
COMPUTING FINITE TYPE INVARIANTS EFFICIENTLY

DROR BAR-NATAN, ITAI BAR-NATAN, IVA HALACHEVA, AND NANCY SCHERICH

Abstract. We describe an efficient algorithm to compute finite type invariants of type k
by first creating, for a given knot K with n crossings, a look-up table for all subdiagrams of
K of size ⌈ k

2 ⌉ indexed by dyadic intervals in [0, 2n − 1]. Using this algorithm, any such finite
type invariant can be computed on an n-crossing knot in time ∼ n⌈ k

2 ⌉, a lot faster than the
previously best published bound of ∼ nk.

1. Introduction

Finite type invariants, also known as Vassiliev invariants [Vas90, Vas92], underlie many of
the classical knot invariants, for instance they include the coefficients of the Jones, Alexander,
and more generally HOMFLY-PT polynomials [BL93, BN95]. A knot invariant ζ is said to
be of finite type k if it vanishes on all knots with at least k + 1 double points, where ζ is
extended to knots with double points by the formula:

ζ() = ζ(!)− ζ(").
For example, the linking number of a two-component knot is a finite type invariant of type 1.
In our main result, Theorem 1.1, we provide an algorithm to compute finite type invariants
from a planar projection of a knot in a surprisingly efficient time depending on the crossing
number of the knot diagram.

Theorem 1.1. Finite type invariants of type k can be computed on an n-crossing knot in
time at most ∼ n⌈k/2⌉.

This is a surprising result as before this theorem, the fastest algorithm (known to the
authors) to compute a type k invariant on a knot diagram with n crossings takes time ∼ nk

[BNBNHS23], and it was standardly believed that this was the fastest possible. There are
specific finite type invariants which can be computed much faster, such as the linking number
and the coefficients of the Alexander polynomial, but these are special cases. Theorem 1.1
gives the current fastest known algorithm that works for all finite type invariants, and shows
that the computational time can be reduced to roughly the square root of the previously
fastest known algorithm. In a previous paper [BNBNHS23], we proved that finite type in-
variants can be computed efficiently using 3D methods. We argued that most knot invariants,
including finite type invariants, should be more efficiently computed using 3D methods rather
than 2D methods. However, Theorem 1.1 is significant as it is a 2D method that currently
outperforms all known 3D methods to compute finite type invariants.

For complexity measurements in this paper, we measure only polynomial degree (i.e. we
ignore constants and log(n) terms). We write f(n) ∼ g(n) to mean there exist natural
numbers c, k,N so that for all n > N , we have that

1
c
g(n)(log(n))−k < f(n) < cg(n)(log(n))k.

Key words and phrases. finite type invariants, Gauss diagrams.
1

2 DROR BAR-NATAN, ITAI BAR-NATAN, IVA HALACHEVA, AND NANCY SCHERICH

For example, for us, n4 ∼ 5.4 n4(log(n))8. Also, we write g ≫ f to mean that for all
constants c and k, and for all large enough n we have that cf(n)(log(n))k < g(n).

For impatient readers, the key formula in this paper is Equation (3). The preceding pages
include the definitions leading up to the formula, and the proof that the formula can be
evaluated in time ∼ n⌈k/2⌉.
Acknowledgements. The first author was supported by NSERC-RGPIN-2018-04350 and by
the Chu Family Foundation (NYC). The third author was supported by the Natural Science
Foundation Grant No. DMS-2302664. This material is also based upon work supported by
the National Science Foundation under Grant No. DMS-1929284 while the fourth author was
in residence at the Institute for Computational and Experimental Research in Mathematics
in Providence, RI, during the Braids program. We would like to thanks ICERM for hosting
the first and third authors for a week long visit.

2. Background

2.1. Gauss diagrams. A Gauss diagram of an n-crossing long knot diagram parametrized
by the interval I = (−1, 2n) ⊆ R is given by the interval I along with n decorated arrows.
Each arrow corresponds to one of the n crossings of the knot and has endpoints on integer
points in I. The head of an arrow is at the point in I which parametrizes the lower strand of
the crossing and the tail of the arrow is at the point which parametrizes the upper strand of
the crossing. Each arrow is decorated with a sign corresponding to the sign of the crossing.
Figure 1 (A) shows an example of a Gauss diagram. For a Gauss diagram D, the quantity
|D| is the number of arrows in D. Let GD = ⟨Gauss diagrams⟩ denote the space of Q-linear
combinations of Gauss diagrams, and GDk denote the subspace spanned by Gauss diagrams
with k or fewer arrows.

Let D be a Gauss diagram with n arrows parametrized by I = (−1, 2n). A k-arrow
subdiagram of D is a diagram consisting of I and a subset of k decorated arrows from D. A
subdiagram corresponds to a choice of k crossings in the knot diagram represented by the
Gauss diagram D. An example is shown in Figure 1(B). Notice that a subdiagram D′ of
D keeps the original parametrization along the interval I and the 2k endpoints of D′ will
be spread out amongst the 2n points in I. A k-arrow subdiagram of D is not a proper
Gauss diagram because of this parametrization issue. To make a k-arrow subdiagram D′

into a Gauss diagram, we can apply the forgetful map ψ to D′ which reparametrizes I to be
I = (−1, 2k), in essence forgetting how D′ was realized as a subdiagram of D. We will call
ψ(D′) a reparametrized subdiagram of D. An example is shown in Figure 1(C).

It will be useful within the proof of our main theorem to take two Gauss diagrams and
superimpose them to make a larger diagram. Superimposing two diagrams requires not only
the two input diagrams but gluing instructions for how to interweave the endpoints of the
diagrams. We will call a non-decreasing map on integers λ : [0, 2ℓ − 1] ∩ Z → [0, 2k] ∩ Z
a placement map, as it can be viewed as providing instructions on how to place one Gauss
diagram relative to another when superimposing them. Given such a λ, a superimposition
map #λ : GDk × GDℓ → GDk+ℓ creates a Gauss diagram with k + ℓ arrows given two
diagrams D and D′ of sizes |D| = k and |D′| = ℓ, as follows. Starting with the first diagram
D parametrized by I = (−1, 2k), enumerate the intervals between the 2k integral endpoints
of D in increasing order, including (−1, 0) as the 0-th interval and (2k − 1, 2k) as the 2k-th
interval. The 2ℓ endpoints of D′ are ordered and enumerated by [0, 2ℓ− 1]∩Z. The function
λ instructs how to place the 2ℓ endpoints of D′ into the 2k + 1 intervals of D. After the
arrows of D′ are glued into the intervals of D, the interval I = (−1, 2k) is reparametrized

COMPUTING FINITE TYPE INVARIANTS EFFICIENTLY 3

-1 0

1
2

3

4
5

6

7
8 9 10

0 1 2 3 4 5 6 7 8 9

2 4 7 9

-

-

-
-

+

- +

←→

←→

(A)

(B)

(C)

−→ ψ

0 1 2 3

- +

Figure 1. (A) An example of the Gauss diagram of a long knot diagram. (B)
A 2-arrow subdiagram of a Gauss diagram. (C) The forgetful map ψ applied
to a subdiagram yielding a reparametrized subdiagram.

to (−1, 2(k + ℓ)) so that the resulting diagram D#λD
′ is a Gauss diagram. Two examples

are shown in Figures 2(A) and 2(B). Superimposing two diagrams according to different
placement maps λ can yield different outputs.

Let φ̄k : {knot diagrams} → GDk be the map that sends a knot diagram to the sum of all of
the subdiagrams of its Gauss diagram which have exactly k arrows. Then denote φk = ψ ◦ φ̄k

the map which sends a knot diagram to the sum of all of the reparametrized subdiagrams of
its Gauss diagram which have exactly k arrows. Let φ≤k :=

∑k
i=1 φi be the map that sends

a knot diagram to the sum of all of the reparametrized subdiagrams of its Gauss diagram
which have at most k arrows.

The maps φk and φ≤k are not invariants of knots but every finite type invariant factors
through φ≤k, as follows from the next theorem.

Theorem 2.1 (Goussarov-Polyak-Viro [GPV00], see also [Rou]). A knot invariant ζ is of
type k if and only if there is a linear functional ω on GDk such that ζ = ω ◦ φ≤k.

We show that φ≤k can be computed in time ∼ n⌈k/2⌉. This result, combined with the above
theorem, proves that all finite type invariants can be computed in time ∼ n⌈k/2⌉, which is
the main result of this paper.

It is surprising that φ≤k can be computed in time ∼ n⌈k/2⌉ because, at first glance, it
would seem that one must require time nk. A Gauss diagram with n arrows has

∑k
i=1

(n
i

)
subdiagrams with k or fewer arrows. Because

(n
i

)
∼ ni, a Gauss diagram with n arrows has∑k

i=1
(n

i

)
∼
∑k

i=1 n
i ∼ nk subdiagrams with k or fewer arrows. So φ̄≤k evaluated on a knot

4 DROR BAR-NATAN, ITAI BAR-NATAN, IVA HALACHEVA, AND NANCY SCHERICH

0 1 2 0 1 2 3

λ2(0) = 0
λ2(1) = 0
λ2(2) = 2
λ2(3) = 2

#λ2 =
0 1 2 3 4 5

0 1 2
0 1 2 3

λ1(0) = 1
λ1(1) = 1
λ1(2) = 1
λ1(3) = 2

#λ1 = 0 1 2 3 4 5(A)

(B)

Figure 2. Two examples of superimposing the same diagrams along different
λ gluing maps.

diagram with n crossings will be a sum of ∼ nk subdiagrams. Note that the outputs of φ̄k

and φk have the same number of summands, but φk will have repeated terms and φ̄k will not.
So where do the computational savings come from? The idea is to break the computation
of φ≤k into two parts, one of which can be quickly pre-computed in a look-up table. The
creation of this look-up table uses counting techniques taking advantage of dyadic intervals.
These techniques are completely self-contained, and unrelated to finite type invariants and
knot theory. In the next section, we describe these techniques that we will apply to prove
that that φ≤k can be computed in time ∼ n⌈k/2⌉.

3. Computational Preliminaries: Counting Techniques using Dyadic intervals

3.1. Counting with a look-up table. A look-up table is a lexicographically-ordered list
of (key 7→ value) entries. Below, Theorem 3.1 shows how to use a look-up table to count
elements of a set inside n̄ℓ, where n̄ = {1, 2, · · ·n}. While we will need a generalized version
of this Theorem, the proof of Theorem 3.1 showcases nicely how dyadic intervals are used to
get computational savings.

Theorem 3.1. Let Q be an enumerated subset of n̄ℓ with 1≪ q = |Q| ≪ nℓ. In time ∼ q, a
look-up table of size ∼ q can be created so that computing |Q ∩R| will take time ∼ 1 for any
rectangle R ⊂ n̄ℓ.

The straightforward approach to this Theorem would be to create a look-up table with
key-value pairs of the form (R 7→ |Q ∩ R|) for all possible rectangles R. A rectangle in n̄ℓ

is determined by choosing 2 interval endpoints in each coordinate of n̄ℓ, so there are ∼ n2ℓ

possible rectangles in n̄ℓ. This look-up table would take much longer than ∼ q to create.
The trick is to create a restricted look-up table using only rectangles whose sides are dyadic
intervals. To prove Theorem 3.1, let us first start with some preliminaries on dyadic intervals.

3.2. Dyadic intervals. For the purpose of this paper, a dyadic interval is a half-closed
subinterval of Z≥0 of the form [2pq, 2p(q + 1)) for p, q ∈ Z≥0. A dyadic interval can be

COMPUTING FINITE TYPE INVARIANTS EFFICIENTLY 5

expressed via a binary expansion up to a certain accuracy, i.e. a fixed sequence of 0’s and 1’s
followed by a fixed number of ∗’s or ‘free’ entries, and the integers contained in the interval
are all possible completions of the expansions, i.e. all possible ways of replacing the ∗’s with
0’s and 1’s. For example [222, 223) = {8, 9, 10, 11} = {10002, 10012, 10102, 10112}, expressed
in decimal and binary expansion respectively. Using the binary expansion, every number in
the interval is of the form 10∗∗ where the least significant two bits are free and the most
significant two bits are fixed to be 10. We write u for a dyadic interval where u is a binary
sequence followed by some number of ∗’s.

A dyadic interval u is maximal in (b, c) if u ⊂ (b, c) and any larger dyadic interval containing
u is not contained in (b, c). Notice if two dyadic intervals overlap, then one is contained in
the other. Therefore, the maximal dyadic intervals of (b, c) are disjoint. Every interval can
be decomposed as a disjoint union of maximal dyadic intervals, as described in the following
elementary Lemma.

Lemma 3.2. For any interval (b, c) ⊂ Z≥0, there are at most 2 log2(c − b) maximal dyadic
intervals contained in (b, c), and (b, c) is a disjoint union of its maximal dyadic intervals.

For a binary number, a truncation process can be used to compute dyadic intervals con-
taining that binary number.

Truncation process: Given a binary number x with m bits of accuracy, starting from right
to left, replacing one bit at a time with a ∗ generates a list of m dyadic intervals which contain
x. For example, let x = 7 = 001112 where m = 5, then the truncation process generates
the list of dyadic intervals {00111, 0011∗, 001∗∗, 00∗∗∗, 0∗∗∗∗}. If a number x (in decimal
notation) is at most ℓ, then the number of bits needed to describe x in binary is at most
log2(ℓ), and so x is contained in at most log2(ℓ) dyadic intervals coming from the truncation
process with log2(ℓ) bits of accuracy.

3.3. Proof and Corollary of Theorem 3.1. We proceed with the proof the Theorem, as
well as the main Corollary which we will use.

Proof of Theorem 3.1. A dyadic rectangle in n̄ℓ is a product of ℓ dyadic intervals of n̄.
We describe a process to create a restricted look-up table of key-value pairs of the form
(Rd 7→ |Q ∩Rd|) for only Rd that are dyadic rectangles in n̄ℓ and such that |Q ∩Rd| > 0.

To create the table, run through the enumerated elements x ∈ Q. For each x, from
the truncation process described in Section 3.2, x is contained in at most (log2(n))ℓ dyadic
rectangles Rd in n̄ℓ. In the table, increment the value for Rd by 1 for each such Rd containing
x, or create such an entry if it didn’t already exist. Since there are q elements in Q, creating
this table takes time ∼ q(log2(n))ℓ ∼ q, and there are ∼ q elements in the table. Using
standard binary sorting techniques, accessing and modifying values in the table takes time
∼ log2 q ∼ 1.

A general non-dyadic rectangle R in n̄ℓ is the disjoint union of at most ∼ (2 log2(n))ℓ ∼ 1
maximal dyadic rectangles, by Lemma 3.2. To count |Q ∩R|, one retrieves the values in the
look-up table with key each maximal dyadic rectangle in R, and then sums together all those
stored values to get |Q∩R|. Since retrieval takes time ∼ 1 and the sum is over ∼ 1 elements,
after the look-up table is completed, it takes time ∼ 1 to compute |Q ∩R|.

□

6 DROR BAR-NATAN, ITAI BAR-NATAN, IVA HALACHEVA, AND NANCY SCHERICH

Viewing |Q∩R| as the sum
∑

x∈Q∩R

1, Theorem 3.1 can be generalized, using almost exactly

the same proof, to compute weighted sums
∑

x∈Q∩R

wx where the weights are in a Q-vector-

space. This generalization is stated in the Corollary below and is the version of the look-up
table that will be used to prove the main result in Section 4.
Corollary 3.3. Let Q be an enumerated subset of n̄ℓ with 1 ≪ q = |Q| ≪ nℓ. Let V be a
Q-vector space with dim(V) ∼ 1, and let θ : n̄ℓ → V be a map that is zero outside of Q.
Then, in time ∼ q, a look-up table of size ∼ q can be created so that computing

∑
R θ will

take time ∼ 1 for any rectangle R ⊂ n̄ℓ. 1

4. Main Result

In this section, we state and prove the main theorem of this article. The strategy to quickly
compute φk on a diagram D is to view a k-arrow subdiagram of D as the superimposition of
two smaller subdiagrams E and F . The subdiagram E is placed inside D first, and instead of
placing F , a look-up table is created to count in how many ways F could have been placed.
Using Corollary 3.3, this look-up table can be computed and accessed very quickly, which
ultimately gives the computational savings for the final result.
Theorem 4.1. Finite type invariants of type k can be computed on a knot with n crossings
in time ∼ n⌈k/2⌉.
Proof. By Theorem 2.1, it suffices to show that φ≤k can be computed in time ∼ n⌈k/2⌉. Since
φ≤k =

∑
i=1,··· ,k φi, it suffices to prove that φk can be computed in time ∼ n⌈k/2⌉. This shows

that φ≤k can be computed in time ∼ k · n⌈k/2⌉ ∼ n⌈k/2⌉.
For a knot K with n crossings, let K be represented as a Gauss diagram with n arrows.

By definition, φk(K) is the sum of all reparametrized subdiagrams with exactly k arrows,

φk(K) =
∑

D ⊂ K
|D| = k

ψ(D),

where D ⊂ K means D is a subdiagram of K.
Fixing a choice of e, f ∈ Z≥0 with e+ f = k, every k-arrow subdiagram D can be viewed

in
(k

e

)
ways as the superimposition of two smaller subdiagrams E and F of sizes e and f

respectively. Note that e, f, k ∼ 1. As discussed above, rather than breaking a specific k-arrow
subdiagram down as a superimposition, one can instead build up all k-arrow subdiagrams
by first choosing an e-arrow subdiagram E and then choosing an f -arrow subdiagram F
that fits in the complement of E in K. Summing over the possible choices of E, F , and
superimpositions gives the next formula:

(1) φk(K) =
∑

D ⊂ K
|D| = k

ψ(D) =
(
k

e

)−1 ∑
E ⊂ K
|E| = e

∑
λ

∑
F ⊂ K, |F | = f

Fi ∈ (Eλ(i)−1, Eλ(i))

ψ(E)#λψ(F)

1There is a small caveat to Corollary 3.3 which requires that in some basis for V , the coefficients of θ
must be quickly computable, which is not always the case. However, for the purposes of this paper and the
application for which this Corollary is used, this issue does not arise and so we chose to leave this technical
detail out of the statement.

COMPUTING FINITE TYPE INVARIANTS EFFICIENTLY 7

Here, the endpoints of a subdiagram F are denoted by Fi, and the endpoints of E are
Ej . The map λ : [0, 2f − 1] ∩ Z → [0, 2e] ∩ Z is any placement map as described in the
superposition map definition, and with the extra assignments E−1 = −1 and E2e = 2n .
The condition Eλ(i)−1 ≤ Fi ≤ Eλ(i) guarantees that the endpoints of the arrows in F lie
in the complementary intervals of the endpoints of E, and in the correct order so that the
superimposition along λ yields a subdiagram of K. This process overcounts every k-arrow
subdiagram D of K

(k
e

)
times as every choice of splitting D into two pieces (i.e. a choice of

E) occurs exactly once in the sum, which ultimately counts D
(k

e

)
times, instead of once.

Define θK : ([0, 2n− 1] ∩ Z)f → GDf by

(F0, F1, · · · , F2f−1) 7→
{
ψ(F) if (F0, F1, · · · , F2f−1) are the ends of a subdiagram F ⊂ K
0 otherwise

Now, the innermost sum from Equation (1) can be rewritten as a sum over θK as follows.

(2)
∑

F ⊂ K, |F | = f
Fi ∈ (Eλ(i)−1, Eλ(i))

ψ(E)#λψ(F) = ψ(E)#λ

 ∑∏
i
(Eλ(i)−1,Eλ(i))

θK



The upshot is that the sum on the right can be computed very quickly with a look-up table.
Corollary 3.3 applies by taking Q to be the set of all (F0, F1, · · · , F2f−1) ∈ ([0, 2n− 1] ∩ Z)f

that are the endpoints of a subdiagram of K. Here, |Q| =
(n

f

)
∼ nf and the conclusion from

the Corollary is that a look-up table can be created in time ∼ nf so that computing the sum
on the righthand side of Equation (2) takes time ∼ 1.

Thus we arrive at our final equation,

(3) φk(K) =
(
k

e

)−1 ∑
E ⊂ K
|E| = e

∑
λ

ψ(E)#λ

 ∑∏
i
(Eλ(i)−1,Eλ(i))

θK

 .

To understand the computational complexity of Equation (3), we need to understand the
complexity of each sum. We already showed that the innermost sum can be computed in
time ∼ nf by building a look-up table from Corollary 3.3. For the middle sum, λ can be
any non-decreasing function λ : [0, 2f − 1]∩Z→ [0, 2e]∩Z of which there are

(2e+2f
2f

)
=
(2k

2f

)
possible functions, which is ∼ to a power of k and does not add to the complexity of the total
sum.

For the fixed choice of e + f = k, the outer sum in Equation (3) has at most ∼
(n

e

)
∼ ne

terms. Therefore, the total time of computing φk(K), which includes first creating the look-
up table and then computing the sum over all subdiagrams D ⊆ K of size k, is ∼ ne + nf .
This sum can be minimized for e = ⌈k

2⌉ and f = ⌊k
2⌋, in which case we get computation time

∼ 2n⌈ k
2 ⌉ ∼ n⌈ k

2 ⌉.

□

8 DROR BAR-NATAN, ITAI BAR-NATAN, IVA HALACHEVA, AND NANCY SCHERICH

References
[BL93] J. S. Birman and X.-S. Lin. Knot Polynomials and Vassiliev’s Invariants. Inventiones Mathe-

maticae, 111:225–270, 1993. 1
[BN95] D. Bar-Natan. On the Vassiliev Knot Invariants. Topology, 34:423–472, 1995. 1
[BNBNHS23] Dror Bar-Natan, Itai Bar-Natan, Iva Halacheva, and Nancy Scherich. Yarn Ball Knots and

Faster Computations. Journal of Applied and Computational Topology, 8, 10 2023. 1
[GPV00] M. Goussarov, M. Polyak, and O. Viro. Finite Type Invariants of Classical and Virtual Knots.

Topology, 39(5):1045–1068, 2000. 3
[Rou] F. Roukema. Goussarov-Polyak-Viro Combinatorial Formulas for Finite Type Invariants. 3
[Vas90] V. A. Vassiliev. Cohomology of Knot Spaces. American Mathematical Society, Providence, RI,

1990. 1
[Vas92] V.A. Vassiliev. Complements of Discriminants of Smooth Maps: Topology and Applications,

volume 98 of Translations of Mathematical Monographs. American Mathematical Society, Prov-
idence, RI, 1992. 1

University of Toronto
Email address: drorbn@math.toronto.edu
URL: http://www.math.toronto.edu/drorbn

University of California, Los Angeles
Email address: itaibn@math.ucla.edu

Northeastern University
Email address: i.halacheva@northeastern.edu
URL: https://sites.google.com/site/ivahalacheva3/

Elon University
Email address: nscherich@elon.edu
URL: http://www.nancyscherich.com

http://www.math.toronto.edu/drorbn
https://sites.google.com/site/ivahalacheva3/
http://www.nancyscherich.com

	1. Introduction
	2. Background
	2.1. Gauss diagrams

	3. Computational Preliminaries: Counting Techniques using Dyadic intervals
	3.1. Counting with a look-up table.
	3.2. Dyadic intervals
	3.3. Proof and Corollary of Theorem 3.1

	4. Main Result
	References

