A COMPUTATIONAL SURVEY OF THE THETA INVARIANT

ALI KARIM LALANI

ABSTRACT. This project explores the theta invariant, a powerful, genuinely-
computable invariant for knots developed by Dror Bar-Natan and Roland van
der Veen. We calculate this invariant for several families of knots, including
torus, pretzel, and twisted torus knots, to search for the information it holds.

Keywords. Knots, Topology

CONTENTS
1. Introduction and preliminaries 2
1.1. Computational Tools and Preliminaries 2
1.2. Knot Representations 2
1.3. Key Functions in the Theta Implementation 3
1.4. Some Computations with Theta 4
1.5. Canonical PD Representations 4
2. Definitions of Knot Families 5
2.1. Torus Knots 5
2.2. Twist Knots 7
2.3. Pretzel Knots 9
3. Computational Results 11
3.1. The Rolfsen Table 11
3.2. Torus Knots 12
3.3. Twist Knots 13
3.4. Twisted Torus Knots 15
3.5. Pretzel Knots 17
Acknowledgements 18
References 18

Appendix A. Code for CanonicalPD 19

2 ALI KARIM LALANI

1. INTRODUCTION AND PRELIMINARIES

In this write-up, we explore a powerful and modern invariant called the theta
invariant (0), developed by Dror Bar-Natan and Roland van der Veen.

The © invariant is a highly discerning and easy to compute tool that is believed
to contain more information than the Jones Polynomial.

Our work is based on the foundational paper by Bar-Natan and van der Veen,
A very fast, very strong, topologically meaningful and fun knot invariant. Readers
seeking the full mathematical details are encouraged to read it. [3V1]

The purpose of this project is to apply the # invariant to entire 'families’ of
knots to search for patterns, test its behavior, and form new conjectures. To
accomplish this, we use the KnotTheory package in Mathematica to code up
families like torus, pretzel, and twisted torus knots and compute 6.

1.1. Computational Tools and Preliminaries. Before presenting our results,
we briefly introduce the computational framework used in this project. All com-
putations and visualizations were performed using the KnotTheory package in
Mathematica. This package provides a environment for defining, manipulating,
and computing invariants of knots. [I[<A]

1.2. Knot Representations. Within the package, knots can be defined in sev-
eral ways. The two most relevant for our work are:

e Planar Diagram (PD): This notation describes a knot by first labelling
all the edges an then explicitly listing its crossings. Each crossing connects
four points on the knot. For example, the trefoil knot 3; is represented as
PD[X[1,4,2,5], X[3,6,4,1], X[5,2,6,3]].

e Braid Representation (BR): This notation describes a knot as the clo-
sure of a braid on a certain number of strands. For instance, the trefoil
knot can also be written as BR[3, {1, 1, 1}]. This works because every
knot or link can be represented as a closed braid by Alexander’s Theorem.

&

FIGURE 1. The trefoil knot 3; as a planar diagram (left) and as
the closure of a 3-strand braid (right).

A COMPUTATIONAL SURVEY OF THE THETA INVARIANT 3

1.3. Key Functions in the Theta Implementation. The implementation of
the © invariant is based on several helper functions and one main program. We
outline the key components here, following the description in [BV1].

The main program, ©[K _|, computes the invariant. The mathematical formula
follows by first constructing a matrix A, inverting it to find GG, and then summing
the terms corresponding to the different parts of the formula.

We urge the reader to read the definitions of Rot and the helper polynomials
in the original paper.

= @[K_]:=®[K]=Modu1e[{X,(p,n,A,A,G,ev,e},

(« 01 %) {X,0}=Rot[K]; n=Length[X]}
(« 02 «) A=IdentityMatrix[2n+1];

. -T° T5-1
(+ 03 ») Cases[X,(s_,i_,J_}o[ALCT,3), (1,34 000= (g ']

(x 04 %) A=T(—Tota1[<p]—Total[X[[All,l]]])/2Det[A];

(» 05 x) G=Inverse[A];
(» 06 «) ev[&_]:=Factor[&/.g, ,o ,z »(GIa,B]/.T->T,)]1;

(+ 07 «) e=ev[>" FiIXIKII];

(+ 08 «) e+=ev[>T T Fa[XIk1l,X[k211];

(+ 09 «) e+=ev[2{ﬁle3[¢EkB,k]]§

(« 10 «) Factor@{A, (A/.T-Ty) (A/.T-Ta) (A/.T-T3)6}

The 6 component theoretically admits hexagonal symmetry

PolyPlot, ParityPlot, and Ra nbowPlot serve as compact “QR codes” for
each © polynomial. All three plots place every non-zero Laurent coefficient at
its exponent pair (7,j) on the triangular grid, so that any hexagonal symmetry
is immediately visible.

e PolyPlot colors a point red when the coefficient is positive and blue
when it is negative. Sign patterns and sign-symmetry violations therefore
stand out at a glance.

e ParityPlot ignores the sign and instead colors coefficients when
they are odd and when they are even, revealing congruence
phenomena that PolyPlot can conceal.

e Ra nbowPlot synthesizes the previous two ideas. Its hue encodes the
sign—parity class (, positive even, , negative even),
while the color’s lightness scales logarithmically with |c|: small coefficients
appear as washed-out pastels, large ones as fully saturated colors. Thus a
single picture conveys magnitude, sign, and parity simultaneously—hence
the name “rainbow”.

JIE

4 ALI KARIM LALANI

Together, these plots provide a visual check on the expected symmetry of ©
and reveal family-specific patterns. Full plotting routines are available in the
code repository referenced later.

1.4. Some Computations with Theta. We move on to examples. Here is ©
on the trefoil, and its corresponding ParityPlot and PolyPlot diagrams.

E trefoil = Knot[3,1];
trefoile = e[trefoil];
Expand[trefoile]
PolyPlot[trefoile]
ParityPlot[trefoile]

CJ Output

{T+E-L,-BR+ BT -T + TN+ R -T2 = b+ o — o + 7y — g + B}

F1GURE 2. The PolyPlot and ParityPlot output of the trefoil
knot.

Notice the hexagonal symmetry of the plots, and the ParityPlot is orange since
all the coefficients of the second component are 1.

1.5. Canonical PD Representations. To manage knot definitions robustly,
we implemented a technical function, CanonicalPD.

A given knot diagram can be represented by a PD object in many equivalent
ways, depending on the arbitrary integer labels assigned to its edge segments. The
CanonicalPD function mitigates this ambiguity by generating a unique, canonical
representative for any given diagram. It operates by traversing the knot from
every possible starting edge, relabeling the edges in the order they are visited.
This process produces a set of all possible valid PD expressions for the diagram.
The function then returns the first element from this set, ensuring that any two
diagrams that are structurally identical,but differently labeled, yield the same

A COMPUTATIONAL SURVEY OF THE THETA INVARIANT 5

PD object. This allows us to define and compare knots based on their geometric
structure.

The full implementation is provided in Appendix A.

2. DEFINITIONS OF KNOT FAMILIES

In this section, we formally define the families of knots investigated in this
project. For each family, we provide a brief description and the corresponding

implementation code.

FIGURE 3. The convention for the positive (left) and negative
(right) crossing X[a,,b,c,d].

2.1. Torus Knots.

Definition 2.1 (Torus Knot). A torus knot, denoted T'(p, ¢) for coprime inte-
gers p and ¢, is a knot that lies on the surface of an unknotted torus in R3. It can
be represented as the closure of a braid on p strands. The braid word consists of
lg| full twists, where the sign of ¢ determines their handedness. This structure is
illustrated in Figure 4.

FIGURE 4. A diagram for T'(p, q).

Definition 2.2 (Twisted Torus Knot). A twisted torus knot, denoted T'(p, ¢, 1, s),
is obtained by applying s additional full twists to r adjacent strands within the
braid of a T'(p, ¢) torus knot.

Remark 2.3. Tt is easy to see Twisted Torus Knots subsume the T'(p,q) Torus
Knots by setting s to be 0.

6 ALI KARIM LALANI

FIGURE 5. Diagrams of the regular 7'(9,7) (left) and twisted
torus knot 7°(9,7,5,3) (right).

Here is an example.
The braid word g for T'(p, q,r, s) on p strands in the case where r <p is given
by [Leel7]:
ﬁ = (0'10'2...O'pfl)q(O'IO'Q...O'r,I)S (21)
where o0, are the standard braid group generators.
Here is the implementation in Mathematica:

A COMPUTATIONAL SURVEY OF THE THETA INVARIANT 7

= (+ Repeat the braid word “seq |e| times. x)
twPower [seq List, e Integer] :=
Flatten @ Table]
If[e > 0, seq, -Reverse[seq]],
{Abs[e]}
15

(» Braid word for the twisted-torus knot T(p,q; r,s). x)
TwistedTorusBraidWord[
p_Integer?Positive, q Integer,
r Integer?Positive, s Integer] /3 1 < r < p :=
Module[{blockPQ, blockRS},
blockPQ = twPower[Range[p - 1], ql; (x (o, ... o_{p-1})"g =)
blockRS = twPower[Range[r - 1], r s]; (* (o, ... o_{r-1})M(r s) «)
Join[blockPQ, blockRS]
13

(» Convert it into a Planar Diagram =)
TwistedTorusKnot[
p_Integer?Positive, q_Integer,
r_Integer?Positive, s_Integer] :=
PD[BR[p, TwistedTorusBraidWord[p, q, r, s1]11;

2.2. Twist Knots.

Definition 2.4 (Twist Knot). The family of twist knots, denoted K, is made
by adding n full twists to the strands of a simple clasp. n can be positive or
negative, determining the handedness of the crossings.

8 ALI KARIM LALANI

0,1y

cr2n,1) ean1,

el

N |
\

In| twists

/ S -
Y jeee
AN AL

ci2n,0 CIZB;l;l!] I :'[-ITUT, €00

(A) The general form of a twist knot. (B) Edge labeling convention.

FIGURE 6. The general structure and labeling for a twist knot
K,.

Our implementation generates the planar diagram (PD) for a twist knot K,, with
n > 0 twists by systematically constructing its geometric components, as labeled
in Figure 6. The code defines the knot by assembling four lists of crossings:

(1) Two clasp crossings that form the upper loop of the knot.
(2) A series of n twist crossings that form the right-handed "rungs” of the
lower twisted section.

(3) A series of connecting crossings that form the "rails” linking the twists
together.

These lists are joined to form a complete PD object, which is then processed by
our CanonicalPD function to produce a unique, standardized representation. An
analogous procedure is followed for knots with negative twists (n < 0), where the
structure of the twist crossings is mirrored to produce left-handed twists.

Bl PositiveTwist[n_Integer?Positive] := Module[
{crossingl, loopl, crossing2, loop2, finalpd},

crossingl = {X[c[®, O], c[2 n, O], cl, cr]};

loopl = Table[X[c[2 i, 1], c[2 1 + 1, 1], c[2 1 + 1, O], c[2 i, O]],
{i, 0, n - 1}];

crossing2 = {X[c[2 n, 1], c[0, 1], cr, cl]};

loop2 = Table[X[c[k, 0], c[k - 1, 0], c[k - 1, 1], c[k, 111,

{k, 2 n, 2, -2} 13

finalpd = Join[crossingl, loopl, crossing2, loop2];

CanonicalPD[PD ee finalpd]
1

=

IE

A COMPUTATIONAL SURVEY OF THE THETA INVARIANT 9

NegativeTwist[n_Integer?Positive] := Module[

{crossingl, loopl, crossing2, loop2, finalpd, nabs = Abs[n]

crossingl = {X[c[®, 0], c[2 n, O], cl, cr]};

loopl = Table[X[c[2 1 + 1, 0], c[2 1 + 1, 1], c[2 i1 + 2, 1],

c[2 1 + 2, 0]]1,{7, @, nabs - 1}1;
crossing2 = {X[c[2 n, 1], c[0®, 1],cr,cl]};

loop2 = Table[X[c[k, 1], c[k, O], c[k - 1, O], c[k - 1, 171,

{k, 2 nabs - 1, 1, -2}13;

finalpd = Join[crossingl, loopl, crossing2, loop2];

CanonicalPD[PD ee finalpd]

]
TwistKnot[n Integer] := Which]

n > 0, PositiveTwist[n],
n < 0, NegativeTwist[Abs[n]],
n = 0, Loop[l] (» If n=0, return the unknot =«)

1
2.3. Pretzel Knots.

Definition 2.5 (Pretzel Link). A pretzel link, denoted P(pi,ps,...,pn), is
formed by connecting n tangles in a circular arrangement. Each tangle i consists
of p; half-twists, with the sign of p; determining the direction of the twists.

A pretzel link is a knot (a link with a single component) only under certain
conditions on its parameters. We state a well-known proposition.

Proposition 2.6. The pretzel link P(py,ps, .. .,pn) is a knot under the following
conditions:

(1) Ifn is odd, the link is a knot if and only if the number of even parameters
among the p; is at most one.

(2) If n is even, the link is a knot if and only if exactly one of the parameters
p; 1S even.

We generate the planar diagram by defining each crossing according to a geo-
metric labeling. The code first defines a set of helper functions that permute the
arguments of a crossing X[a,b,c,d] to handle the four possible crossing orien-
tations. The choice of orientation for each crossing in a tangle depends on two

}s

[

10 ALI KARIM LALANI

p1 se e pn

FIGURE 7. Diagram of the general pretzel knot.

factors: the sign of its parameter p; (determining right- or left-handed twists)
and the parity of the tangle’s index i (determining how it weaves into the main
loops).

The main function then assembles the knot by building three distinct lists of
crossings:

(1) Interior Crossings: A list of crossings forming the internal "rungs” of
each tangle. These are represented via lc (left columns) and re (right
columns) respectively.

(2) Top & Bottom Crossings: Two lists of crossings that form the junc-
tions between the ends of each tangle and the main top (¢;) and bottom
(b;) arcs.

Finally, these lists are combined and processed by CanonicalPD function to
produce a unique representation of the knot. We include the code in the case
where n is even below, and WLOG the even parameter is the first one.

Xi,1la_, b_, c_, d_1 := X[a, b, c, d]
Xi,ela_, b_, c_, d_] := X[c, d, a, b]
X_1,1[a_, b, c,d] :=X[d, a, b, c]
X_1,0la_, b, c, d] :=X[b, c, d, a]

A COMPUTATIONAL SURVEY OF THE THETA INVARIANT 11

= EvenPretzel[a List] :=
Module[{n = Length[a], topCrossings, bottomCrossings, interiorCrossings},

topCrossings = Table[If[Abs[a[i]] = 1,Nothing,
Xsign[a[i]], Mod[i,2] [t[Mod[i-1,n11, lc[i,Abs[ali]]1-1], rc[i,Abs[a[i]]1-1], t[Mod[i,n111],
{1',1,n}];

bottomCrossings = Table[
If[Abs[a[i]] = 1,
Xsign[a[i]], Mod[i,2] [t[Mod[i-1,n]], b[Mod[i-1,n]], b[Mod[i,n]], t[Mod[i,n]]],
Xsign[a[i]], Mod[i,2][lcli,1], b[Mod[i-1,n]], b[Mod[i,n]], rc[i,1]1],
{i,1,n}

13

interiorCrossings = Flatten e Table[
Xsign[a[il], Mod[i,2]!
lc[i,j]1, lc[i,j-11, rc[i,j-1], rc[i,jl1],
{i,1,n}, {j,2,Abs[a[i]]-1}

13

CanonicalPD [PD @@ Join|[
DeleteCases[topCrossings, Nothing],
bottomCrossings,

interiorCrossings]

3. COMPUTATIONAL RESULTS

3.1. The Rolfsen Table. We ran © on the Rolfsen table, and include their
Parity and Poly plots below.

12 ALI KARIM LALANI

FI1GURE 8. PolyPlot and ParityPlot diagrams for prime knots up
to 10 crossings.

@%
B L

e T

- e
i pand] |
g A i
v -8
.e e
3, *e

s
L
bt

e IEI e e S
E@iwimiEl (=@ 1G
'@M“@W@mﬂ

2

ﬂl@@@@m

et |

SIBISICISIBI= 0I5

(A) PolyPlot: Red and blue points mark positive and negative coefficients,

respectively.

(B) ParityPlot: Orange and emerald points mark odd and even coefficients,
respectively.

3.2. Torus Knots. Our computational experiments with torus knots have led
to several observations and conjectures, primarily based on the visual patterns in
their RainbowPlot diagrams.

Conjecture 3.1. For any torus knot 7'(p,q) with p,q > 0, the total degree of
the Laurent polynomial component, 0, is given by the formula 2(p — 1)(¢ — 1).

A COMPUTATIONAL SURVEY OF THE THETA INVARIANT 13

In addition to the degree, the visual structure of the plots suggests further
properties:

Conjecture 3.2. The constant term of the 6 invariant for torus knots always
vanishes. Visually, this corresponds to the center of the hexagonal plot always
being white.

Conjecture 3.3. The visual dispersion of the plot, specifically the number of
"vanishing bands,” appears to correlate with the distance between the parameters
p and ¢. Knots where p and ¢ are close, such as T'(p,2) or T(p,3), tend to have
solid, concentrated plots. As the difference |p — ¢| increases, the plot becomes
more dispersed.

FIGURE 9. Comparison of plot dispersion for T(11,3) (left) and
T(11,6) (right).

Conjecture 3.4. For sufficiently large p, the plots for torus knots of the form
T(p,p — 1) exhibit a distinct, highly structured pattern. This pattern resembles
a flower or star inscribed within the inner hexagon of the plot, characterized by
alternating colored bands.

3.3. Twist Knots. The family of twist knots, K,,, exhibits a remarkable consis-
tency in the structure of their © invariant. The PolyPlots and ParityPlots are
highly structured, leading to the following conjectures.

Conjecture 3.5. For any twist knot K, the corresponding hexagon plot is
always "three-layered,” meaning the Laurent polynomial component, 0, , is of
total degree 4. Furthermore, the constant term is always a negative, even integer.

This structure is visible in Figure 12, which shows the plot for the K, twist
knot. The plot consists of a center point, an inner hexagon, and an outer hexagon.

Conjecture 3.6. The coefficients of the monomials on the ”"rims” of the hexagon
follow a strict pattern. The outer rim alternates in pairs between blue (negative,
even coefficients) and green (negative, odd coefficients).

14 ALI KARIM LALANI

O H tt 4 4t B O
EE G AL B %
w FLRNVNGBY S 'x
" n“' d? fr8MNEA B
» 9ﬁ%ﬁ%“” '.
38 '.’,‘.';‘J "é,—@‘és
060:} ¥ '”0&}060
el B

»
Foan o et

.c D ﬁ‘;-}w{_?ﬁa n -
e % %‘u...f})vﬁ?..d’d:’ .
% % SDAMeAeR e &

Y QO ML B 2
O + +¢ 2% 4% B O

FiGURE 10. Characteristic ”star” pattern observed in the
RainbowPlot for the T(9,8) knot.

##**##**##

9 afe e e ofe s 20)

* & ##* ok ®
22 2222 222

FIGURE 11. The RainbowPlots for twist knots from -20 to 20

These visual patterns suggest a precise algebraic structure for the 6 invariant
of twist knots. Based on polynomial interpolation of the coefficients in terms of
n, we conjecture the following explicit formula for O, .

Conjecture 3.7. For a twist knot K,, with n > 0, its € invariant is given by the
formula:

Ok, :CC(n) -Sc+0p(n) -Sp-f-Co(ﬂ) -So—l—CK(n) (3.1)
where S¢, Sp, So are sums of monomials corresponding to the inner hexagon, the
mid-rim, and the outer rim, respectively:

Se=Ty+ T +T; '+ T, + Ty + (TyTy) !
Sp =TTy '+ LIy + T 2T+ T Ty 2 + TPy + Th TS
So =T+ Ty? + (T o) 2+ T? + Ty + (T\T3)?

A COMPUTATIONAL SURVEY OF THE THETA INVARIANT 15

FIGURE 12. The PolyPlot for the twist knot Kg). The
three-layered structure and alternating colors on the outer rim are
clearly visible.

and the coefficients C'(n) are polynomials in n:

C’K(n):—%ﬁl—nz)’%—%—%n

3.4. Twisted Torus Knots. As expected, twisted torus knots yield more intri-
cate patterns than the usual torus knots.

To see this, we now fix a base pair and vary the twisting parameters. For
(p,q) = (7,3), increasing r and s yields RainbowPlots with more intricate pat-
terns. The grid below collects representative outputs.

Observation. For fixed (p,q) = (7,3), increases in r or s adds more vanishing
bands, making the RainbowPlots progressively center-heavy. The same occurs
for other (p, q) tested.

16 ALI KARIM LALANI

(p,q) = (7,3)

FIGURE 13. RainbowPlots for T(7,3,r,s) as r, s vary. Empty
cells indicate parameter choices not displayed.

A COMPUTATIONAL SURVEY OF THE THETA INVARIANT 17

3.4.1. The Analogue for Twisted Torus Knots Fails. A natural question is whether
Conjecture 3.2 extends to the broader class of twisted torus knots. This, however,
is not the case. The analogous statement for twisted torus knots is false, as shown
by the following counterexample.

Example 3.8 (Counterexample). Direct computation for the twisted torus knot
T(7,4,2,2) gives
O(T(7,4,2,2)) = 96 + ...,

which has a non-zero constant term.

FiGURE 14. The RainbowPlot for the Twisted Torus Knot
T(7,4,2,2). We can see the center is red instead of white.

Remark 3.9. This counterexample does not contradict Conjecture 3.2 for torus
knots. Lee’s classification of twisted torus knots that are themselves torus knots
(Theorem 1.1 of [Leeld]) shows that T'(p,q,r, s) can be isotopic to a torus knot
T(p',q") only when the twist parameter s = £1 or s = —2. Because s = 2
here fails that condition, 7'(7,4,2,2) is not equivalent to any torus knot, so its
behaviour leaves the original torus-knot conjecture unaccounted for.

3.5. Pretzel Knots. We did not detect a simple overall pattern in the rainbow
plots of higher—parameter pretzel knots. However, the author observed that some
cases display a distinct red—blue checkerboard region, often fitting inside a larger
hexagonal outline. Figure 15 contrasts a few such examples with pretzel knots
whose plots do not show this feature.

18 ALI KARIM LALANI

Checkerboard motif

No checkerboard

i
&

et

F1GURE 15. Rainbow plots of representative pretzel knots. Top
row: images showing the red—blue checkerboard pattern. Bottom
row: plots without that .

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Professor Bar-Natan for his in-
valuable guidance throughout this project. I am also grateful to the University of
Toronto Excellence Award (UTEA) program and the Department of Mathematics
at the University of Toronto for funding this project.

REFERENCES

BV1. D. Bar-Natan and R. van der Veen, A wvery fast, very strong, topologically meaning-
ful and fun knot invariant https://drorbn.net/AcademicPensieve/Projects/Theta/
Theta.pdf.

KA. The Knot Atlas, The KnotTheory package manual. https://katlas.org/wiki/
Printable_Manual.

Leel7. S. Lee, Knot types of twisted torus knots, J. Knot Theory Ramifications 26 (2017), no.
12, 1750074.

Leels. S. Lee, Torus knots obtained by twisting torus knots, Algebraic & Geometric Topology
15 (2015), 2817-2836.

https://drorbn.net/AcademicPensieve/Projects/Theta/Theta.pdf
https://drorbn.net/AcademicPensieve/Projects/Theta/Theta.pdf
https://katlas.org/wiki/Printable_Manual
https://katlas.org/wiki/Printable_Manual

A COMPUTATIONAL SURVEY OF THE THETA INVARIANT 19

APPENDIX A. CODE FOR CANONICALPD

Here is the implementation of the CanonicalPD function used to generate
unique planar diagram representations for knots.

CanonicalPD[pd_PD] := Module[{ crossings = List @@ pd,numEdges,candidatePDs = {},edgeToCrossingsMap},

(» Validate input«)
If[! MatchQ[crossings, {__X}], Return[PD["Invalid input"], Module]];

numEdges = 2 * Length[crossings];

edgeToCrossingsMap = GroupBy[
Flatten[Table[{c[i], c}, {c, crossings}, {i, 1, 4}1, 1],
First - Last

15

If[! And @@ (Length[#] = 2 & /@ Values[edgeToCrossingsMap]),
Return[
PD["Invalid PD: Each edge must appear in exactly two crossings."], Module]];

(+ Iterate through all starting points «)

Do[
Module[{startEdge = crossing[pos],edgeTraversal = {},visitedCrossings = {},oldToNewMap = <||>,newLabelCounter = 1,

currentEdge,lastCrossing, currentCrossing},
currentEdge = startEdge;
lastCrossing = First[edgeToCrossingsMap[currentEdge]];

(» Traverse through the knot «)
Do[
AppendTo[edgeTraversal, currentEdge];

currentCrossing =
First[DeleteCases[edgeToCrossingsMap[currentEdge], lastCrossingl];

(*+ Build crossings in order =)
If[! MemberQ[visitedCrossings, currentCrossing],
AppendTo[visitedCrossings, currentCrossing]

13
lastCrossing = currentCrossing;
currentEdge = Replace[currentCrossing, X[i_, j_, k_, 1_] =

Which[i = currentEdge, k, j = currentEdge, 1,
k = currentEdge, i, 1 = currentEdge, j11;
, {numEdges}];

Scan[(If[! KeyExistsQ[oldToNewMap, #],
oldToNewMap[#] = newLabelCounter++]) &, edgeTraversal];

AppendTo[candidatePDs, PD @@ (visitedCrossings /. oldToNewMap)];

1,

{crossing, crossings}, {pos, 1, 4}

13
If[Length[candidatePDs] > 0, First[Sort[candidatePDs]], PD[]]

1

I DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, CANADA.
Email address: alikarim.lalani@mail.utoronto.ca

	1. Introduction and preliminaries
	1.1. Computational Tools and Preliminaries
	1.2. Knot Representations
	1.3. Key Functions in the Theta Implementation
	1.4. Some Computations with Theta
	1.5. Canonical PD Representations

	2. Definitions of Knot Families
	2.1. Torus Knots
	2.2. Twist Knots
	2.3. Pretzel Knots

	3. Computational Results
	3.1. The Rolfsen Table
	3.2. Torus Knots
	3.3. Twist Knots
	3.4. Twisted Torus Knots
	3.5. Pretzel Knots

	Acknowledgements
	References
	Appendix A. Code for CanonicalPD

