψ(t23, t34) + ψ(t1(23), t(23)4) + ψ(t12, t23).

(16)

Here, the last equation (16), called the pentagon equation, takes place in
dk4 and t2(34) = t23 + t24, etc. It is known that nontrivial elements in grt1
have degrees at least three. Reverse the or-

der? Should
we first men-
tion this?

The pentagon equation admits the following interpretation in terms of
a certain differential on dkn. In fact, the differential on edkm,n is induced
from this differential. Assume that ψ ∈ lie2 has degree at least two. Then, it
can be considered as an element in dk3 by the substitution ψ 7→ ψ(t12, t23).
There are maps di : dk3 → dk4 for 0 ≤ i ≤ 4 defined in terms of extension and
cabling operations, and ψ is a solution to the pentagon equation if and only
if d3(ψ) =

∑4
i=0(−1)idi(ψ) = 0. Furthermore, through the isomorphism

dk3 ∼= Q(t12 + t13 + t23)⊕ lie(t13, t23),

ψ(t12, t23) corresponds to ψ(−t13 − t23, t23) ∈ lie(t13, t23). Now, identify
lie(t13, t23) with dk2,1 = lie(a11, a21) ∼= edk2,1 by t13 7→ a11 and t23 7→ a21.
Since the coface maps on dk3 and edk2,1 are compatible with this identi-
fication, it follows that any ψ = ψ(x, y) ∈ lie2 with d3(ψ) = 0 satisfies
d2,1(ψ(−x− y, y)) = 0.

We now want to introduce the emergent version of the Grothendieck-
Teichmüller Lie algebra as the space of solutions to the linearized ppss-
pentagon equation. For a technical reason, we put an additional condition
coming from the following fact proved by Drinfeld [8, equation (5.19)]: any
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ψ ∈ grt1 satisfies [x, ψ(−x−y, x)]+[y, ψ(−x−y, y)] = 0, and hence ϕ(x, y) =
ψ(−x− y, y) satisfies Should we

explain how
this equation
can be thought
of as a doubled
6-gon (under
a symmetry
assumption
Φspp(x, y) =

Φpps(y, x)
−1)?

Or, just intro-
duce it without
explaining
reasons?

[x, ϕ(y, x)] + [y, ϕ(x, y)] = 0. (17)

Definition 4.7. Let

grtem1 := {ϕ ∈ lie2 | ϕ satisfies equations (14), (15) and (17)}.

By definition, we have the injection grt1 ↪→ grtem1 , ψ(x, y) 7→ ψ(−x−y, y).

Remark 4.8. A computer experiment shows that up to degree 17, the space
of solutions to equations (14) and (15) coincides with grt1. (Recall from
Remark 4.6 that (14) is automatically satisfied in degrees at least two.) We
do not know if one can eliminate condition (17) from the definition of grtem1 .

5 Loop operations and Kashiwara-Vergne theory

In this section, we explain an interpretation of the Kashiwara-Vergne Lie
algebras in terms of surface topology [1, 2].

Fix a positive integer n and let Σ be an n-punctured disk, that is, a
closed unit disk in R2 with n distinct points in the interior removed. Choose
a basepoint ∗ in the boundary of Σ and let π = π1(Σ, ∗). Since the group π is
free of rank n, the associated graded quotient of the group algebra Qπ with
respect to the powers of the augmentation ideal is canonically isomorphic to
the free associative algebra assn = ass(x1, . . . , xn), where the generator xi
corresponds to the homology class of the loop around the ith puncture:

Σ =

∗

◦ ◦ · · · ◦
1 2 · · · n

∗

◦ ◦ · · · ◦
x1 x2 · · · xn

Let A be an associative Q-algebra. The trace space |A| is defined to be
A/[A,A]. We denote by | | : A → |A| the natural projection. For instance,
the space |Qπ| is naturally identified with the set of homotopy classes of free
loops in Σ, and trn := |assn| is the space of cyclic words in x1, . . . , xn.

5.1 Loop operations on a punctured disk

We briefly recall several loop operations on Qπ and |Qπ|. Our focus is
on their associated graded operations on assn and trn, which are actually
needed for us. For more details about the loop operations themselves, see
[13, 12, 2]. TODO: I will

add figures for

η and δf .

25



The main cast in the sequel are the (associated graded operations of)
the homotopy intersection form [13] and the framed Turaev cobracket [1,
2]. The former is a Q-linear map η : Qπ⊗2 → Qπ defined in terms of
intersections of two based loops in Σ, and the latter is a Q-linear map
δf : |Qπ| → |Qπ|⊗2 defined in terms of self-intersections of a free loop in Σ.
The operation δf depends on the choice of a framing on Σ. Here, we choose
the blackboard framing associated with the inclusion Σ ⊂ R2. We also use
a based loop version of δf : a certain map µfr : Qπ → |Qπ| ⊗Qπ introduced

in [2, Section 2.3]. We set µf := (ε ⊗ id) ◦ µfr : Qπ → Qπ, where the map
ε : |Qπ| → Q is induced from the augmentation map of Qπ. The maps µf

and η are related by the following formula: for any a, b ∈ Qπ,

µf (ab) = aµf (b) + µf (a)b+ η(a, b). (18)

In fact, the operation µf recovers µfr and δf . The map µfr coincides with
the following composition

Qπ ∆−→Qπ ⊗Qπ id⊗µf

−−−−→ Qπ ⊗Qπ
id⊗((ι⊗id)◦∆)−−−−−−−−−→ Qπ ⊗Qπ ⊗Qπ (| |◦mult)⊗id−−−−−−−−→ |Qπ| ⊗Qπ. (19)

Here, ∆ and ι are the coproduct and antipode on Qπ defined by ∆(γ) = γ⊗γ
and ι(γ) = γ−1 for γ ∈ π, and in the last step we use the multiplication map
in the algebra Qπ. Furthermore, for any a ∈ Qπ we have

δf (|a|) = Alt ◦ (id⊗ | |) ◦ µfr (a) + |a| ∧ 1. (20)

Here, Alt(a⊗ b) = a⊗ b− b⊗ a and 1 is the class of the unit in Qπ.

Remark 5.1. (i) We give several comments about proofs of the formulas
above. First, one can derive formula (18) by applying (ε ⊗ id) to the
first equation in [2, Proposition 2.9 (i)]. A formula similar to (18)
was proved in [12, (3.3)] for a variant of the map µf . Second, the

decomposition (19) of the map µfr follows directly from the defining

formula of µfr . See [2, Section 2.3, formula (13)]. Finally, formula (20)
can be found in [2, Proposition 2.9 (ii)].

(ii) The map δf is a refinement of the Turaev cobracket [17], which is a Lie
cobracket on the quotient space |Qπ|/Q1. Turaev [16] also introduced
essentially the same operations as η and (an unframed version of) µf .

5.2 The associated graded operations

All the loop operations in the previous section descend to the associated
graded operations on assn and trn. We review their explicit formulas. For
more details, see [2, Section 3]. The associated graded operation of η,

ηgr : assn
⊗2 → assn,
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is a map of degree −1 and given by ηgr(1, v) = ηgr(u, 1) = 0 and

ηgr(a1 · · · al, b1 · · · bm) = −a1 · · · al−1z(al, b1)b2 · · · bm, (21)

where l,m ≥ 1, the elements a1, . . . , al, b1, . . . , bm are of degree 1, and z is
defined by z(xi, xj) = δijxi. The associated graded operation of µf ,

µfgr : assn → assn,

is a map of degree −1 and given by the formula

µfgr(a1 · · · am) = −
m−1∑
j=1

a1 · · · aj−1z(aj , aj+1)aj+2 · · · am, (22)

where a1, . . . , am are elements of degree 1. The associated graded version of
the relations (18), (19) and (20) holds true. First, for any a, b ∈ assn

µfgr(ab) = aµfgr(b) + µfgr(a)b+ ηgr(a, b). (23)

Of course, one can directly check this from formulas (21) and (22). Second,

the associated graded operation µfr,gr decomposes as

assn
∆−→assn ⊗ assn

id⊗µf
gr−−−−→ assn ⊗ assn

id⊗((ι⊗id)◦∆)−−−−−−−−−→ assn ⊗ assn ⊗ assn
(| |◦mult)⊗id−−−−−−−−→ trn ⊗ assn. (24)

Conversely, we have µfgr = (ε⊗ id) ◦ µfr,gr. Finally, for any a ∈ assn

δfgr(|a|) = Alt ◦ (id⊗ | |) ◦ µfr,gr(a). (25)

Note that the term |a| ∧ 1 in (20) does not contribute to the associated
graded operation, since it is of filtration degree zero.

Lemma 5.2. For any a, b ∈ lien, we have ηgr(a, b) = −
∑n

i=1(∂ia)xiι(∂ib).

Proof. This follows from a =
∑n

i=1(∂ia)xi and b =
∑n

i=1 xiι(∂ib).

Proposition 5.3. The map R coincides with the restriction of µfgr to lien.

Proof. We have µfgr(xi) = 0 for i = 1, . . . , n. Let a, b ∈ lien. Equation (23)

and Lemma 5.2 shows that µfgr([a, b]) = µfgr(ab)− µfgr(ba) is equal to

[µfgr(a), b] + [a, µfgr(b)] +
n∑

i=1

((∂ib)xiι(∂ia)− (∂ia)xiι(∂ib)) .

Therefore, the map µfgr restricted to lien satisfies the same recursive formula
in (8) as the map R. This proves the proposition.
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5.3 Kashiwara-Vergne Lie algebras

We recall the definition of the Kashiwara-Vergne Lie algebras [4, 1].
We begin with some preliminary materials. Let tdern = lien

⊕n. The
grading on lien makes tdern a graded Q-vector space. For ũ = (u1, . . . , un) ∈
tdern, let ρ(ũ) be a derivation on lien defined by ρ(ũ)(xi) = [xi, ui] for
i = 1, . . . , n. The space tdern has a structure of graded Lie algebra whose Lie
bracket is given by [ũ, ṽ] = w̃ = (w1, . . . , wn) with wi = [ui, vi] + ρ(ũ)(vi)−
ρ(ṽ)(ui) for i = 1, . . . , n, and the map ũ 7→ ρ(ũ) is a Lie algebra homomor-
phism to the derivation Lie algebra of lien. Through this homomorphism,
tdern acts on lien, assn, trn and their tensor products. Elements of tdern
are called tangential derivations. The space sdern of special derivations is
defined to be the set of ũ ∈ tdern annihilating the element x0 =

∑n
i=1 xi, i.e.,

ρ(ũ)(x0) = 0. It forms a Lie subalgebra of tdern. The divergence cocycle [4]
is a Lie 1-cocycle defined by the following formula:

div : tdern → trn, ũ 7→
n∑

i=1

|xi(∂iui)|.

Definition 5.4. (i) The Kashiwara-Vergne Lie algebra krvn is the space
consisting of ũ ∈ sdern such that div(ũ) =

∑n
i=0 |fi(xi)| for some

formal power series f0(s), f1(s), . . . , fn(s) ∈ Q[[s]].

(ii) Let krv0n be the space of ũ ∈ sdern such that div(ũ) ∈
⊕n

i=1Q|xi|.

In the definition of krvn, the functions fi(s) actually agree with each
other modulo the linear part [1, Proposition 8.5]. In particular, if n = 2 and
ũ ∈ krv2 is of degree ≥ 3, then there exists an f(s) ∈ Q[[s]]≥2 such that

div(ũ) = |f(x1) + f(x2)− f(x1 + x2)|. (26)

We have the following sequence of inclusions of graded Lie algebras:

tdern ⊃ sdern ⊃ krvn ⊃ krv0n.

The Lie algebras sdern, krvn and krv0n have the following characterizations
in terms of (the associated graded of) the loop operations.

Theorem 5.5. Let ũ = (u1, . . . , un) ∈ tdern. Then, the following three
conditions are equivalent:

(i) ũ ∈ sdern;

(ii) ∂jui = ∂iuj for any i, j ∈ {1, . . . , n};

(iii) ρ(ũ) commutes with ηgr, i.e., ρ(ũ) ◦ ηgr = ηgr ◦ (ρ(ũ)⊗ id + id⊗ ρ(ũ)).
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Proof. The following computation proves the equivalence (i) ⇔ (ii):

ρ(ũ)(x0) =
n∑

i=1

[xi, ui] =
n∑

i=1

xiui −
n∑

j=1

ujxj =
n∑

i,j=1

(
xi(∂jui)xj − xi(∂

iuj)xj
)
.

To prove the equivalence (ii) ⇔ (iii), note that the map ηgr is a Fox
pairing [13]. This means that ηgr satisfies{

ηgr(ab, c) = aηgr(b, c) + ε(b)ηgr(a, c),

ηgr(a, bc) = ηgr(a, b)c+ ε(b)ηgr(a, c)

for any a, b, c ∈ assn. Thanks to this property, the condition (iii) is equivalent
to the commutativity of ρ(ũ) and ηgr on generators of assn, namely

(iv) u(ηgr(xi, xj)) = ηgr(u(xi), xj)+ηgr(xi, u(xj)) for any i, j ∈ {1, . . . , n}.

Now we compute u(ηgr(xi, xj)) = u(z(xi, xj)) = δiju(xi) = δij [xi, ui] and

ηgr(u(xi), xj) + ηgr(xi, u(xj)) = ηgr([xi, ui], xj) + ηgr(xi, [xj , uj ])

= xi(∂jui)xj − uiz(xi, xj)

+ z(xi, xj)uj − xi(∂
iuj)xj

= xi(∂jui − ∂iuj)xj + δij [xi, ui].

Hence the condition (iv) is equivalent to (ii). This completes the proof.

Remark 5.6. The equivalence (i) ⇔ (iii) in Theorem 5.5 is a special case
of (the infinitesimal version of) more general results [13, Lemmas 6.2 and
6.3], [14, Theorem 2.31].

Theorem 5.7. Let ũ = (u1, . . . , un) ∈ tdern.

(i) ũ ∈ krvn ⇐⇒ ρ(ũ) commutes with ηgr and δ
f
gr.

(ii) ũ ∈ krv0n ⇐⇒ ρ(ũ) commutes with ηgr and µ
f
gr.

Proof. First note that in (ii) one can replace µfgr with µfr,gr, since µ
f
r,gr is

recovered from µfgr and vice versa.
In [2, Theorem 8.21], it was shown that the Kashiwara-Vergne groups

KRVn (resp. KRV0
n) is isomorphic to the group of tangential automorphisms

of (the completion of) assn that commute with the operations ηgr and δfgr
(resp. ηgr and µfr,gr). As krvn and krv0n are the Lie algebras of KRVn and
KRV0

n, respectively, the assertions (i) and (ii) follow from this result.

6 Proof of the main result

In this section, we prove Theorem 1.1 in the introduction. When n = 2, we
use the letters x, y for generators of lie2 instead of x1, x2.
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6.1 KV equations from emergent associator equations

We prove the first statement of Theorem 1.1.
We simply write u = ρ(ũ) for ũ ∈ tdern. Furthermore, we do this

abbreviation for the action of ũ on tensor products of assn and trn. For
instance, ũ acts on trn⊗ assn as ρ(ũ)⊗ id+ id⊗ρ(ũ), and we denote it by u.

Lemma 6.1. Let ũ ∈ sdern. Then, dũ := µfgr ◦u−u ◦µfgr is a derivation on

assn. Furthermore, the map Dũ := µfr,gr ◦u−u ◦µfr,gr from assn to trn⊗ assn
satisfies the following property: for any a, b ∈ assn,

Dũ(ab) = Dũ(a)(1⊗ b) + (1⊗ a)Dũ(b).

Proof. We abbreviate µ = µfgr and η = ηgr. Let a, b ∈ assn. We compute

µ(u(ab)) = µ(u(a)b+ au(b))

= µ(u(a))b+ u(a)µ(b) + η(u(a), b)

+ µ(a)u(b) + aµ(u(b)) + η(a, u(b)),

u(µ(ab)) = u(µ(a)b+ aµ(b) + η(a, b)

= u(µ(a))b+ µ(a)u(b) + u(a)µ(b) + au(µ(b)) + u(η(a, b)).

Since ũ ∈ sdern, we have η(u(a), b)+ η(a, u(b)) = u(η(a, b)) by Theorem 5.5.
Hence we see that dũ is a derivation on assn.

The map µfr,gr decomposes as shown in (24). Since the derivation u
commutes with the Hopf algebra operations on assn, the second assertion
follows from the first assertion.

Proposition 6.2. Let ũ ∈ sdern and assume that there is some c ∈ assn
such that µfgr(u(xi)) = [xi, c] for all i = 1, . . . , n. Then, ũ ∈ krvn.

Proof. In view of Theorem 5.7, it is enough to prove that u commutes with
δfgr. A straightforward computation using (24) shows that µfr,gr(u(xi)) =
|ι(c′)| ⊗ [xi, c

′′] for all i = 1, . . . , n, where we write ∆(c) = c′ ⊗ c′′ using the
Sweedler notation.

Let a = a1 · · · am ∈ assn be a product of m elements of degree 1. Note
that Dũ(ai) = |ι(c′)| ⊗ [ai, c

′′] since µfgr(ai) = 0. By Lemma 6.1, we have

Dũ(a) =
m∑
i=1

(1⊗ a1 · · · ai−1)Dũ(ai)(1⊗ ai+1 · · · am)

=
m∑
i=1

|ι(c′)| ⊗ a1 · · · ai−1[ai, c
′′]ai+1 · · · am

= |ι(c′)| ⊗ [a, c′′].

Since |[a, c′′]| = 0, we obtain (δfgr◦u−u◦δfgr)(|a|) = 0 by (25). This completes
the proof.
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Proof of Theorem 1.1 (i). Let ϕ = ϕ(x, y) ∈ grtem1 . Then ϕ satisfies equa-
tion (15) and the tangential derivation νem(ϕ) = (ϕ(y, x), ϕ(x, y)) is special.
In particular, by Theorem 5.5 we have

∂yϕ = ∂yϕ = ι(∂yϕ). (27)

Put f(s) := −(∂yϕ)(s, 0) ∈ Q[[s]]. We will show that νem(ϕ) ∈ sder2
satisfies the assumption of Proposition 6.2. By Proposition 5.3, one may
replace µfgr with R. We first compute

R(νem(ϕ)(y)) = R([y, ϕ(x, y)])

= [y,R(ϕ)] + (∂yϕ)y − yι(∂yϕ)

= [y,R(ϕ)− ∂yϕ]

= [y, (∂yϕ)(y, 0)− (∂yϕ)(x+ y, 0)]

= [y, f(x+ y)].

Here, we have used formula (8) in the second line, equation (27) in the third
line, equation (15) in the fourth line, and the fact that y commutes with
any power series in y in the last line. Similarly, we compute

R(νem(ϕ)(x)) = R([x, ϕ(y, x)])

= [x,R(ϕ(y, x))] + ∂x(ϕ(y, x))x− xι(∂x(ϕ(y, x)))

= [x,R(ϕ)(y, x)− (∂yϕ)(y, x)]

= [x, (∂yϕ)(x, 0)− (∂yϕ)(y + x, 0)]

= [x, f(x+ y)].

This completes the proof.

6.2 Symmetric Kashiwara-Vergne Lie algebra

Recall from [4, Section 8] that the symmetric part of the Kashiwara-Vergne
Lie algebra krvsym2 is the invariant Lie subalgebra of krv2 by the involution
(u(x, y), v(x, y)) 7→ (v(y, x), u(y, x)). In this section, we prove the second
statement of Theorem 1.1.

Lemma 6.3. Let ϕ = ϕ(x, y) ∈ lie2 be an element of degree at least two.
Then, R(ϕ)(0, y) = R(ϕ)(x, 0) = (∂yϕ)(0, y) = 0.

Proof. Notice that ϕ seen as an element of ass2 is a linear combination of
words which contain at least one x and at least one y. Formula (22) implies
that R(ϕ) is a linear combination of words with the same property. Hence
R(ϕ)(0, y) = R(ϕ)(x, 0) = 0. Similarly we have (∂yϕ)(0, y) = 0, since ∂yϕ is
a linear combination of words which contain at least one x.
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Proof of Theorem 1.1 (ii). Let ũ = (ϕ(y, x), ϕ(x, y)) ∈ krvsym2 be homoge-
neous of degree at least two.

Step 1. We first consider the case where ũ ∈ krv02. By Theorem 5.7 (ii),

ũ commutes with µfgr = R. Hence

0 = ũ(R(y)) = R(ũ(y)) = R([y, ϕ]) = [y,R(ϕ)− ∂yϕ].

Therefore, we have R(ϕ)−∂yϕ ∈ Q[[y]]≥1. By Lemma 6.3, we obtain R(ϕ)−
∂yϕ = 0. Furthermore, (∂yϕ)(x, 0) = R(ϕ)(x, 0) = 0. Therefore, we obtain
equation (15) for ϕ. Hence ϕ ∈ grtem1 and ũ = νem(ϕ).

Step 2. We next consider the general case. Let l = degϕ. If l is even,
then div(ũ) = 0 by [4, Proposition 4.5]. Hence ũ ∈ krv02, and ũ is in the
image of νem by Step 1. Assume that l is odd (and ≥ 3). Recall that the
Drinfeld-Ihara generator σl ∈ grt1 satisfies the property

div(ν(σl)) = |xl + yl − (x+ y)l|

(see [4, Proposition 4.10]). Thus there exists a constant c ∈ Q such that
ũ− cν(σl) has the vanishing divergence, i.e., ũ− cν(σl) ∈ krv02. From Step 1,
we obtain that ũ−cν(σl) is in the image of νem. Let ψl(x, y) = σl(−x−y, y) ∈
grtem1 . Then ν(σl) = νem(ψl). Therefore, ũ = (ũ− cν(σl)) + cν(σl) is in the
image of νem. This completes the proof.
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