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Abstract

In this thesis we delve into the computation of the Gassner invariant for string links, which are a more

generalized form than braids, utilizing a (co)homological approach. We restrict this (co)homology invariant,

denoted as Gh, to pure braids, leading to the derivation of the Gassner representation.

We introduce the concept of "flying cars," which assigns an invariant C(L) to an (n + 1)-component

string link L. This invariant, an n × n matrix, has entries in the field Q(t0, t1, . . . , tn). We establishes a

connection between the invariant C(L) and the homology Gassner invariant Gh (L) of L through the formula

Gh (L) =
(
Dn · C (L) ·D−1n

)
//ρcol //m

t . Here, Dn is a diagonal matrix, mt denotes matrix transpose, and

ρcol represents column permutation. We prove that C(L) is indeed an invariant of string links under the

Reidemeister moves, thereby directly verifying the invariance of the homology Gassner invariant.

Moreover, we provide formulas for the intersection product µ := ⟨−,−⟩ : H1(P ;F ) ×H1(P ;F ) → F ,

which is defined on the cycles of the homology group H1(P ;F ). In this context, P is an (n+1)-punctured

disk viewed as a subspace of the complement X of an n+ 1 string link, and F is a local coefficient system

on X determined by the abelianization map ϵ : π1(X,x0)→ ⟨t0, t1, · · · , tn⟩. This map takes values in the

free abelian group ⟨t0, t1, · · · , tn⟩. We conclude by verifying that the homology Gassner invariant is unitary

with respect to this intersection product.
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Chapter 1

Introduction

1.1 Background

The theory of braid groups is an interesting topic in topology that deals with braids, the groups formed
by their equivalence classes, and other related concepts. It is one of the many areas in mathematics that
weaves together the beauty of topology and the robustness of algebra. An n-braid is formed by intertwining
n strands (see Definition 2.7) whose endpoints are attached to two fixed planes, P0 and P1. Each strand
never backtracks. Figure 1.1 shows some examples of braids. More formally, Artin defines the braid

P1

P0

P1

P0

Figure 1.1: Examples of braids

group on n strands as the group generated by n − 1 generators σ1, · · · ,σn satisfying the braid relations
σiσj = σjσi for all i, j = 1,2, . . . ,n − 1 with |i − j | ≥ 2, and σiσi+1σi = σi+1σiσi+1 for i = 1,2, . . . ,n − 2.
Figure 1.2 shows a geometric representation for the generator σi . The interest in braids stems from their
role in knot theory, such as the close relation of braids to knots and links, as detailed by Alexander’s
theorem and Markov’s theorem1, and in physics, such as their connection to the Yang–Baxter equation. In
particular, studying braids leads to various algebras and linear representations, which include the Burau
and the Gassner representations. For further reading on the braid group, refer to [BC74] and [KT08].
The Gassner representation is a homomorphism Γ : P Bn → GLn (Z[Zn]) defined on the pure braid
(see Definition 2.8, Item 3) group P Bn, which is a subgroup of the braid group on n strands. Pure braids
on n strands induce the identity permutation and they are generated by the set {Ai,j }1≤i<j≤n. Here Ai,j
is the generator shown in Figure 1.3 and it can be expressed via the braid group generators as Ai,j =

σ−1j−1σ
−1
j−2 · · ·σ

−1
i+1σ

2
i σi+1 · · ·σj−2σj−1. The Gassner representation has been the subject of study by many

1 Alexander’s Theorem: Any link in R3 can be represented as the closure of a braid.
Markov’s Theorem: The closures of two braids are isotopic if and only if one can be obtained from the other by a sequence of moves
called the Markov moves

1
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. . . . . .

i− 1 i21 i + 1 i + 2 n

ni + 2i + 11 2 ii− 1

(a) Over-crossing σi

. . . . . .

ni + 2i + 11 2 ii− 1

i− 1 i21 i + 1 i + 2 n

(b) Under-crossing σ−1i

Figure 1.2: Generators of a braid

authors, including [Knu05], [BC74], [Abd97], [KLW01] [BN14], [Mar20] and [Gas59], each employing
different approaches. The classical Gassner representation, as presented in [BC74] is constructed using
theMagnus representation and Fox free differential calculus as follows:

nj + 1jj − 1i + 1ii− 11

1 i− 1 i i + 1 j − 1 j j + 1 n

· · · · · ·· · ·

Figure 1.3: The n-braid Ai,j with 1 ≤ i < j ≤ n.

Definition 1.1 (Fox free differential calculus). For each j = 1, · · · ,n, there is a map ∂
∂xj

: ZFn→ ZFn given
by

∂
∂xj

(
xϵ1r1 · · ·x

ϵk
rk

)
=

k∑
i=1

ϵiδri ,jx
ϵ1
r1 · · ·x

ϵi−1
2

ri , and ∂
∂xj

∑
g

agg

 =∑
g

ag
∂
∂xj

g, g ∈ Fn, ag ∈ Z,

where ϵ = ±1, δ is the Kronecker symbol, and Z[Fn] is the group ring (see Definition 2.3) of the free group
Fn generated by the set {x1, · · · ,xn}.

LetΦ be an arbitrary homomorphism with domain the free group Fn, taking values in some free abelian
group ofA of rank n andAΦ be the group of automorphisms of Fn satisfyingΦ(x) = Φ(α(x)) for each x ∈ Fn
and α ∈ AΦ .

Definition 1.2 ([BC74], Theorem 3.9). Let α ∈ AΦ and [α]Φ be the n×n matrix

[α]Φ =
[
Φ

(
∂(α(xi))
∂xj

)]
i,j

,

with entries in the group ring Z[A]. Then the morphism AΦ →Mn(Z[A]) defined by α 7→ [α]Φ is a well
defined group homomorphism, and it a Magnus representation.
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It is a well-known fact that the braid group Bn can be represented as a group of automorphisms of the
free group Fn (see [KT08], Theorem 1.31). Since P Bn is a subgroup of Bn, it can also be represented as a
subgroup of the automorphisms of Fn. Let Zn be the free abelian group generated by the free basis t1, · · · , tn,
and φ : Fn→ Zn be the homomorphism defined by xi 7→ ti .

Definition 1.3 (The classical Gassner representation). The morphism P Bn → Mn(Z[Zn]) assigning to a
pure braid β the matrix

[β]φ =
[
φ

(
∂(β̃(xi))
∂xj

)]
i,j

,

where β̃ ∈ Aφ is the automorphism corresponding to β, is the Gassner representation of the pure braid
group.

A formula for the Gassner representation for the generator Ai,j is presented in [Knu05]:

[Ai,j ]
φ =



Ii−1 0 0 0 0

0 1− ti + titj 0 ti(1− ti) 0

0 u⃗ Ij−i−1 v⃗ 0

0 1− tj 0 ti 0

0 0 0 0 In−j


. (1.1)

Here, Ii−1, Ij−i−1 and In−j are identity matrices and u⃗ and v⃗ are column vectors

u⃗ =



(1− ti+1)(1− tj )

...

(1− tj−1)(1− tj )


and v⃗ =



(1− ti+1)(ti − 1)

...

(1− tj−1)(ti − 1)


.

Another approach discussed in [BN14] is as follows: Let t be a formal variable and let Ui(t) = Un:i(t)

denote the n×n identity matrix with its 2× 2 block at rows i and i +1 and column i and i +1 replaced by 1− t 1

t 0

 . LetU−1i (t) be the inverse ofUi(t); it is the n×n identity matrix with block at {i, i+1}×{i, i+1}

replaced by
 0 t

1 1− t

, where t denotes t−1. Let β be a braid β =
k∏
a=1

σ saia , where sa are signs and where

products are taken from the left to right. Let ja be the index of the over strand at a crossing numbered a

in β. Define Γ : Bn → Mn

(
Z[t±11 , t±12 . . . , t±1n ]

)
as the product of matrices Γ (β) =

k∏
a=1

U sa
ia
(tja ). The map Γ

is not multiplicative, that is Γ (β1 · β2) , Γ (β1)Γ (β2) for braids β1 and β2 in general. However, it becomes
multiplicative when restricted to the pure braids. The restriction, Γ : P Bn →Mn

(
Z[t±11 , t±12 . . . , t±1n ]

)
of Γ

to P Bn is the Gassner representation.
The two constructions of the Gassner representation seen above are equivalent. Transposing the matrix

representation Γ (Ai,j ) yields a matrix which is equivalent to [Ai,j ] for appropriate values of t′ks. Although
braids are topological objects, it is clear that the constructions do not involve any topological property
of braids. Moreover, the classical definition involves complicated computations that result in matrices that
need a bit of rewriting to be useful. Homology and cohomology present a natural way to utilize the topology
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of braids. The braid group Bn naturally acts on the (co)homology of topological spaces obtained from the
n punctured disk by functorial constructions. One such construction is presented in [KLW01] using more
general objects called string links as follows in the next two paragraphs.

210

0 2 1

Figure 1.4: A labeled string link.

A string link 2 is a braid except that the strands are not required to be monotonic. Unlike braids, string
links do not form a group since they need not have inverses. Labeling the strands of an (n+1)-string link L
involves indexing the strands at the bottom from left to right, starting from 0 and going up to n. An indexed
string link is called a labeled string link. Let T = {0,1, · · · ,n} denote the indexing set; T is called the set
of labels of L. An example of a labeled string link is shown in Figure 1.4. We denote the set of all string
links on n+1 strands by SLn. In this thesis, string links are not allowed to have circle components.

String links acts on the (co)homology of topological spaces obtained from the n+1 punctured disk. Let
D2 × [0,1] be the solid cylinder and let L be an n + 1 string link embedded in the cylinder as shown in
Figure 1.5a. The complement X = D2 × [0,1] − L of L has two subspaces X0 = X ∩ (D2 × {0}) and X1 =

(a) A string link in D2 ×
[0,1].

b

b

x0

Iq

(b) Iq = {x0} × [0,1]

Figure 1.5: String links in D2 × [0,1].

X∩ (D2×{1}); these are n+1 punctured disks, and they are canonically identified via the homeomorphism
(x,0) 7→ (x,1). Let F = Q({tk}nk=0) be the field of fractions of Z[Zn], where Zn = ⟨t0, · · · , tn⟩ is the free
abelian group generated by the free basis {tk}nk=0. This field is a local coefficient system (see Section 2.3) on
X determined by the abelianizationmap ϵ : π1(X,x0)→ ⟨t0, t1, · · · , tn⟩. Some references for local coefficient
system include [DK01] and [Hat02]. It turns out that the cohomology groups H1(X,Iq;F ), H1(X0,q;F )

andH1(X1,q;F ) are pair-wise isomorphic (see Lemma 3.3) as vector spaces over the field F , where q = x0
2 The term "string links" is typically used to refer to tangles that induce the identity permutation. However, in this thesis, we adopt
the convention set forth in [KLW01]; string links do not necessarily induce the identity permutation. A string link that induces the
identity permutation will be referred to as a "pure string link."
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is a fixed basepoint on the boundary of X and Iq = {x0}× [0,1]. This construction assigns an automorphism

Gc(L) :H1(X0,q;F )
ι∗0←−−−−H1(X,Iq;F )

ι∗1−−−−→H1(X1,q;F ) �H1(X0,q;F )

to L of the homology group H1(X0,q;F ) of the n + 1 punctured disk. The linear map Gc(L) = ι∗1 ◦ (ι
∗
0)
−1

is called the cohomology Gassner invariant of L, see Definition 3.4. Restricting Gc to pure braids gives the
Gassner representation. Also, one can define homology Gassner invariant

Gh(L) :H1(X0,q;F )
ι0∗−−−−−→H1(X,Iq;F )

ι−11∗−−−−−→H1(X1,q;F )

of L, see Definition 3.11. It is noteworthy that Le Dimet was the first to extend the Gassner representation to
string links in [Dim92], broadening its scope to include n×n matrices whose entries are rational functions
the variables t0, t1, · · · , tn.

Reidemeister move 1

Reidemeister move 2

Reidemeister move 3

Figure 1.6: The 3 Reidemeister moves.

In addition, there is the notion of flying cars (see Definition 4.1) which is a modified version of the
car concept discussed in [BNa]. It is based on a “probabilistic” interpretation of the Burau representation
for string links studied in [LTW98], which is extended to give a similar interpretation of the Gassner
representation in Section 8 of [KLW01]. A flying car associates a labeled (n+1)-string link L with an n×n
matrix denoted as C(L) with entries in the field F ′ = Q({tk : k ∈ T ′}) of rational functions in the variables
tk ∈ T ′ , where T ′ = T − {0}. This matrix serves as an invariant of L, meaning it remains unchanged the
Reidemeister moves (see Figure 1.6). Specifically, if another string link L′ can be derived from L through a
sequence of Reidemeister moves, then C(L′) = C(L). This invariant is connected to the homology Gassner
invariant, verifying its invariance. By employing flying cars in conjunction with the stitching operation
defined in Section 4.4, one can compute the homology Gassner invariant of L from the homology Gassner
invariant of a braid β, where L is the partial closure of β (see Lemma 4.4).

It has been established by several authors from different points of view that the Gassner invariant is
unitary with respect to a skew hermitian matrix. In [Abd97] and [BN14], the authors explicitly define
different Hermitian matrices to prove the unitary condition, but they do not provide details on how these
matrices were derived. One advantage of cohomology is that it provides a natural way to define a hermitian
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matrix using cup product on the cocyles. However, it is quite difficult to find a suitable cell complex for
the complement of a string link to define the cup product. Alternatively, we can use the dual version: the
intersection product (see Section 5.2) defined on cycles which is easier to compute. Kirk et al. in [KLW01]
tackled this problem from a geometric point of view. They showed that the Gassner invariant is unitary
with respect to an intersection form with coordinate free arguments without providing explicit formulas.

Formulas are easy to remember and may not change over time; they are easy to implement using
computer programs to reduce complexities in computations. In this thesis, motivated by the work in
[BN14] and [KLW01], we provide formulas for the homology Gassner invariant, flying car invariant and
the intersection form to complement the work in [KLW01].

Results of thesis

The results of this thesis are as follows:

1. Formulas for the homology Gassner invariant (see Section 3.3)

Gh(σi) =
0 tT [i]
1 1− tT [i+1]

 and Gc(σ−1i ) =


tT [i+1]−1
tT [i]

1
1
tT [i]

0

 ,
where i is the position of the over strand below the horizontal level of the crossing σi .

These are matrix representations of the homology Gassner invariant for the generators σi and it
inverse σ−1i of the braid group. They are related to the cohomology Gassner invariant given by
inverse transpose in appropriate basis.

2. A relation between homology Gassner invariant and flying cars (see Section 4.3):

SLn

Matn(F ′) Matn(F ′)

C Grh

Dn(−)D−1n //ρcol //m
t

3. The intersection product formulas (see Section 5.2):

⟨β̃i , β̃j⟩ =



(t0−1)(tT [i]−1)(1−t0tT [i])
t0tT [i]

, i = j (self − intersection)

− (t0−1)(tT [i]−1)(tT [j]−1)
tT [j]

, i < j

− (t0−1)(tT [i]−1)(tT [j]−1)
t0tT [j]

, i > j

,

4. Unitary condition for the homology Gassner invariant (see Section 5.5): The theorem

Theorem 1.4. Let L be an (n+ 1)-string link whose strands are labeled by T = 0,1, · · · ,n. Suppose L
is the partial closure of an (n+2) braid β. If the homology Gassner invariant Gh(β) of β is unitary with
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respect to the intersection productsΩ0 andΩ1, then Gh(L) is also unitary with respect to the intersection

products

 βρ(Z,Z) βρ(Z,n−1)
βρ(n−1,Z) βρ(n−1,n−1)

 // tρ(n), tn 7→ tρ(n) and

 βZ,Z βZ,n−1
βn−1,Z βn−1,n−1

.
is an alternative statement for Theorem 5.18, whereΩ0 andΩ1 are the matrices for the intersection
product on the spaces X0 and X1 corresponding L respectively, βi,j := ⟨β̃i , β̃j⟩, ρ(Z) represents the
permutation of the element of Z , βρ(i,j) := ⟨β̃ρ(i), β̃ρ(j)⟩) and βZ,Z = {βi,j : i, j ∈ Z}. Here T = Z∪{n−
1,n}.

Refer to Chapter 6 for the concluding remarks on the thesis results.

1.2 Thesis Structure

In Chapter 2, wewill explore fundamental concepts in algebraic topology. Specifically, wewill introduce and
define homology, cohomology, and local coefficient systems. References for these concepts can be found in
Hatcher’s "Algebraic Topology", [Hat02] and Brown’s "Cohomology of Groups", [Bro12]. Additionally, we
will define and discuss braids and string links, which serve as the focal points of this thesis. Furthermore,
we will provide a cell structure for the complement of a given string link or braid, its ambient space being
the solid cylinder, utilizing a group presentation known as the Wirtinger presentation. Lastly, we intend to
expound upon a local coefficient system for the complement.

In Chapter 3, we will delve into the cohomology and homology Gassner invariants of string links and
braids, and offer various examples to elucidate the computation of these invariants. It will be observed that
these two invariants are inverse transpose of each other. Furthermore, we will verify that the homology
Gassner invariant is a braid invariant. Subsequently, in Chapter 4, we will verify that it is also a string link
invariant. Finally, a Mathematica implementation of the homology Gassner invariant will be presented. The
main reference for this chapter is [KLW01].

In Chapter 4, we discuss the concept of flying cars, a slight modification of the one discussed in [BNa].
Flying cars involve assigning an n× n matrix to an n+ 1 string link or braid, where the leftmost strand is
always free. It is demonstrated that this assignment serves as an invariant of string links and is connected to
the homology Gassner invariant. Furthermore, the stitching operation is defined to establish a relationship
between string links and braids. Finally, examples are provided to illustrate this concept.

In Chapter 5, we discuss the unitarity of the homologyGassner invariantwith respect to a skewhermitian
product given by an intersection product defined on the cycles of the first homology groupsH1(X0;F ) and
H1(X1;F ). We provide details on the computation of the intersection product defined on the elements of
H1(X0;F ). Furthermore, we provide a detailed proof of the unitary statement in Theorem 3.2 of [KLW01]
(see Theorem 5.18). We also provide an alternative proof of Theorem 5.18 (see Theorem 5.20). Finally, we
present a Mathematica implementation of the unitarity of the homology Gassner invariant.

Finally, in Chapter 6, we give the concluding remarks.

1.3 Conventions and notations

• In most contexts, the term "string links" is commonly associated with tangles that result in the
identity permutation. However, in the scope of this thesis, we adhere to the convention established
[KLW01]. Accordingly, string links are not strictly limited to inducing the identity permutation. We
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will specifically use the term "pure string link" to denote a string link that does induce the identity
permutation.

• The strands of a string link and a braid move from bottom to the top.

• In this thesis the Mathematica notation // is used to denote compositions of functions Specifically,
f ◦ g := g // f or f (g(x)) := x // g // f .

• Gc represents cohomology Gassner invariant.

• Gh represents homology Gassner invariant.

• mt stands for matrix transpose.

• A positive crossing! is referred to as an over-crossing and a negative crossing" is referred to as an
under-crossing.

• The strands of an n + 1 string link are indexed 0,1, · · · ,n, at the bottom from left to right. The set
T = {0,1, · · · ,n} of indices will be the set of labels of the strands. Note that with the strands indexed at
the bottom, the two strands participating in a crossing corresponding to σi may have arbitrary indices,
depending on the permutation induced by the braids below the horizontal level of that crossing. Here
i is the position of the over strand below the horizontal level of the crossing σi . In the case of σ−1i , i
is the position of the under strand instead. For example consider the braid b in the figure below:

1 2 3

1 3 2

σ−1
3

σ3

σ2

σ2
3 1 2

1 3 2

T = {0, 1, 2, 3}

T = {0, 1, 3, 2}

T = {0, 3, 1, 2}

T = {0, 1, 3, 2}

T = {0, 1, 2, 3}

permutation

0

0

0

0

Figure 1.7: The braid b with permutations at each horizontal level.

The permutation in cycle notation at the horizontal level below the crossing σ3 is
(
0 1 2 3
0 1 3 2

)
. So, the

labels of the two strands participating in the crossing are 3,2 in that order. The indices for the strands
participating in the crossing σ−13 are 2,3. Permutation of the set T will also be denoted T .

• Braids are composed from bottom to the top. For example in the figure above. the compositionn is
b = σ−13 σ2σ2σ3. However, matrix multiplication is done in the opposite direction. For example

Gh(b) = Gh(σ3)Gh(σ2)Gh(σ2)Gh(σ3)−1.



Chapter 2

Preliminaries

2.1 Summary of Chapter

In this chapter, we will explore fundamental concepts in algebraic topology. Specifically, we will introduce
and define homology, cohomology, and local coefficient systems. Some references for these concepts include
[DK01], [Hat02], [Bro12] and [Rot09] . Additionally, wewill define and discuss braids and string links, which
serve as the focal points of this thesis. Furthermore, we will provide a cell structure for the complement
of a given string link or braid, its ambient space being the solid cylinder, utilizing a group presentation
known as the Wirtinger presentation. Lastly, we intend to expound upon a local coefficient system for the
complement.

2.2 Homology and cohomology

In this section, we define and explore the basic concepts of homology and cohomology.

Definition 2.1. 1. A chain complex (C•,d•) is a sequence,

· · · Cn+1 Cn Cn−1 · · ·∂n+1 ∂n ,

of modules such that ∂n ◦∂n+1 = 0. The quotientHn(C•) = ker∂n
im ∂n+1

is called the nth homology group
of the complex.

2. A cochain complex (C•,d•) is a sequence,

· · · Cn−1 Cn Cn+1 · · ·dn−1 dn ,

of modules such that dn+1 ◦ dn = 0. The quotient Hn(C•) = kerdn
im dn−1

is called the nth cohomology
group of the complex.

3. A chain map f• : (C•,∂•) → (D•,d•) between two chain complexes (C•,∂•) and (D•,∂•) is a
collection of homomprphisms fn : Cn→Dn such that the ∂n ◦ fn = fn−1 ◦∂n.

4. Given a space X and a subspace A ⊂ X, the kth relative chain group Ck(X,A) is defined as the
quotient group Ck(X)/Ck(A) for each integer k. The kth homology group of the relative chain

9
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complex

· · · Ck+1(X,A) Ck(X,A) Ck−1(X,A) · · ·∂k+1 ∂k

is called kth relative homology and it is denoted by Hk(X,A).

LetM be a group. Then applyingHom(−,M) to the relative chain complex, we get the relative cochain
complex

· · · Ck−1(X,A;M) Ck(X,A) Ck+1(X,A;M) · · ·dk−1 dk ,

where Ck(X,A;M) = Hom(Ck(X,A),M) is the set of functions Ck(X,A) → M with values in M .
The kth homology group of the complex is called the kth relative cohomology with coefficients in
M denoted by Hk(X,A;M).

5. Given two chain complexesC• andD•, and two chainmaps f•, g• : C•→D•, as shown in the diagram
below, a chain homotopy from f• to g• is a sequence of homomorphisms sk : Ck → Dk+1 such that
the maps satisfiy ∂k+1◦sk+sk−1◦∂k = fk−gk . The chain maps f• and g• are then said to be homotopic
and denoted by f ≃ g .

· · · Ck+1 Ck Ck−1 · · ·

· · · Dk+1 Dk Dk−1 · · ·

∂k+1

fk+1 gk+1

∂k

fk gk
sk

fk−1 gk−1
sk−1

∂k+1 ∂k

6. A chain map f : (C•,∂•)→ (D•,∂•) is null-homotopic if f ≃ 0, where 0 is the zero chain map.

7. A chain complex (C•,∂•) has a contracting homotopy if the identity chain map idC• : C•→ C• is
null-homotopic. Such a chain is called contractible.

Proposition 2.2. A chain complex having a contracting homotopy is an exact sequence.

Proof. Suppose the chain complex (C•,∂•) has a contracting homotopy. Then, idC• ≃ 0. That is the maps
in the diagram

· · · Ck+1 Ck Ck−1 · · ·

· · · Ck+1 Ck Ck−1 · · ·

∂k+1

id 0

∂k

id 0
sk

id 0
sk−1

∂k+1 ∂k

satisfy dk+1 ◦ sk + sk−1 ◦∂k = id. Let z be a k-cycle. Then id(z) = dk+1 ◦ sk(z) + sk−1 ◦∂k(z) = dk+1(sk(z)) ∈
im(∂k+1). This implies that the induced map id∗ : Hk(C) → Hk(C) on homology groups, which is an
isomorphism, is equivalent to the 0 map. Thus, Hk(C) = 0, and the proposition follows.
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2.3 Homology and Cohomology with Local Coefficients

Definition 2.3. 1. A (left)G-module is an abelian groupA togetherwith a group action ρ : G→Aut(A)
of G on A, where Aut(A) denote the automorphisms of A.

2. Let R be a commutative ring and let G be a multiplicative group. The group ring R[G] associated to
G is a ring with elements of the form

∑
g∈G

rgg where rg ∈ R and rg = 0 for all but finitely many g ∈ G.

Addition in the group ring is given by∑
g∈G

rgg +
∑
g∈G

sgg =
∑
g∈G

(rg + sg )g,

where as multiplication is given by the distributive law and multiplication in G, that is∑
g∈G

rgg


∑
h∈G

shh

 = ∑
g,h∈G

(rgsh)gh.

Next, we discuss local coefficients. There are two approaches to defining local coefficients on a space
X. The first approach, which will be considered in this thesis, is via modules over group ring. The second
approach is via a fibre bundle p : E −→ X overX, whose fibres p−1(x) are identified with some fixed abelian
group. Standard references for local coefficients include [DK01] and [Hat02].

In this thesis, we will be working with local coefficients via modules over the group ring R[G], where
R and G are ring and group respectively.

2.3.1 Homology and Cohomology with Local Coefficients via modules

In this section, we define homology and cohomology with local coefficients using modules. We also provide
a proposition to help identify the (co)chain complex that will be used to compute these homologies.

Let G be a groups. Let X be a finite CW complex and let ϵ : π1(X,x0) → G be a surjective group
homomorpism. The correspondence between the conjugacy classes of subgroups of π1(X,x0) and the
covering spaces of X provides us with a covering space pG : (X̃, x̃0) → (X,x0) which corresponds to
the subgroup, kerϵ, of π1(X,x0), which is the kernel of ϵ, such that pG∗(π1(X̃, x̃0)) = kerϵ, where pG∗
is the map pG∗ : π1(X̃, x̃0) → π1(X,x0) induced by the covering space map. This makes the covering
regular, since kerϵ is a normal subgroup. The automorphism group of p : (X̃, x̃0)→ (X,x0) is isomorphic
to π1(X,x0)/pG∗(π1(X̃, x̃0)) = π1(X,x0)/ kerϵ � G.

An action of G on X̃ can be defined as follows. Take an element g ∈ G. Since ϵ is unto, there is an
equivalence class [γ] ∈ π1(X,x0) such that ϵ([γ]) = g , where γ is a loop on X representing the class
[γ]. By the lifting property, one can consider the unique lift γ̃ of γ to X̃ such that γ̃(0) = x̃0. Since pG :

(X̃, x̃0)→ (X,x0) is a regular cover, there exist a unique deck transformation h : X̃→ X̃ such that h(x̃1) = x̃2
for x̃1, x̃2 ∈ pG(xo). Let hγ (x̃0) = γ̃(1). So, for any z ∈ X̃, define z · ϵ([γ]) = z · g = hγ (z). This defines an
action of G on the covering space X̃ by acting on the points of X̃ and by extension, an action on the cells
of X̃ via action on the points that make up the cells. Let Ck(X̃,Z) =

〈
eki

〉r
i=1

be the chain group generated
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by k-cells. Let g ∈ G, and let σ k ∈ Ck(X̃,Z); σ k =
r∑
i=1
mie

k
i . Then

 r∑
i=1

mie
k
i

 · g = r∑
i=1

mi(e
k
i ) · g =

r∑
i=1

mihγ (e
k
i ),

where [γ] ∈ πi(X,x0) such that ϵ([γ]) = g . It follows that the action described above further extends to an
action of G on the chain groups, Ck(X̃,Z), for k ≥ 0.

Let Z[G] be the group ring associated with the group G. Then the action of G on Ck(X̃,Z) extends to
an action of Z[G] on Ck(X̃,Z). It follows that Ck(X̃,Z) is a Z[G] module.

Definition 2.4. (Homology andCohomologywith Local Coefficients) LetM be aZ[π]-module, where
π = π1(X,x0)

1. The homology groups H∗(X;M) of the chain complex C∗(X;M) = C∗(X̃;Z) ⊗Z[π]M are called
homology groups of X with local coefficients inM .

2. The homology groups of the cochain complexC∗(X;M) = HomZ[π](C∗(X̃,Z),M) is called cohomology
of X with local coefficients inM denoted H ∗(X;M).

The following two propositions provide a description of how to find generators for the chain and cochain
groups, Cn(X;M) = Cn(X̃;Z)⊗Z[G]M and C∗(X;M) = HomZ[G](C∗(X̃,Z),M), respectively This is done
by first finding the generators of the chain groups Ck(X̃,Z).

Proposition 2.5 (Proposition 1.33 of [Hat02]). Suppose given a covering space p : (X̃, x̃0) −→ (X,x0) and
a map f : (Y ,y0) −→ (X,x0) with Y path-connected and locally path-connected. Then a lift f̃ : (Y ,y0) −→
(X̃, x̃0) of f exists if and only if f∗(π1(Y ,y0)) ⊂ p∗(π1(X̃, x̃0)).

Proposition 2.6. LetY be a connected finite cell complexwith one 0-cell y0 and let ϵ : π1(Y ,y0)↠ π1(Y ,y0)ab1

be the abelianisation map. Let Ck(Y ,Z) = ⟨ei⟩ri=1 be the free abelian group with basis the set of r k-cells
of Y . Let Ỹ → Y denote the universal abelian cover determined by the abelianization map. Then the free
Z[π1(Y ,y0)ab]-module Ck(Ỹ ,Z) is generated by the set {ẽi}ri=1 of r k-cells of the covering space Ỹ of Y , where
ẽi is a lift of ei for each i = 1, . . . r .

Proof. Let Y be as in the hypothesis and let Ck(Y ,Z) = ⟨ei⟩ri=1. Let e be a k-cell of Y and let f : Sk−1 −→ Y

be the attaching map2. For each element α ∈ π1(Y ,y)ab, there is a lift ỹα0 of y0 by Proposition 2.5. The
k-cell e is simply connected. It follows that there is a unique lift ẽα of e for each α ∈ π1(Y ,y)ab such that
f̃ (y0) = ỹ

α
0 .

Now, consider the unique lift ẽ0 of e such that f̃ (y0) = ỹ00 . Let g ∈ π1(Y ,y)ab be the element corresponding
to the deck transformation h : Ỹ → Ỹ such that h(ỹ00 ) = ỹα0 . Then, g · ẽ0 = h(̃e0) is a lift of e such that
f̃ (y0) = ỹ

α
0 . The uniqueness property of lifts implies that g · ẽ0 = ẽα .

This argument can be repeated for each k−cell e of Y and thus, it is enough to consider a single lift of
each k-cell of Y to Ỹ to generate Ck(Ỹ ,Z) as Z[π1(Y ,y)ab]-module. It follows that if Ck(Y ,Z) = ⟨ei⟩ri=1,
then Ck(Ỹ ,Z) = ⟨ẽi⟩ri=1.
1 Here, π1(Y ,y0)ab is the abelianization of the fundamental group. By definition, it is the quotient group
π1(Y ,y0)/[π1(Y ,y0),π1(Y ,y0)], which is isomorphic to H1(Y ;Z).

2 Consider the pair (Dk ,Sk−1) of an k-disk and its boundary. Let us think of Dk as an k-cell. Given a map f : Sk−1 −→ Y , then we
can attach an k-cell to X via f by the following identification: Y ∪f Dk := (Y ⊔Dk )/(a ∼ f (a)) for all s ∈ Sk−1. We say Y ∪f Dk

arises from attaching Dk to X along f and f is called an attaching map.
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2.4 Braids, String links and their complements

In this section, we define and examine braids and string links. We present a cell structure for the complement
of a string link or braid embedded in D2 × [0,1]. Furthermore, we analyze a local coefficient system on the
complement of a string link or braid.

Definition 2.7. A strand is a continuous curve f : [0,1]→ D2 × [0,1] that starts at a point on the disk
D2 at x = 0 and ends at a point on the disk at D2 at x = 1. A free strand is a strand of a string link that is
not involved in a crossing.

v3v1v0v2

u2 u3u1u0

P1

P0

(a) A non pure braid

v3v2v1v0

u0 u1 u2 u3

P1

P0

(b) A pure braid

Figure 2.1: Pure and non-pure braids.

Definition 2.8. 1. A braid on n+ 1 strands is a geometric object consisting of two parallel planes P0
and P1 in three-dimensional space R3, containing two ordered sets of points a0, a1, . . . , an ∈ P0 and
b0,b1, . . . , bn ∈ P1, and n + 1 simple non-intersecting strands l0, l1, . . . ln, intersecting each parallel
plane Pt between P0 and P1 exactly once and joining the points {a0, a1, . . . , an} to {b0,b1, . . . , bn}. The
points a0, a1, . . . , an are called the initial points and the points b0,b1, . . . , bn are called end points.
Figure 2.1 shows some examples of braids.

2. Labeling the strands of an (n+1)-braid β involves indexing the strands at the bottom from left to right,
starting from 0 and going up to n. An indexed braid is called a labeled braid. Let T = {0,1, · · · ,n}
denote the indexing set; T is called the set of labels of β. The mapping of the initial positions to the
final positions is a permutation of T .

If we map T to the subscripts of the initial points, then each braid induces a permutation on the
subscripts of the initial points a0, a1, . . . , an.This is because the subscripts of the initial points a0, a1, . . . , an
of the strandswill generally be in a different order at the endpoints b0,b1, . . . , bn. For example the braid
in Figure 2.1a induces the permutation

(
0 1 2 3
2 0 1 3

)
, where as the braid in Figure 2.1b induces the identity

permutation.

3. A pure braid3 is a braid that induces the identity permutation. That is, if the mapping of the initial
positions to the final positions induces the identity permutation on T . Otherwise, the braid is called
a non-pure braid.

3 In the literature, pure braids are sometimes referred to as coloured braids, since each strand can be assigned a distinct colour (label)
in a way compatible with composition
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4. The Artin braid group Bn is the group generated by n− 1 generators σ1,σ2, . . . ,σn−1 such that the
braid relations σiσj = σjσi for all i, j = 1,2, . . . ,n − 1 with |i − j | ≥ 2, and σiσi+1σi = σi+1σiσi+1 for
i = 1,2, . . . ,n− 2 are satisfied.

. . . . . .

i− 1 i21 i + 1 i + 2 n

ni + 2i + 11 2 ii− 1

(a) Over-crossing σi

. . . . . .

ni + 2i + 11 2 ii− 1

i− 1 i21 i + 1 i + 2 n

(b) Under-crossing σ−1i

Figure 2.2: Geometric representation of σi and σ−1i

The generator σi denotes a positive crossing between the strand at position number i as counted just
below the horizontal level of that crossing, and the strand just to its right. Note that with the strands indexed
at the bottom, the two strands participating in a crossing corresponding to σi may have arbitrary indices,
depending on the permutation induced by the braids below the level of that crossing.

Definition 2.9. (String Link)

1. Let n be a positive integer and fix n + 1 points, p0,p1, · · ·pn, in the interior of the 2-disk, D2. A
string link L of n components is a smooth, proper, oriented 1-dimensional submanifold ofD2×[0,1]
homeomorphic to the disjoint union of n + 1 intervals (strands) such that the initial point of each
interval (strand) coincides with some pi × {0} and the endpoint coincides with pj × {1}.

Just like braids, string links also induce permutations. See the diagram below.

v0 v1

u0 u1

(a) A string link with
identity permutation.

v1v2v0

u0 u1 u2

(b) A string link with non-
identity permutation.

Figure 2.3: String links inducing a permutation.

2. A pure string link is a string link that induces the identity permutation.

Remark 2.10. Braids form a group, where multiplication is achieved by stacking one braid on the other.
String links on the other hand do not form a group since isotopy classes of string links need not have
inverses. However, isotopy classes of pure n-string links form a semi-group.
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There is a multiplication on labeled string links where one string link is stacked on the another. Two
n + 1- labeled string links can be multiplied if the labels of the bottom end of one equals the labels of the
top end of the other. For example in Figure 2.4a the two string links are composable where as the two string

r g b

r g b

r b g

bgr

(a) The string links can be
multiplied

r g b

r g b

r b g

r b g

(b) The string can not be
multiplied.

Figure 2.4: Multiplication of string links

links in Figure 2.4b can not be multiplied.

By convention, all braids and string links will be oriented such that the strands move from the bottom
to the top and we do not allow closed components. Also, the ambient space of braids and string links is
taken to be the solid cylinder D2 × [0,1]; see Figure 1.5a. Unless otherwise stated, all string links will be
denoted by L and the complement of the strands will be denoted X =

(
D2 × [0,1]

)
−L.

2.4.1 A Cell structure for the complement of a string link

Let L be a labeled (n + 1)-string link. L has positive crossings (!) and negative crossings ("). Suppose L
has m crossings, then the fundamental group of the complement X =

(
D2 × [0,1]

)
− L has a presentation

⟨ g1, . . . , gs | r1, . . . , rm ⟩ where the gi ’s are closed loop around the strands of L and the rj ’s are relations of
the form gigjg

−1
i g−1k at each crossing. The closed loops are called meridians. This presentation is called

theWirtinger presentation.

Description 2.11 (Labelling scheme for Wirtinger generators). The following is a labelling scheme for
the generators of the Wirtinger presentation. Let u0,u1, . . . ,un denote the generators corresponding to
meridians which lie in D2 × {0} and let v0,v1, . . . , vn denote the generators corresponding to meridians
which lie in D2 × {1}. Here, the subscripts of ui and vi are the labels of the corresponding strands. The
remaining generators are denoted by z1,i , z2,i , . . . , zri ,i , where ri is the number of meridians zk,i on a strand
with label i, 1 ≤ k ≤ ri . Let S be the set of the generators (meridians).

Ordering 2.12 (Ordering of generators(meridians)). The ordering S will always be

S : u0,u1, . . . ,un, z1,i , z2,i , . . . , zri ,i ,v1, . . . , vn. (2.1)

The complement X deformation retracts to a space Y which retains information at each crossing. The
space Y can be constructed using the Wirtinger presentation as follows. At each positive crossing ci (see
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b
x0

(a) A generic
crossing

ci

ai

ai

bi

gi

(b) An over-crossing
(positive crossing)

cr

ar

ar

br

gr

(c) An under-crossing
(negative crossing)

Figure 2.5: Over and under-Crossing

Figure 2.5b) there is a Wirtinger relation aibia−1i g
−1
i , and at each negative crossing cr (see Figure 2.5c)

there is a Wirtinger relation arbra−1r g−1r , where ai , ar ,bi ,br , gi , gr ∈
{
uj ,vj , zk,s

}
j=0,1,...,n; 1≤k≤rs

. Note that
ui ,uj ,vi ,vj are closed pathswhich form 1-cells; each path begins at the base point (0-cell) x0, goes underneath
a strand and back to x0 (see Figure 2.5a). These relations form the boundaries of 2-cells that correspond to
the m crossings. Figures 2.6a and 2.6b exhibits 2-cells at a positive and a negative crossing. If a strand of
the string link is not involved in any of the crossings, then we have a 1-cell uk (see Figure 2.6c).

b

x0

ai

bi gi

(a) Cell structure at a
positive crossing

b

x0
ar

gr
br

(b) Cell structure at a
negative crossing

b
x0

b

x0≃

uk

uk

vk

(c) Cell structure of a free strand

Figure 2.6: Cell structures at an over-crossing, under-crossing and a free strand.

gi

b

b

b

b

ai

x0

x0
ai

x0

x0

bi

ei

(a) The cell structure at
a positive crossing viewed
as a square

ai

b

b

b

b

gi

x0

x0

x0

x0

ai

ei

bi

(b) The cell structure at a
negative crossing viewed
as a square

Figure 2.7: Cell structure at a positive and a negative crossing.

Gluing the cells together – using appropriate attaching maps – results in the desired cell-complex
structure for the deformation retract Y , from which its chain complex is determined. Since the complement
is connected, all 3-cells can be deformed to a point, and all these points can be identified. By Proposition 2.6,
the chain complex of the covering space Ỹ can be determined.
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˜ei

ǫ(ai)
˜

bi

˜gi

˜ai

ǫ(ai)
˜x0

˜x0
ǫ(bi)

˜ai

ǫ(gi)
˜x0

ǫ(bi)ǫ(ai)
˜x0

b

b

b

b

(a) The lift of ei at a
positive crossing

˜ei

ǫ(ai)
˜

bi
˜gi

˜ai

ǫ(ai)
˜x0

˜x0
ǫ(bi)

˜ai

ǫ(gi)
˜x0

b

b

b

bǫ(bi)ǫ(ai)
˜x0

(b) The lift of ei at a
negative crossing

Figure 2.8: Cell structure of the lift of a 2-cell at a positive and a negative crossing.

2.4.2 A Local Coefficient System on the complement

Let L be an n + 1 string link and let X =
(
D2 × [0,1]

)
− L. Let G = π1(X,x0) be the fundamental group

of X. The abelianisation, G/[G,G], of G is isomorphic to the free group Zn+1 ≃ ⟨t0, t1, . . . , tn⟩ and the
abelianisation map ϵ : G→ ⟨t0, t1, · · · , tn⟩ is determined by assigning to a meridian of X its corresponding
ti , i = 0,1, · · · ,n. LetΛ = Z[⟨t0, t1, · · · , tn⟩] and let F =Q(⟨t0, t1, · · · , tn⟩) be the field of fractions forΛ. Let
g ∈ G, then multiplication by ϵ(g) determines a local coefficient system on X with coefficients in Λ or F ,
and hence the homology and cohomology groupsH∗(X;M) andH ∗(X;M) respectively (See Definition 2.4),
whereM is either Λ or F .

Description 2.13 (Boundary of ei and ẽi ). The cell structure of the 2-cells in Figure 2.6a and Figure 2.6b
can be viewed as a square with the sides αi identified as seen in Figure 2.7. The lifts of these cells are also
given in Figure 2.8. Each ẽi has boundary of the form

∂(̃ei) = (1− ϵ(bi))ai + ϵ(ai)bi − gi (2.2)

which is computed as follows:
The boundary ∂2(ei) of each 2-cell ei is a word (path) formed by the 1-cells of the deformation retract

Y of the complement X. The boundary of each ei at a crossing is of the form aibia
−1
i g
−1
i , regardless of the

type of crossing. Label the 1-cells (meridians) with the labels of their corresponding strands. Note that bi
and gi have the same labels since they are on the under strand of the crossing, so ϵ(bi) = ϵ(gi). Following
the path aibia−1i g

−1
i :

1. The lift of ai is ãi , a path from x̃0 to ϵ(ai)x̃0, where x̃0 is a lift of x0.

2. The lift of bi is the path ϵ(ai )̃bi , starting from ϵ(ai)x̃0 and ending at ϵ(ai)ϵ(bi)x̃0.

3. The lift of a−1i is the path −ϵ(bi)ãi , starting from ϵ(ai)ϵ(bi)x̃0 and ending at ϵ(ai)ϵ(bi)ϵ(ai)−1x̃0 =

ϵ(bi)x̃0 = ϵ(gi)x̃0.

4. Finally, the lift of g−1i is the path −g̃i , from ϵ(gi)x̃0 to ϵ(ci)ϵ(gi)−1x̃0 = x̃0.

Since the lifts are elements in a free abelian group, the boundary of ẽi is written additively as:

ãi + ϵ(ai )̃bi − ϵ(bi)ãi − g̃i ,
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which simplifies to:
(1− ϵ(bi))ãi + ϵ(ai )̃bi − g̃i .

Remark 2.14. Let X0 = X ∩ D2 × {0} and X1 = X ∩ D2 × {1}. Both X0 and X1 are n + 1-punctured
discs (see Figure 3.1); they are canonically identified via the homeomorphism χ : X0 → X1 defined by
(x,0) 7→ (x,1). They are subspaces of the complement X. Let ρ be a permutation induced by L. Then
note that ρ also permutes the punctures of X1 via the homeomorphism χ. Multiplication by ϵ(g) therefore
determines local coefficient systems on X0 and X1, with coefficients in F and F ρ respectively, where
F ρ = Q(⟨ tρ(0), tρ(1), · · · , tρ(n) ⟩). So ρ permutes the set of labels (colors) T = {ti}ni=0. Note that F and F ρ

are the same. For simplicity, we will also use F to denote F ρ.



Chapter 3

The Gassner and reduced Gassner
invariant

3.1 Summary of Chapter

In this chapter, we will delve into the cohomology and homology Gassner invariants of string links and
braids, and offer various examples to elucidate the computation of these invariants. It will be observed that
these two invariants are inverse transpose of each other. Furthermore, we will verify that the homology
Gassner invariant is a braid invariant. Subsequently, in Chapter 4, we will verify that it is also a string link
invariant. Finally, a Mathematica implementation of the homology Gassner invariant will be presented. The
main reference for this chapter is [KLW01].

3.2 The cohomology Gassner invariant

In this section, we present the cohomological approach to defining the Gassner invariant for a string link
or braid as described in [KLW01]. We also provide several examples to illustrate this construction.

Given a string link L with n + 1 strands, let X = (D2 × I) − L be the complement of L, where D2 is
the 2dimensional disk, and let πX denote the fundamental group π1(X,x0) of the the complement X. The
abelianisation of πX , is isomorphic to the free abelian group, ⟨ti⟩ni=1, generated by the set {t0, t1, · · · , tn}.
The abelianisation map ϵ : πX → ⟨ti⟩ni=0 is determined by assigning to a meridian (a closed path around a
strand of L) its corresponding ti . Let Λ = Z[⟨ti⟩ni=1] and let F = Q(⟨ti⟩ni=1) be the field of fractions of Λ.
Let X0 = X∩D×{0} and X1 = X∩D×{1}. Both X0 and X1 are n−punctured disks (see Figure 3.1); they are
canonically identified via the homeomorphism χ : X0→ X1 defined by (x,0) 7→ (x,1). Fix a point q ∈ ∂D
and let Iq ⊂ X be the arc Iq = {q} × [0,1].

The following ordering of the crossings will help in ordering the 2-cells.

Ordering 3.1. (Ordering the crossings) Order the crossings in the following manner: let the first crossing
c1 be the crossing at which the strand with Wirtinger generator u1 ends. Next, the second crossing c2 is
the crossing at which the strand with Wirtinger generator u2 ends. Repeat this process going through the
Wirtinger generators ui , i = 2,3, · · · ,n + 1 and then through z1,i , z2,i , . . . , zri ,i , where ri is the number of
meridians zk,i on a strand with label i, 1 ≤ k ≤ ri .

19
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. . .

. . . . . .

u0

ui
uj

un

b
b

bb

b

x0

Figure 3.1: An n-punctured disk
with loops u0,u1, · · · ,un. The
white objects are the punctures.

Lemma 3.2 ([KLW01], Proposition 2.3). Let (X,W ) be a pair of path connected cell complexes and ϵ :

π1(X,x0) → Zn a homomorphism. Consider the corresponding local coefficients F on the pair (X,W ).
Suppose the inclusion of W in X induces an isomorphism on homology with (untwisted) Q coefficients. Then
H∗(X,W ;F ) = 0.

Proof. Let (C∗(X,W ;Q),∂) denote the cellular chain complex with coefficients in Q for the pair and let
(X,W ) and let (C∗(X̃,W̃ ;Q), ∂̃) denote the cellular chain complex, also with Q, of the covering space
determined by the map ϵ : π1(X,x0)→ Zn. Fix lifts of the cells of (X,W ) to (X̃,W̃ ) to get a free F -basis of
C∗(X̃,W̃ ) by using Proposition 2.6.

Since the inclusion W ↪→ X induces an isomorphism on homology by the hypothesis, then C∗(X,W )

is acyclic, meaning that the homology group of the complex C∗(X,W ) are all 0. It follows that there exists
a chain contraction s : C∗(X,W )→ C∗(X,W ), where s is a degree 1 map satisfying ∂n+1sn + sn−1∂n = Id
(see Definition 2.1).

Using the F -free basis for C∗(X̃,W̃ ) and the formula for ∂n+1sn+sn−1∂n = Id, define a chain homotopy
s̃ : C∗(X̃,W̃ )→ C∗(X̃,W̃ ). That is, if s(e) =

∑
i
qiyi then, define s̃(̃e) =

∑
i
qi ỹi , where ẽ, ỹi are the chosen lifts

of e,yi .
By construction Φ = ∂̃n+1s̃n + s̃n−1∂̃n is a chain map whose matrix in the chosen basis augments

to the identity map, meaning that if a : F → Q is the augmentation ti 7→ 1, then a(Φ) = Id is the
identity map. Dualizing the complex (C∗(X̃,W̃ ;Q), ∂̃), the induced chain homotopy on the cochain complex
HomZ[π](C∗(X̃, Ỹ ;Q),F ) is a chain homotopy fromΦ∗ to 0. Thus,Φ∗ induces the zeromap on the cohomology
group H ∗(X,W ;F ) of the complex HomZ[π](C∗(X̃, Ỹ ;Q),F ). Note that the determinant of the matrix
induced by Φ∗ is a non-zero element of Z[π] since a(Φ) = Id. Hence, Φ∗ is an isomorphism. This implies
the zero map is also an isomorphism. It follows that the cohomology group, H ∗(X,W ;F ) is 0.

Lemma 3.3 ([KLW01], Lemma 2.1 ). 1. H1(X0;F ) �H1(X1;F ) � F n andH1(X0,q;F ) �H1(X1,q;F ) �

F n+1.

2. Let ιj : Xj ↪→ X be the inclusion maps for j = 0,1. The restriction maps ι∗j : H
1(X;F )→ H1(Xj ;F )

and ι∗j :H
1(X,Iq;F )→H1(Xj ,q;F ), for j = 0,1 are all isomorphisms.

Proof. 1. The subspace X0 = X ∩ D × {0} is an (n + 1)-punctured deformation retracts to the wedge
product, Y0 = ∨ni=0S

1, of n+1 copies of S1. The cell structure of Y0 consists of only one 0-cell, q, and
n+1 1-cells, ui , for i = 0,1, . . . ,n. Up to homotopy, bothX0 and Y0 are the same, and it is much easier
doing computations with Y0. The fundamental group π1(Y0,p) of Y0 is the free group generated by
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the set U = {ui}ni=0. The abelianisation map ϵ : π1(Y0,p)→ ⟨ti⟩ni=0 sends each generator ui to the
corresponding ti in ⟨ti⟩ni=0. By Proposition 2.6, we have a cellular chain complex

· · ·0
∂2−−−−−→C1(X̃0;Z)

∂1−−−−−→C0(X̃0;Z)
∂0−−−−−→0,

where C0(Ỹ0,Z) = ⟨ q̃⟩ and C1(Ỹ ,Z) = ⟨ ũi ⟩ni=0. Dualizing the above complex with HomΛ(−,F ),
gives the corresponding cellular cochain complex

0→ C0(Y0;F )
d0−−→ C1(Y0;F )

d1−−→ 0,

where C0(Y0;F ) = ⟨ Q̃⟩ and C1(Y0;F ) =
〈
Ũi

〉n
i=0

, and Q̃(q̃) = 1, Q̃(ũj ) = 0, Ũi(ũj ) = δij and
Ũ (q̃) = 0. The kernel of d1 is Z1(Y0;F ) = kerd1 = C1(Y0,F ) � F n+1 and the image of d0 is〈

n∑
i=0

(ti − 1)Ũi
〉
� F , since d0(Q̃)(ũi) = Q̃(∂1(ũi)) = Q̃((ti − 1)q̃) = ti − 1. The first cohomology

H1(Y0;F ) is kerd1
im d0

=
〈
Ũi

〉n−1
i=1
� F n. Hence, H1(X0;F ) � H1(Y0;F ) � F n. A similar argument

shows that H1(X1;F ) � F n.

Next, the pair (X0,q), induces a short exact sequence, which in turn induces a long exact sequences:

0→ Cn(X0,q;F )→ Cn(X0;F )→ Cn(q;F )→ 0,

0 H0(X0,q;F ) H0(X0;F ) H0(q;F )

H1(X0,q;F ) H1(X0;F ) H1(q;F ) . . . .

Note that in the cochain complex of Y0 above, map d0 is injective, so its kernel is 0. It follows that
H0(X0;F ) � 0. Also, notice that the cochain groups of q are all 0 except C0(q;F ) � F . It follows
that H1(q;F ) � 0 and H0(q;F ) � F . Hence, the long exact sequence becomes

0 H0(X0,q;F ) 0 F

H1(X0,q;F ) F n 0 . . . ,

which implies that H1(X0,q;F ) � F ⊕F n � F n+1. A similar argument using the inclusion q ↪→ X1

shows that H1(X1,q;F ) � F n+1.

2. Since Xj deformation retracts to the wedge product of n + 1 circles, we have H1(Xj ;Q) � Qn+1.
Also, the abelianization of the fundamental group of X is H1(X;Q), which is the free abelian group
generated by n+1 generator. This is because each strand of the string link contributes a generator to
H1(X,Q), corresponding to the meridian around each string. Thus, the inclusion maps ιj : Xj ↪→ X

ιj : (Xj ,q) ↪→ (X,Iq) satisfy the hypothesis of Lemma 3.2, so H ∗(X,Xj ;F ) = 0. It follows from the
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long exact sequence of the pair (X,Xj ):

· · · �������: 0
H1(X,Xj ;F ) H1(X;F ) H1(Xj ;F )

�������: 0
H2(X,Xj ;F ) H2(X;F ) H2(Xj ;F ) . . . .

that themapsH1(X;F )
ι∗j
−−−−→H1(Xj ;F ) are isomorphisms for j = 0,1. Similarly,H1(X,Iq;F )

ι∗j
−−−−→H1(Xj ,q;F )

are isomorphisms for j = 0,1.

Definition 3.4 (Gassner Invariant-Cohomological definition [KLW01]). To a string linkL assign the automorphism

Gc((L) :H1(X0,p;F )
ι∗0←−−−−H1(X,Ip;F )

ι∗1−−−−→H1(X1,p;F ).

The composition Gc((L) = ι∗1 ◦ (ι
∗
0)
−1 is called the cohomology Gassner invariant of the string link L

The following lemma provides a simple way to compute the relative (co)homology groupsH1(X,Iq;F ).

Lemma 3.5. Let X be the complement of a string link L and Iq = q × [0,1], where q = x0 is a fixed point on
the boundary of D2. Let Y be the deformation retract of X as described in Section 2.4.1 with one 0-cell q. Then
the relative homology groupH1(X,Iq;F ) is isomorphic toH1(Y ,q;F ) = ker(d1), where d1 is the coboundary

map C1(Y ;F )
d1−−−−−→ C2(Y ;F ).

Proof. Suppose X and Y satisfy the hypothesis. Then the inclusion map (Y ,q) ↪→ (X,Iq) induces the
isomorphism H1(X,Iq;F ) �H1(Y ,q;F ). The relative complex,

· · · C2(Ỹ , q̃;Z)
∂2−−−−−→ C1(Ỹ , q̃;Z)

∂1−−−−−→ C0(Ỹ , q̃;Z)→ 0,

of the pair (Y ,q), is equivalent to

· · ·0→ C2(Ỹ ;Z)
∂2−−−−−→C1(Ỹ ;Z)

∂1−−−−−→0,

since

C0(Ỹ , q̃;Z) = C0(Ỹ ;Z)/C0(q̃;Z) = ⟨q̃⟩/⟨q̃⟩ = 0,

C1(Ỹ , q̃;Z) = C1(Ỹ ;Z)/C1(q̃;Z) = C1(Ỹ ;Z)/0 � C1(Ỹ ;Z),

C2(Ỹ , q̃;Z) = C2(Ỹ ;Z)/C2(q̃;Z) = C2(Ỹ ;Z)/0 � C2(Ỹ ;Z)

C3(Ỹ , q̃;Z) = 0/0 = 0
...
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Dualizing with HomZ[πY ](−,F ), gives the cochain complex

0
d0−−−−−→ C1(Y ;F )

d1−−−−−→ C2(Y ;F )→ 0 · · · .

But H1(Y ,q;F ) � ker(d1) and the lemma follows.

Corollary 3.6. Let Xj , j = 0,1, be the punctured disks associated with the complement of a string link. Then
the relative cohomology groups H1(Xj ,q;F ) is isomorphic to ker(d1) = C1(Xj ;F ) for each j = 0,1.

Proof. The corollary follows immediately from Lemma 3.5, since all butC1(Xj ;F ) is 0 for each j = 0,1.

v0 v1

u0 u1

z1,0

c1

c2

c3

Figure 3.2: A 2-component string link L1.
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(a) 2-cell at c1.
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z10

v1
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(b) 2-cell at c2.
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u0

v0 z10

(c) 2-cell at c3.

Figure 3.3: Cells of the deformation retract Y .
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(a) 2-cell at c1.
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z10
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(b) 2-cell at c2.
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b

b
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u0

x0

x0

u0

x0
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v0

e3

(c) 2-cell at c3.

Figure 3.4: The cell structure at crossings c1, c1, c3, viewed as a square.

Example 3.7 (Cohomology Gassner invariant). Let L1 be the string link in Figure 3.2; it has 3 crossing c1, c2
and c3. Let X =

(
D2 × [0,1]

)
− L1 and let Y be the deformation retract of the complement X with a 0-cell

q = x0, five 1-cells u0,u1, z1,0,v0,v1, and three 2-cells e1, e2 and e3 as shown in Figure 3.3 and Figure 3.4.
Note that Iq also deformation retracts to q.
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(a) 2-cell at c1.
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(c) 2-cell at c3.

Figure 3.5: The lift of the cells at crossings c1, c1, c3, viewed as a square.

Let Ỹ be the covering space of Y determined by ϵ : π1(X,q)→ ⟨t0, t1⟩, where q = x0. By Proposition 2.6,

the relative chain groups of the relative complex 0→ C2(Ỹ , q̃;Z)
∂2−−−−−→ C1(Ỹ , q̃;Z)

∂1−−−−−→ C0(Ỹ , q̃;Z)→ 0

are

C0(Ỹ , q̃;Z) = C0(Ỹ ;Z)/C0(q̃;Z) = 0/0 = 0,

C1(Ỹ , q̃;Z) = C1(Ỹ ;Z)/C1(q̃;Z) = C1(Ỹ ;Z)/0 = ⟨ũ0, ũ1, z̃1,0, ṽ0, ṽ1⟩,

C2(Ỹ , q̃;Z) = C2(Ỹ ;Z)/C2(q̃;Z) = C2(Ỹ ;Z)/0 = ⟨ẽ1, ẽ2, ẽ3⟩.

Up to isomorphism, the relative complex reduces to the chain complex

0→ C2(Ỹ ;Z)
∂2−−−−−→C1(Ỹ ;Z)

∂1−−−−−→0.

Dualizing with HomZ[πY ](−,F ), gives the cochain complex

0
d0−−−−−→ C1(Y ;F )

d1−−−−−→ C2(Y ;F )→ 0,

where the cochain groups are

C1(Y ;F ) = ⟨Ũ0, Ũ1, Z̃1,0, Ṽ0, Ṽ1⟩, C2(Y ;F ) = ⟨Ẽ1, Ẽ2, Ẽ3⟩.

Forψ ∈ C1(Y ;F ), d1(ψ) ∈ C2(Y ;F ) = HomZ[πY ](C1(Y ;F ),F ). If x ∈ C2(Y ;F ), then d1(ψ)(x) = ψ(∂2(x)).
From Figure 3.5 and by Description 2.13, the image of the boundary map, ∂2 on each generators ẽi , i = 1,2,3

is
∂2(̃e1) = (1− t0)ṽ1 + t1ũ0 − z̃1,0
∂2(̃e2) = (1− t1 )̃z1,0 + t0ũ1 − ṽ1,
∂2(̃e3) = (1− t0)ũ0 + t0ṽ0 − z̃1,0

(3.1)

The matrix representation for d1 is


Ũ0(∂2(̃e1)) Ũ1(∂2(̃e1)) Z̃1,0(∂2(̃e1)) Ṽ0(∂2(̃e1)) Ṽ1(∂2(̃e1))

Ũ0(∂2(̃e2)) Ũ1(∂2(̃e2)) Z̃1,0(∂2(̃e2)) Ṽ0(∂2(̃e2)) Ṽ1(∂2(̃e2))

Ũ0(∂2(̃e3)) Ũ1(∂2(̃e3)) Z̃1,0(∂2(̃e3)) Ṽ0(∂2(̃e3)) Ṽ1(∂2(̃e3))

 ,
which is

d1matrix =


t1 0 −1 0 1− t0
0 t0 1− t1 0 −1

1− t0 0 −1 t0 0

 .
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The nullspace of d1matrix is
〈


− 1−t0
t0+t1−1

− t1t0−t0−2t1+1t0+t1−1

− (t0−1)2
t0+t1−1
0

1


,



t0
t0+t1−1
(t1−1)t1
t0+t1−1
t0t1

t0+t1−1
1

0


〉
, from which we get the kernel of d1: Z1(Y ;p) =

ker(d1) =
〈
t0t1Z̃1,0
t0+t1−1 +

t0Ũ0
t0+t1−1 +

(t1−1)t1Ũ1
t0+t1−1 + Ṽ0, −

(t0−1)2Z̃1,0
t0+t1−1 −

(1−t0)Ũ0
t0+t1−1 −

(t1t0−t0−2t1+1)Ũ1
t0+t1−1 + Ṽ1

〉
, which is the

relative cohomology H1(Y ,q;F ) of the relative complex of the pair (Y ,q) by Lemma 3.5. By Lemma 3.5,

H1(X,q;F ) � ker(d1).

According to Corollary 3.6, H1(X0,q;F ) = C1(X0;F ) = ⟨Ũ0, Ũ1⟩ and H1(X1,q;F ) = C1(X1;F ) =

⟨Ṽ0, Ṽ1⟩. By definition of the cohomology Gassner invariant, the map ι∗0 : H1(X,q;F )→ H1(X0,q;F ) is
given by

ι∗0 :


t0t1Z̃1,0
t0+t1−1 +

t0Ũ0
t0+t1−1 +

(t1−1)t1Ũ1
t0+t1−1 + Ṽ0 7→ t0Ũ0

t0+t1−1 +
(t1−1)t1Ũ1
t0+t1−1

− (t0−1)2Z̃1,0
t0+t1−1 −

(1−t0)Ũ0
t0+t1−1 −

(t1t0−t0−2t1+1)Ũ1
t0+t1−1 + Ṽ1 7→ − (1−t0)Ũ0

t0+t1−1 −
(t1t0−t0−2t1+1)Ũ1

t0+t1−1

and the map ι∗1 :H1(X,q;F )→H1(X1;F ) is given by

ι∗1 :


t0t1Z̃1,0
t0+t1−1 +

t0Ũ0
t0+t1−1 +

(t1−1)t1Ũ1
t0+t1−1 + Ṽ0 7→ Ṽ0

− (t0−1)2Z̃1,0
t0+t1−1 −

(1−t0)Ũ0
t0+t1−1 −

(t1t0−t0−2t1+1)Ũ1
t0+t1−1 + Ṽ1 7→ Ṽ1

.

A matrix representations for ι∗0 and ι
∗
1 are

ι∗0 =

 t0
t0+t1−1 − (1−t0)

t0+t1−1
(t1−1)t1
t0+t1−1 − (t1t0−t0−2t1+1)

t0+t1−1

 and ι∗1 =
1 0

0 1


respectively. The cohomology Gassner invariant of the given string link is therefore Gc((L1) = ι∗1 ◦ (ι

∗
0)
−1 =

(ι∗0)
−1, so

Gc((L1) = (ι∗0)
−1 =

 t1t0−t0−2t1+1t1t0−t0−t1
t0−1

t1t0−t0−t1
(t1−1)t1
t1t0−t0−t1 − t0

t1t0−t0−t1

 . (3.2)

Example 3.8 (Cohomology Gassner invariant of over and under crossing). Let X = (D2× [0,1])−! be the
complement of the over-crossing in Figure 3.6, with a deformation retract Y in Figure 3.6b.

(a) 2-cell e at an over-
crossing. (b) Cell structure.

Figure 3.6: An over-crossing with cell structure for Y .
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(a) 2-cell e at an under-
crossing. (b) Cell structure.

Figure 3.7: An under-crossing with cell structure.

The covering space Ỹ of Y is determined by ϵ : π1(X,q)→ ⟨ti , tj⟩, where q = x0. By Proposition 2.6,
the relative chain groups of the complex

0→ C2(Ỹ , q̃;Z)
∂2−−−−−→ C1(Ỹ , q̃;Z)

∂1−−−−−→ C0(Ỹ , q̃;Z)→ 0

are

C0(Ỹ , q̃;Z) = C0(Ỹ ;Z)/C0(q̃;Z) = 0,

C1(Ỹ , q̃;Z) = C1(Ỹ ;Z)/C1(q̃;Z) = C1(Ỹ ;Z)/0 = ⟨ũi , ũj , ṽj⟩,

C2(Ỹ , q̃;Z) = C2(Ỹ ;Z)/C2(q̃;Z) = C2(Ỹ ;Z)/0 = ⟨ẽ⟩.

By Lemma 3.5, the relative cohomology groupH1(Y ,q;F ) isker(C1(Y ;F )
d1−−−−−→ C2(Y ;F )), whereC1(Y ;F ) =

⟨Ũi , Ũj , Ṽj⟩ andC2(Y ;F ) = ⟨Ẽ⟩. By Description 2.13, the image of ẽ under ∂2 is ∂2(̃e) = (1−tj )ũi+ti ṽj−ũj .
The matrix representation for d1 is

(
Ũi(∂2(̃e)) Ũj (∂2(̃e)) Ṽj (∂2(̃e))

)
, which evaluates to

d1matrix =
(
1− tj −1 ti

)
.

The nullspace of d1matrix is
〈

ti
tj−1

0

1

 ,

− 1
tj−1

1

0


〉
. So, ker(d1) =

〈
ti
tj−1 Ũi + Ṽj , −

1
tj−1 Ũi + Ũj

〉
, which is the

relative cohomology group H1(Y ,q;F ) of the relative complex of the pair (Y ,q). By Lemma 3.5,

H1(X,q;F ) � ker(d1).

According to Corollary 3.6, H1(X0,q;F ) = C1(X0;F ) = ⟨Ũi , Ũj⟩ and H1(X1,q;F ) = C1(X1;F ) =

⟨Ṽj , Ũi⟩. By definition of the cohomology Gassner invariant, the map ι∗0 : H1(X,q;F ) → H1(X0,q;F )

is given by

ι∗0 :


ti
tj−1 Ũi + Ṽj 7→ ti

tj−1 Ũi

− 1
tj−1 Ũi + Ũj 7→ − 1

tj−1 Ũi + Ũj

and the map ι∗1 :H1(X,q;F )→H1(X1;F ) is given by

ι∗1 :


ti
tj−1 Ũi + Ṽj 7→ ti

tj−1 Ũi + Ṽj

− 1
tj−1 Ũi + Ũj 7→ − 1

tj−1 Ũi
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A matrix representations for ι∗0 and ι
∗
1 are

ι∗0 =

 ti
tj−1 − 1

tj−1

0 1

 and ι∗1 =

 1 0
ti
tj−1 − 1

tj−1


respectively. Thus, the cohomology Gassner invariant of the over-crossing is

Gc(!) = ι∗1 ◦ (ι
∗
0)
−1

=

 1 0
ti
tj−1 − 1

tj−1


 ti
tj−1 − 1

tj−1

0 1


−1

=

 tj−1ti 1
ti

1 0

 ,
where i is the label (colour) of the over strand and j is the label of the under strand. Note that with the
strands indexed at the bottom, the two strands participating in a crossing corresponding to σi may have
arbitrary indices, depending on the permutation induced by the braids below the level of that crossing.

Taking the inverse of Gc(!) gives the cohomology Gassner invariant of the under-crossing ". That is

Gc(!)−1 =
0 1

ti 1− tj


3.3 The Homology and the reduced homology Gassner invariant

In this section, we present the homological definition of the Gassner invariant and explore its relationship
with the cohomology version. We provide several examples to illustrate these concepts and provide formulas
for this invariant. Additionally, we demonstrate that the homology Gassner invariant is equivalent to the
reduced homology Gassner invariant.

Lemma 3.9 (Homology version of Lemma 3.2). Let (X,W ) be a pair of path connected cell complexes and
ϵ : π1(X,x0) → Zn a homomorphism. Consider the corresponding local coefficients F on the pair (X,W ).
Suppose the inclusion ofW in X induces an isomorphism on homology with (untwisted) Q coefficients. Then
H∗(X,W ;F ) = 0.

Proof. Let (C∗(X,W ),∂) denote the cellular chain complex with coefficients inQ for the pair (X,W ) and let
(C∗(X̃,W̃ ), ∂̃) denote the cellular chain complex also with Q of the covering space determined by the map
ϵ : π1(X,x0)→ Zn. Fix lifts of the cells of (X,W ) to (X̃,W̃ ) to get a free F -basis of C∗(X̃,W̃ ) by using
Lemma 2.6.

Since the inclusionW ↪→ X induces an isomorphism on homology by then hypothesis, then C∗(X,W )

is acyclic. It follows that there exists a chain contraction s : C∗(X,W )→ C∗(X̃,W̃ ); s is a map of degree 1
satisfying ∂n+1sn + sn−1∂n = Id.

Using the F -free basis for C∗(X̃,W̃ ) and the formula for ∂n+1sn+sn−1∂n = Id, define a chain homotopy
s̃ : C∗(X̃,W̃ )→ C∗(X̃,W̃ ); if s(e) =

∑
i
qiyi then define s̃(̃e) =

∑
i
qi ỹi where ẽ, ỹi are the chosen lifts of e,yi .

Φ = ∂̃n+1s̃n + s̃n−1∂̃n is a chain map whose matrix in the chosen basis augments to the identity map; if
a : F → Q is the augmentation ti 7→ 1, then a(Φ) = Id is the identity map. The induced chain homotopy
on the chain complex C∗(X̃,W̃ )⊗Z[π1(X,x0)] F is a chain homotopy from Φ∗ to 0. Thus, Φ∗ induces the zero
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map on the homology H∗(X,W ;F ). Φ∗ is an isomorphism since a(Φ∗) = Id. This implies the zero map is
also an isomorphism. It follows that the homology, H∗(X,W ;F ), of C∗(X̃,W̃ )⊗Z[π1(X,x0)] F is 0.

Lemma 3.10. Let L be an (n+1)-string link and letX =
(
D2 × [0,1]

)
−L. Also, letX0 andX1 be the subspaces

of X described above. Then

1. H1(X0;F ) � F n �H1(X1;F ) and H1(X0,q;F ) � F n+1 �H1(X1,q;F ), where q = x0.

2. Let ιj : Xj ↪→ X be the inclusion maps for j = 0,1. Then ιj∗ :H1(Xj ;F )→H1(X;F ) is an isomorphism
for j = 0,1. Also, ιj∗ :H1(Xj ,q;F )→H1(X,Iq;F ) for j = 0,1 is an isomorphism, where Iq = {q}×[0,1].

Proof. 1. The subspace X0 deformation retracts to the wedge productW =
n∨
i=0
S1 of n+1 copies of S1,

which has a cell structure consisting of one 0-cell denoted q and n + 1 1-cells uk , for k = 0,1, . . .n.
The fundamental group π1(W,q) of W is the free group generated by the loops {uk}nk=0 and the
abelianisation map ϵ : π1(W,q)→ ⟨ uk⟩nk=0 sends each generator uk to its corresponding tk . Thus by
Proposition 2.6, we have a cellular chain complex

C∗(X̃0;Z) = 0
∂2−−−−−→C1(X̃0;Z)

∂1−−−−−→C0(X̃0;Z)
∂0−−−−−→0.

Fixing ũ0, note that the kernel, ker∂1, of ∂1 is spanned by
{
(t0 − 1)ũj − (tj − 1)ũ0

}n
j=1

and image of

∂2 is {0}. Hence H1(X0;F ) =
〈
(t0 − 1)ũj − (tj − 1)ũ0

〉n
j=1
� F n, where ũk is the lift of uk .

Also, For the pair (X0,q), there is an associated long exact sequence,

0 H1(q;F ) H1(X0;F ) H1(X0,q;F )

H0(q;F ) H0(X0;F ) H0(X0,q;F ) . . . ,

which reduces to 0→ 0→H1(X0;F )→H1(X0,q,F )→H0(q,F )→ 0→H1(X0,q;F )→ ·· · , since
the homology groups H1(q;F ) and H0(X0;F ) are isomorphic to 0. It follows that H1(X0,q;F ) �

H1(X0;F ) ⊕H0(q,F ) � F n+1, since 0 → 0 → H1(X0;F ) → H1(X0,q,F ) → H0(q,F ) → 0 is an
exact sequence of vector spaces.

2. The inclusions ιj : Xj ↪→ X ιj : (Xj ,q) ↪→ (X,Iq) satisfy the hypothesis of Lemma 3.9, since the
inclusion map of ιj : Xj → X induces the isomorphism H1(Xj ;Q) � H1(X;Q) � Qn+1. Thus, the
maps

H1(Xj ;F )
ιj∗
−−−−−→H1(X;F ) and H1(Xj ,q;F )

ιj∗
−−−−−→H1(X,Iq;F )

are isomorphisms for j = 0,1. Here, we use the same argument in the proof of Part 2 of Lemma 3.3,
replacing the long exact sequence with the homology version.

The proof of Lemma 3.10 leads to the following definitions.

Definition 3.11. To a string link L assign the map

Gh(L) :H1(X0,p;F )
ι0∗−−−−−→H1(X,Ip;F )

ι−11∗−−−−−→H1(X1,p;F ).
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This is called the homology Gassner invariant of L.

Definition 3.12. To a string link L assign the map

Grh(L) :H1(X0;F )
ι0∗−−−−−→H1(X;F )

ι−11∗−−−−−→H1(X1;F ).

This is called the reduced homology Gassner invariant of L.

Remark 3.13. Let L be an n+1 string link with the initial points of the strands indexed 0 through n from
left to right. The endpoints are also, indexed likewise. Note that the permutation induced by the string link
is not the same as the indexing at the endpoints. Let X = (D2 × [0,1]) − L be the complement of L. Then
the relative homology groups H1(X,Iq;F ),H1(X0,q;F ) and H1(X1,q;F ) are vector spaces over the field
F . If we fix the set {xk}nk=0 indexed from 0 through n and identify the basis of each of the vector spaces
with this set, then the vector spaces are isomorphic to F ⟨x0,x1, · · · ,xn⟩. Likewise the homology groups
H1(X;F ),H1(X0;F ) and H1(X1;F ) are vector spaces over the field F isomorphic to F ⟨x1, · · · ,xn⟩.

Fact 3.14. In homology groups Hn(X) =
ker(∂n)
im(∂n+1)

, elements in the image im(∂n+1) are taken to be the zero
equivalence class [0] ∈Hn(X).

Example 3.15 (Homology Gassner invariant). We compute the homology Gassner invariant of the string
link, L1 in Figure 3.2; it has 3 crossing c1, c2 and c3. Let X =

(
D2 × [0,1]

)
−L1 and let Y be the deformation

retract of the complement X with cells in Figure 3.3 and Figure 3.4.
Let Ỹ be the covering space of Y determined by ϵ : π1(X,q) → ⟨t0, t1⟩, where q = x0. The relative

chain groups are given as follows. Notice that Ci(q̃) = 0 for i , 0, Ci(Ỹ ) = 0 for i , 0,1,2. The non-
zero chain groups are C0(Ỹ ;Z) = C0(q̃;Z) = ⟨q̃⟩, C1(Ỹ ;Z) = ⟨ũ0, ũ1, z̃1,0, ṽ0, ṽ1⟩, C2(Ỹ ;Z) = ⟨ẽ1, ẽ2, ẽ3⟩.
So, the relative chain groups are C0(Y ,p;F ) = C0(Ỹ ;Z)/C0(p̃;Z) = 0,C1(Y ,p;F ) = C1(Ỹ ;Z)/C1(p̃;Z) �
C1(Ỹ ;Z),C2(Y ,p;F ) = C2(Ỹ ;Z)/C2(p̃;Z) � C2(Ỹ ;Z). Thus, it suffices to compute the relative homology
groups using the chain complex

0→ C2(Ỹ ;Z)
∂2−−−−−→ C1(Ỹ ;Z)

∂1−−−−−→0.

The kernel of ∂1 is ker∂1 = C1(Ỹ ;Z) = ⟨ũ0, ũ1, z̃1,0, ṽ0, ṽ1⟩. The lift ẽi of the 2-cell ei can be view as a
square (see Figure 3.5) whose boundary is of the form (1− ϵ(bi))ãi + ϵ(ai )̃bi − g̃i . Thus, the image of ∂2 is
⟨∂2(̃e1),∂2(̃e2),∂2(̃e3)⟩, where

∂2(̃e1) = (1− t0)ṽ1 + t1ũ0 − z̃1,0,
∂2(̃e2) = (1− t1 )̃z1,0 + t0ũ1 − ṽ1,
∂2(̃e3) = (1− t0)ũ0 + t0ṽ0 − z̃1,0.

(3.3)

Since linear combinations of the generators of ker∂1 can be formed, we can rewrite the kernel as
ker∂1 = ⟨ũ0,∂2(̃e2), z̃1,0,∂2(̃e3),∂2(̃e1)⟩. So, the quotient H1(Y ,p;F ) is given as

H1(Y ,p;F ) =
⟨ũ0,∂2(̃e2), z̃1,0,∂2(̃e3),∂2(̃e1)⟩
⟨∂2(̃e1),∂2(̃e2),∂2(̃e3)⟩

= ⟨ũ0, z̃1,0⟩.
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Thus, H1(X,Ip;F ) = H1(Y ,p;F ) = ⟨ũ0, z̃1,0⟩. The twice punctured disk X0 deformation retracts to the
wedge product of two circles. So, the relative chain groups are Ci(X0,p;F ) = 0 for all i except for i =
1, where C1(X0,p;F ) = C1(X̃0;Z)/C1(q̃,Z) = C1(X̃0;Z)/0 = C1(X̃0;Z) = ⟨ũ0, ũ1⟩. The relative chain

complex for X̃0 can therefore be taken as 0→ C1(X̃0;Z)
∂1−−−−−→0. So, the relative homology H1(X0,q;F ) of

the pair (X0,q) is
H1(X0,q;F ) = ker∂1 = ⟨ũ0, ũ1⟩.

Similarly, the relative homology H1(X1,q;F ) of the pair (X1,q) is

H1(X1,q;F ) = ker∂1 = ⟨ṽ0, ṽ1⟩.

According to the definition of the Gassner invariant in Definition 3.11, we need to find the isomorphisms
ι0∗ : H1(X0,q;F ) → H1(X,Iq;F ) and ι−11∗ : H1(X,Iq;F ) → H1(X1,q;F ). Define ι0∗ : H1(X0,q;F ) →
H1(X,Iq;F ) as follows. Since H1(X,Ip;F ) = H1(Y ,p;F ) = ⟨ũ0, z̃1,0⟩, map the generator ũ0 to ũ0. Next,
we need to map the generator ũ1 to a linear combination of ũ0 and z̃1,0. Using Fact 3.14, and eliminating
ṽ1 from the first two equations of Equation 3.3, we obtain ũ1 = t1

t0(t0−1)
ũ0 +

t0t1−t0−t1
t0(t0−1)

z̃1,0. Since ι0∗ is an
inclusion, then map ũ1 to t1

t0(t0−1)
ũ0 +

t0t1−t0−t1
t0(t0−1)

z̃1,0. So, define ι0∗ :H1(X0,q;F )→H1(X,Iq;F ) by

ι0∗ :

 ũ0 7→ ũ0
ũ1 7→ t1

t0(t0−1)
ũ0 +

t0t1−t0−t1
t0(t0−1)

z̃1,0

Next, define ι−11∗ : H1(X,Iq;F )→ H1(X1,q;F ) as follows. Using Fact 3.14, and eliminating z̃1,0 from the
first and last equations of Equation 3.3, we get ũ0 = t0

t0+t1−1v0 +
t0−1

t0+t1−1v1. Similarly, eliminating ũ0 from

the same equations, we get z̃1,0 = t0t1
t0+t1−1v0 −

(1−t0)2
t0+t1−1v1. Define ι

−1
1∗ :H1(X,Iq;F )→H1(X1,q;F ) as

ι−11∗ :

 ũ0 7→ t0
t0+t1−1 ṽ0 +

t0−1
t0+t1−1 ṽ1

z̃1,0 7→ t0t1
t0+t1−1 ṽ0 −

(1−t0)2
t0+t1−1 ṽ1.

Then, the homology Gassner invariant is given by

ι−11∗ ◦ ι0∗ :

 ũ0 7→ t0
t0+t1−1 ṽ0 +

t0−1
t0+t1−1 ṽ1

ũ1 7→ t1(t1−1)
t0+t1−1 ṽ0 +

2t1+t0−t0t1−1
t0+t1−1 ṽ1

.

From computations above, the vector spaces are H1(X,Ip;F ) = ⟨ũ0, z̃1,0⟩,H1(X0,q;F ) = ⟨ũ0, ũ1⟩ and
H1(X1,q;F ) = ⟨ṽ0, ṽ1⟩. So, referring to Remark 3.13, we make the following identifications

ũ0 ←→ x0,

z̃1,0 ←→ x1
,

ũ0 ←→ x0,

ũ1 ←→ x1
,

ṽ0 ←→ x0,

ṽ1 ←→ x1

respectively. With this identification, the homology Gassner invariant, Gh(L) :H1(X0,q;F )→H1(X1,q;F )

is given by

Gh(L1) :

 x0 7→ t0
t0+t1−1x0 +

t0−1
t0+t1−1x1

x1 7→ t1(t1−1)
t0+t1−1x0 +

2t1+t0−t0t1−1
t0+t1−1 x1

,
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with a matrix representation

Gh(L) =

 t0
t0+t1−1

t1(t1−1)
t0+t1−1

t0−1
t0+t1−1

2t1+t0−t0t1−1
t0+t1−1

 .
This is the end of the example.

Example 3.16 (Reduced homology Gassner invariant). In this example, we compute the reduced homology
Gassner invariant of the string link L′′1 in Figure 3.8. This string link is similar to the string link in Figure 3.2,

v1 v2

u1 u2

z11

c1

c2

c3

v0

u0

Figure 3.8: A 3-component string link L′′1 .

except that it has a free strand to the left. The string link has 3 crossings c1, c2 and c3. LetX =
(
D2 × [0,1]

)
−

L′′1 and let Y be the deformation retract of the complement X with cells in Figure 3.9. These cells are similar
to the cells in Figure 3.5.

b
x0

b

x0
≃

u0

u0

u0

(a) 1-cell of the free strand.

b

x0

v2

z1,1
u1

(b) 2-cell at c1.

b

x0

z1,1

v2

u2

(c) 2-cell at c2.

b

x0

u1

v1 z1,1

(d) 2-cell at c3.

Figure 3.9: Cells of the deformation retract Y .

Let Ỹ be the covering space of Y determined by ϵ : π1(X,q)→ ⟨t0, t1, t2⟩, where q = x0. The cellular
chain complex of Ỹ is

0→ C2(Ỹ ;Z)
∂2−−−−−→ C1(Ỹ ;Z)

∂1−−−−−→ C0(Ỹ ;Z)→ 0,

where the chain groups are are

C0(Ỹ ;Z) = ⟨q̃⟩, C1(Ỹ ;Z) = ⟨ũ0, ũ1, ũ2, z̃1,1, ṽ1, ṽ2⟩ ,C2(Ỹ ;Z) = ⟨ẽ1, ẽ2, ẽ3⟩.

Fixing ũ0, the kernel of ∂1 is
ker∂1 = ⟨γ̃1, γ̃2, ζ̃1, β̃1, β̃2⟩,
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where

γ̃1 = (t0 − 1)ũ1 − (t1 − 1)ũ0,

γ̃2 = (t0 − 1)ũ2 − (t2 − 1)ũ0,

ζ̃1 = (t0 − 1)̃z1,1 − (t1 − 1)ũ0,

β̃1 = (t0 − 1)ṽ1 − (t1 − 1)ũ0
β̃2 = (t0 − 1)ṽ2 − (t2 − 1)ũ0

Using Figure 3.5 with a some slight modification, the image of ∂2 is ⟨∂2(̃e1),∂2(̃e2),∂2(̃e3)⟩, where

∂2(̃e1) = (1− t1)ṽ2 + t2ũ1 − z̃1,1 = t2
t0−1 γ̃1 −

1
t0−1 ζ̃1 −

t1−1
t0−1 β̃2

∂2(̃e2) = (1− t2 )̃z1,1 + t1ũ2 − ṽ2 = t1
t0−1 γ̃2 −

t2−1
t0−1 ζ̃1 −

1
t0−1 β̃2

∂2(̃e3) = (1− t1)ũ1 + t1ṽ1 − z̃1,1 = − t1−1t0−1 γ̃1 −
1

t0−1 ζ̃1 −
t1
t0−1 β̃1.

(3.4)

Since the generators for the image of ∂2 can be written as linear combinations of the generators ker∂1, then
we can rewrite the kernel as ker∂1 = ⟨γ1,∂2(̃e2),ζ1,∂2(̃e3),∂2(̃e1)⟩. So, the quotient H1(Y ,F ) is given as

H1(Y ,F ) =
⟨γ̃1,∂2(̃e2), ζ̃1,∂2(̃e3),∂2(̃e1)⟩
⟨∂2(̃e1),∂2(̃e2),∂2(̃e3)⟩

= ⟨γ̃1, ζ̃1⟩.

Next, fixingu0 and referring to the computations of Lemma 3.10, the first homologywith local coefficients
of X0 is H1(X0;F ) = ⟨γ̃1, γ̃2⟩. Similarly, fixing v0, H1(X1;F ) = ⟨β̃1, β̃2⟩, where β̃1 = (t0 −1)ṽ1 − (t1 −1)ṽ0
and β̃2 = (t0 − 1)ṽ2 − (t1 − 1)ṽ0.

Using Fact 3.14, and eliminating β2 from the first two equations of Equation 3.4, we obtain γ2 =
t2

t1(t1−1)
γ1 +

t1t2−t1−t2
t1(t1−1)

ζ̃1. Since ι0∗ is an inclusion, then map γ̃2 to t2
t1(t1−1)

γ̃1 +
t1t2−t1−t2
t1(t1−1)

ζ̃1. So, define ι0∗
by

ι0∗ :

 γ̃1 7→ γ̃1
γ̃2 7→ t2

t1(t1−1)
γ̃1 +

t1t2−t1−t2
t1(t1−1)

ζ̃1

Next, define ι−11∗ :H1(X;F )→H1(X1;F ) as follows. Using Fact 3.14, and eliminating ζ̃1 from the first and
last equations of Equation 3.4, we get γ̃1 = t1

t1+t2−1 β̃1+
t1−1

t1+t2−1 β̃2. Similarly, eliminating γ̃1 from the same

equations, we get ζ̃1 = t1t2
t1+t2−1 β̃1 −

(t1−1)2
t1+t2−1 β̃2. Define ι

−1
1∗ :H1(X;F )→H1(X1,F ) by

ι−11∗ :

 γ̃1 7→ t1
t1+t2−1 β̃1 +

t1−1
t1+t2−1 β̃2

ζ̃1 7→ t1t2
t1+t2−1 β̃1 −

(t1−1)2
t1+t2−1 β̃2.

Then, the reduced homology Gassner invariant is given by

ι−11∗ ◦ ι0∗ :

 γ̃1 7→ t1
t1+t2−1 β̃1 +

t1−1
t1+t2−1 β̃2

γ̃2 7→ t2(t2−1)
t1+t2−1 β̃1 +

2t2+t1−t1t2−1
t1+t2−1 β̃2

.

From computations above, the vector spaces areH1(X;F ) = ⟨γ1,ζ1⟩,H1(X0;F ) = ⟨γ̃1, γ̃2⟩ andH1(X1;F ) =
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⟨β̃1, β̃2⟩. So, referring to Remark 3.13, we make the following identifications

γ̃1 ←→ x1,

ζ̃1 ←→ x2
,

γ̃1 ←→ x1,

γ̃2 ←→ x2
,

β̃1 ←→ x1,

β̃2 ←→ x2

respectively. The reduced homology Gassner invariant, Grh(L
′′
1 ) :H1(X0;F )→H1(X1;F ) is given by

Grh(L
′′
1 ) :

 x1 7→ t1
t1+t2−1x1 +

t1−1
t1+t2−1x2

x2 7→ t2(t2−1)
t1+t2−1x1 +

2t2+t1−t1t2−1
t1+t2−1 x2

,

with a matrix representation

Grh(L
′′
1 ) =

 t1
t1+t2−1

t2(t2−1)
t1+t2−1

t1−1
t1+t2−1

2t2+t1−t1t2−1
t1+t2−1

 .
This is the end of the example.

Example 3.17 (HomologyGassner invariant for an over-crossing). LetX = (D2×[0,1])−! be the complement
of the over-crossing in Figure 3.6, with a deformation retract Y in Figure 3.6b. The covering space Ỹ of Y
is determined by ϵ : π1(X,q)→ ⟨ti , tj⟩, where q = x0. The relative chain groups of the pair (Y ,q) are

C0(Y ,q;F ) = C0(Ỹ ;Z)/C0(p̃;Z) � 0

C1(Y ,q;F ) = C1(Ỹ ;Z)/C1(p̃;Z) � C1(Ỹ ;Z)

C2(Y ,q;F ) = C2(Ỹ ;Z)/C2(p̃;Z) � C2(Ỹ ;Z),

since C1(p̃;Z) � C2(p̃;Z) � 0, and Ci(Y ,q;F ) = 0 for i > 2. So, it suffices to consider the chain complex

0→ C2(Ỹ ;Z)
∂2−−−−−→C1(Ỹ ;Z)

∂1−−−−−→0,where C2(Ỹ ;Z) = ⟨ẽ⟩ and C1(Ỹ ;Z) = ⟨ũi , ũj , ṽj⟩. By Description 2.13,
the image of ẽ under ∂2 is (1− tj )ũi + ti ṽj − ũj . The kernel of ∂1 is ker∂1 = C1(Ỹ ;F ). So, the quotient of
the kernel by the image is H1(Y ,q;F ) = ker∂1

im∂2
= ⟨ũi , ũj⟩. Hence H1(X,Iq;F ) = ⟨ũi , ũj⟩.

X0 deformation retracts to thewedge product of two circles. So, the relative chain groups areCi(X0,p;F ) =

0 for all i except for i = 1, where C1(X0,p;F ) = C1(X̃0;Z)/C1(q̃,Z) � C1(X̃0;Z) = ⟨ũi , ũj⟩. The relative

chain complex for X̃0 can therefore be taken as 0→ C1(X̃0;Z)
∂1−−−−−→0. So, the relative homologyH1(X0,q;F )

of the pair (X0,q) is
H1(X0,q;F ) = ker∂1 = ⟨ũi , ũj⟩.

Similarly, the relative homology H1(X1,q;F ) of the pair (X1,q) is

H1(X1,q;F ) = ker∂1 = ⟨ṽj , ũi⟩.

Next, define the isomorphism ι0∗ :H1(X0,q;F )→H1(X,q;F ) by

ι0∗ :

 ũi 7→ ũi
ũj 7→ ũj

.
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By Fact 3.14, note that 0 ≡ ∂2(̃e). So, define the isomorphism ι−11∗ :H1(X,Iq;F )→H1(X1,q;F ) by

ι−11∗ :

 ũi 7→ ũi
ũj 7→ ti ṽj + (1− tj )ũi

.

From computations above, the vector spaces areH1(X,Ip;F ) = ⟨ũi , ũj⟩,H1(X0,q;F ) = ⟨ũi , ũj⟩ andH1(X1,q;F ) =

⟨ṽj , ṽi⟩. The homology Gassner invariant Gh(!) = ι−11∗ ◦ ι0∗ : H1(X0,q;F ) → H1(X1,q;F ) of the over-
crossing is therefore given by

Gh(!) :

 ũi 7→ ũi
ũj 7→ ti ṽj + (1− tj )ũi

,

which is represented by a matrix as

Gh(!) =
0 ti
1 1− tj

 , (3.5)

where i is the label of the over strand and j is the label of the under strand.
The homologyGassner invariant of the under crossing" is computed similarly. It has amatrix representation

Gh(") =

 tj−1ti 1
1
ti

0

 . (3.6)

Example 3.18 (Reduced homologyGassner invariant ). In the previous example, we computed the homology
Gassner invariant of an over-crossing. In this example, we compute the reduced homologyGassner invariant
of the over-crossing with a free strand on the left. Let Lc denote this over-crossing. The deformation retract

ujui

vj ui

Ck

u0

u0

(a)An over-crossingwith
a free stand on the left.

b
x0

b

x0
≃

u0

u0

u0

(b) 1-cell at the free stand
on the left. (c) 2-cell structure.

Figure 3.10: An over-crossing with cell structure for Y .

Y of the complement X = (D2 × [0,1])−Lc has cell structure in Figure 3.10b and Figure 3.10. The covering
space Ỹ of Y is determined by ϵ : (πX ,q)→ ⟨t0, ti , tj⟩. The cellular chain complex of Ỹ is

0→ C2(Ỹ ;Z)
∂2−−−−−→ C1(Ỹ ;Z)

∂1−−−−−→ C0(Ỹ ;Z)→ 0,

where C0(Ỹ ;Z) = ⟨q̃⟩, C1(Ỹ ;Z) = ⟨ũ0, ũi , ũj , ṽj⟩ ,C1(Ỹ ;Z) = ⟨ẽ⟩. Fixing ũ0, the kernel of ∂1 is

ker∂1 = ⟨γ̃i , γ̃j , β̃j⟩,
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where

γ̃i = (t0 − 1)ũi − (ti − 1)ũ0,

γ̃j = (t0 − 1)ũj − (tj − 1)ũ0,

β̃j = (t0 − 1)ṽj − (tj − 1)ũ0

By Description 2.13, the image of ẽ under ∂2 is (1− tj )ũi + ti ṽj − ũj . Note also that ∂2(̃e) =
1−tj
t0−1 γ̃i +

ti
t0−1 β̃j −

1
t0−1 γ̃j . So, the quotient of the kernel by the image is H1(X;F ) =H1(Y ;F ) = ⟨γ̃i , γ̃j⟩.

Next, fixingu0 and referring to the computations of Lemma 3.10, the first homologywith local coefficients
ofX0 isH1(X0;F ) = ⟨γ̃i , γ̃j⟩. Similarly, fixing v0 = u0,H1(X1;F ) = ⟨β̃j , β̃i⟩, where β̃j = (t0−1)ṽj−(tj−1)ũ0
and β̃i = (t0 − 1)ũi − (ti − 1)ũ0 = γ̃i .

By Fact 3.14,

0 ≡ ∂2(̃e) =
1− tj
t0 − 1

γ̃i +
ti

t0 − 1
β̃j −

1
t0 − 1

γ̃j ,

which implies γ̃j = ti β̃j + (1− tj )γ̃i .
Finally, from the above computations, define the isomorphism ι0∗ :H1(X0;F )→H1(X;F ) by

ι0∗ :

 γ̃i 7→ γ̃i
γ̃j 7→ γ̃j

,

and the isomorphism ι−11∗ :H1(X;F )→H1(X1;F ) by

ι−11∗ :

 γ̃i 7→ γ̃i
γ̃j 7→ tiβj + (1− tj )γ̃i

.

From computations above, the vector spaces with ordered bases are H1(X;F ) = ⟨γ̃i , γ̃j⟩,H1(X0;F ) =

⟨γ̃i , γ̃j⟩ and H1(X1;F ) = ⟨β̃j , β̃i⟩. The reduced homology Gassner invariant Grh = ι
−1
1∗ ◦ ι0∗ : H1(X0;F )→

H1(X1;F ) of the over-crossing is therefore given by

Grh
(
|!

)
:

 γ̃i 7→ γ̃i
γ̃j 7→ ti β̃j + (1− tj )γ̃i

,

with a matrix representation given by

Grh
(
| !

)
=

0 ti
1 1− tj

 .
Example 3.19 (Reduced homology Gassner invariant). Let L′′′1 be the string link in Figure 3.11; it has 3
crossing c1, c2 and c3. Let X =

(
D2 × [0,1]

)
− L′′′1 and let Y be the deformation retract of the complement

X with cells in Figure 3.12.
Let Ỹ be the covering space of Y determined by ϵ : π1(X,q)→ ⟨t0, t1, t2⟩, where q = x0. The cellular

chain complex of Ỹ is

0→ C2(Ỹ ;Z)
∂2−−−−−→ C1(Ỹ ;Z)

∂1−−−−−→ C0(Ỹ ;Z)→ 0,
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v0 v1 v2
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Figure 3.11: A 3-component string link.
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(a) 2-cell at c1.
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(b) 2-cell at c2.
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(c) 2-cell at c3.
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x0
≃

u2

u2
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(d) 1-cell of the free strand.

Figure 3.12: Cells of the deformation retract Y .

where the chain groups are are

C0(Ỹ ;Z) = ⟨q̃⟩, C1(Ỹ ;Z) = ⟨ũ0, ũ1, ũ2, z̃1,0, ṽ0, ṽ1⟩ ,C2(Ỹ ;Z) = ⟨ẽ1, ẽ2, ẽ3⟩.

We are interested in the first homology with local coefficients and the computation is as follows. The image
of wr ∈ {ũ0, ũ1, ũ2, z̃1,0, ṽ0, ṽ1} under the map ∂1 is ∂1(wr ) = (tr − 1)q̃. Thus the kernel of ∂1 is

ker∂1 = ⟨γ̃1, γ̃2, ζ̃0, β̃0, β̃1⟩,

where

γ̃1 = (t0 − 1)ũ1 − (t1 − 1)ũ0,

γ̃2 = (t0 − 1)ũ2 − (t2 − 1)ũ0,

ζ̃0 = z̃1,0 − ũ0,

β̃0 = ṽ0 − ũ0
β̃1 = (t0 − 1)ṽ1 − (t1 − 1)ũ0

Using Figure 3.5, the image of ∂2 is ⟨∂2(̃e1),∂2(̃e2),∂2(̃e3)⟩, where

∂2(̃e1) = (1− t0)ṽ1 + t1ũ0 − z̃1,0 = ζ0 − β1
∂2(̃e2) = (1− t1 )̃z1,0 + t0ũ1 − ṽ1 = t0

t0−1γ1 + (1− t1)ζ0 − 1
t0−1β1,

∂2(̃e3) = (1− t0)ũ0 + t0ṽ0 − z̃1,0 = ζ0 + t0β0

(3.7)

Using Equation 3.7, we can rewrite the kernel of ∂1 as ker∂1 = ⟨ ∂2(̃e2),γ2,ζ0,∂2(̃e3),∂2(̃e1)⟩. It follows
that H1(X;F ) =H1(Y ;F ) = ⟨γ2, ζ0⟩

Next, fixingu0 and referring to the computations of Lemma 3.10, the first homologywith local coefficients
of X0 is H1(X0;F ) = ⟨γ̃1, γ̃2⟩. Similarly, fixing ṽ0, H1(X1;F ) = ⟨̃l1, l̃2⟩, where l̃1 = (t0 − 1)ṽ1 − (t1 − 1)ṽ0



3.3. THE HOMOLOGY AND THE REDUCED HOMOLOGY GASSNER INVARIANT 37

and l̃2 = (t0 − 1)ũ2 − (t1 − 1)ṽ0, noting that u2 = v2.
By Fact 3.14, the equivalence classes [0], [∂2(̃e1)], [∂2(̃e2)], [∂2(̃e3)] are equal. Using the first two equations

of Equation 3.7, we have γ̃1 = 2+t0t1−t0−t1
t0

ζ̃0. Recall from Lemma 3.10 that the induced maps

H1(X0;F )
ι0∗−−−−−→H1(X;F )

ι1∗←−−−−−H1(X1;F )

are isomorphisms. Let f0 = ι0∗ and f1 = ι1∗. Define ι0∗ by

ι0∗ :

 γ̃1 7→ 2+t0t1−t0−t1
t0

ζ̃1
γ̃2 7→ γ̃2.

Again, using Fact 3.14, we have l1 = β̃1 − (t1 − 1)β̃0 = t0+t1−1
t0

ζ̃0 and l̃2 = γ̃2 − (t2 − 1)β̃0 = γ̃2 +
t2−1
t0
ζ̃0.

Define f −11 as

ι−11∗ :

 γ̃2 7→ l̃2 −
t2−1

t0+t1−1 l̃1
ζ̃0 7→ t0

t0+t1−1 l̃1.

The composition ι−11∗ ◦ ι0∗ :H1(X0;F )→H1(X1;F ) is

ι−11∗ ◦ ι0∗ :

 γ̃1 7→ 2+t0t1−t0−t1
t0+t1−1 l̃1

γ̃2 7→ l̃2 −
t2−1

t0+t1−1 l̃1.

Finally, referring to Remark 3.13, we make the following identifications:
γ̃1 ←→ x1 ←→ l̃1,

γ̃2 ←→ x2 ←→ ζ̃0
. The

reduced homology Gassner invariant of L′′′1 is therefore given as

Grh(L
′′′
1 ) = ι−11∗ ◦ ι0∗ :


x1 7→ 2+t0t1−t0−t1

t0+t1−1 x1

x2 7→ x2 −
t2−1

t0+t1−1x1.

(3.8)

This is the end of the example.

We have seen some examples of how to compute the Gassner and reduced Gassner invariant using
homologywith local coefficients in F . The homology Gassner invariant of the string link L1 in Example 3.15
and the reduced homology Gassner invariant of the string link L′′1 in Example 3.16 are the equal. Likewise,
the homology Gassner invariant of the over-crossing! in Example 3.17 and the reduced homology Gassner
invariant of the over-crossing |! in Example 3.18 are the equal. However, the reduced homology Gassner
invariant of the string link L′′′1 in Example 3.19 and the reduced homology Gassner invariant of the string
link L′′′1 in Example 3.19 are not equal, and certainly not equal to the homology Gassner invariant of the
string link L1. Let Lm represent the m-component string link in Figure 3.13a and Lm+1 be the string link
Lm with a free strand added to the left as in Figure 3.13b. Then, one can observe from the examples that the
homology Gassner invariant Gh(Lm) of Lm and the reduced homology Gassner invariant Grh(Lm+1) of Lm+1

are equivalent in appropriate basis.

Lemma 3.20. The homology and reduced homology Gassner invariants Gh(Lm) and Grh(Lm+1) are equivalent
in appropriate bases.

Proof. The addition of a strand to the leftmost side of the string link Lm results in the string link Lm+1.
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L

(a)m-component string link, Lm.

L

(b) m + 1-component string link,
Lm+1.

Figure 3.13: An m-component string link with a free strand on the left.

Consequently, the homology Gassner invariant of Lm+1 (see Figure 3.13b) is the (m+1)× (m+1) matrix of
the form 

1 0 0

0 Gh(Lm)
0


But the reduced homology Gassner invariant Grh(Lm+1) of Lm+1 is the m ×m matrix corresponding to the
block matrix Gh(Lm) of the matrix above in appropriate basis. The lemma follows.

Based on the lemma above, the reduced homology Gassner invariant of a string link or braid with a free
strand on the left is equivalent to the homology Gassner invariant of the string link or braid without the
free strand in appropriate basis. From now on, all string links will have a free strand to the left, as shown
in Figure 3.13b. If there is no free strand, it will be assumed. The reduced homology Gassner invariant Grh
of such string links or braids will be referred to as the homology Gassner invariant.

Remark 3.21. We have computed the cohomology and homology Gassner invariants Gc and Gh of some
string links including the over-crossing and under-crossing. In Example 3.8 and Example 3.17 we computed

Gc(!) =

 tj−1ti 1
ti

1 0

 and Gh
(
!

)
=

0 ti
1 1− tj


for the over-crossing and under-crossing. But note that Gh(!) is the inverse transpose of Gc(!). That is,
Gh(!) = (Gc(!)−1) // mt . We deduce that Gh = (G−1c ) // mt , meaning that the homology Gassner invariant
and the cohomology Gassner invariant are inverse transpose of each other in appropriate basis.

We have already seen from Definition 2.8(3) that n-braids form the braid group Bn with generators
σi , i = 1,2, · · · ,n− 1; where σi is the over-crossing in Figure 3.14 below. Recall that induces a permutation
on the set of labels T = {0,1, · · · ,n}. Let T [k] be the label (colour) at position k in T . From Example 3.18,

· · ·· · ·

0 i− 1 i i + 1 i + 2 n

0 i− 1 i i + 1 i + 2 n

Figure 3.14: Braid generator σi .

one can deduce that the homology Gassner invariant Gh(σi) : F ⟨x1, · · · ,xn⟩ → F ⟨x1, · · · ,xn⟩ of σi , is given
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by

Gh(σi) :


xi 7→ xi+1
xi+1 7→ tT [i]xi +

(
1− tT [i+1]

)
xi+1

xk 7→ xk , k , i, i +1

,

The matrix representation of Gh(σi) is the n×n identity matrix with its 2× 2 block at rows i and i +1 and

columns i and i +1 replaced by
0 tT [i]
1 1− tT [i+1]

 . Taking the inverse transpose of Gh(σi) = 0 tT [i]
1 1− tT [i+1]


gives the cohomology Gassner invariant of σi :

Gc(σi) =

 tT [i+1]−1tT [i]
1
tT [i]

1 0

 .
Recall from Remark 2.10 that there is a multiplication on coloured string links. The following lemma

shows that the homology Gassner invariant is multiplicative considering when coloured string links.

Lemma 3.22. Let L be a string link. The assignment Gh : L 7→ Gh(L) is multiplicative under the multiplication
of labeled string links obtained by stacking one above the other: Gh(L1L2) = Gh(L1)Gh(L2).

Proof. Let L = L1L2 be the product of two n coloured string links L1 and L2 such that L2 stacks appropriately
on L1. We have Gh(L) = ι−11 ι0(L). Also, Gh(L1) = κ−1ι0(L1) and Gh(L2) = ι

−1
1 κ(L2). It follow that

Gh(L) = ι−11 ι0(L)

= ι−11 κκ
−1ι0(L)

= ι−11 κ(L2)κ
−1ι0(L1)

= Gh(L2)Gh(L1).

The spacesX0 andX1 are canonically identified via the homeomorphism (x,0) 7→ (x,1). This homeomorphism
induces an isomorphism H1(X0;F ) � H1(X1;F ). By Remark 2.10, it follows that the reduced homology
Gassner invariant restricts to a homomorphism

Grh : P SLn→ GL(H1(X0;F )) � GLn−1(F )

on the semi group, P SLn, of pure string links on n + 1 strands called the reduced homology Gassner
representation.

3.4 (Co)homologyGassner invariant and theGassner representation

Recall the Gassner representations discussed in [BN14] and [Knu05] and the relation between them. In
this section we establish the connection between the (co)homology Gassner invariant and the Gassner
representation in [Knu05]. The relation is as follows.

By Remark 3.21, we have Gc(!) = (Gh(!)−1)//mt . That is, tj−1ti 1
ti

1 0

 =

0 ti
1 1− tj

−1
 //mt .
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Also, notice that 1− tj ti
1 0

 = ti 0

0 tj


 tj−1ti 1

ti

1 0


t−1j 0

0 t−1i

 // (
tk 7→

1
tk

)
. (3.9)

Recall the construction of the Gassner representation in [BN14]: Let t be a formal variable and let
Ui(t) =Un:i(t) denote the n×n identity matrix with its 2×2 block at rows i and i+1 and column i and i+1

replaced by
 1− t 1

t 0

 . Transposing  1− t 1

t 0

 and replacing 1−t and t with 1−tj and ti respectively
yields the matrix in Equation 3.9:

1− tj ti
1 0

.
Let Γch(σi) be the n× n identity matrix with its 2× 2 block at rows i and i + 1 and columns i and i + 1

replaced by
1− tT [i+1] tT [i]

1 0

 . Taking the inverse transpose of Γch(σi) gives the n×n identity matrix with

its 2× 2 block at rows i and i +1 and columns i and i +1 replaced by

 0 1
1
tT [i]

1−tT [i+1]
tT [i]

 .
Previously mentioned, each braid can be expressed as a product of braid generators. In contrast, string

links do not possess this property and require more time and space to calculate their Gassner invariant.
However, in Chapter 4, we will establish a relationship between braids and string links. This will simplify
the computation of the Gassner invariant for string links

=

210 210 33

2 230 130 1

σ2

σ1

σ2

σ1

σ2

σ1

Figure 3.15: Reidemeister 3: σ1σ2σ1 = σ2σ1σ2.

σ
−1
1

σ1

σ1

σ
−1
1

0 1 2 0 1 0 1 22

Figure 3.16: Reidemeister 2 moves on a string link σ−11 σ1 = σ1σ
−1
1 = id.

Theorem 3.23. Let β a braid. Then the assignment Grh : β 7→ Grh(β) defines an invariant of labeled (n +

1) braids with values in GLn(F ). It is multiplicative under the multiplication of labeled braids obtained by
stacking one above the other. Restricting to pure braids yields the reduced homology Gassner representation.

Proof. It suffices to show that the braid group relations, σiσj = σjσi and σiσi+1σi = σi+1σiσi+1, are satisfied
under the mapping Grh : β 7→ G

r
h(β). As G

r
h : β 7→ G

r
h(β) is multiplicative by Lemma 3.22, it is sufficient to

show that Grh(σi)G
r
h(σi+1)G

r
h(σi) = G

r
h(σi+1)G

r
h(σi)G

r
h(σi+1) and G

r
h(σi)G

r
h(σj ) = G

r
h(σj )G

r
h(σi). But, these are
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straightforward computations given below.

Grh(σ1)G
r
h(σ2)G

r
h(σ1) =


0 t2 0

1 1− t3 0

0 0 1



1 0 0

0 0 t1
0 1 1− t3



0 t1 0

1 1− t2 0

0 0 1


=


0 0 t1t2
0 t1 t1 (1− t3)
1 1− t2 1− t3


Grh(σ2)G

r
h(σ1)G

r
h(σ2) =


1 0 0

0 0 t1
0 1 1− t2



0 t1 0

1 1− t3 0

0 0 1



1 0 0

0 0 t2
0 1 1− t3

 ,
and

Grh(σ
−1
1 )Grh(σ1) =

 t2−1t1 1
1
t1

0


0 t1
1 1− t2


=

1 0

0 1


Grh(σ1)G

r
h(σ
−1
1 ) =

0 t2
1 1− t1


 t1−1t2 1

1
t2

0

 .

3.4.1 The Gassner representation for the pure braid group P B3

1 2 3

2 1 3

σ1

σ1

(a) The generator A1,2.
1 2 3

1 3 2

σ
−1
2

σ2

σ1

σ1

3 1 2

1 3 2

(b) The generator A1,3.
1 2 3

1 3 2

σ2

σ2

(c) The generator A2,3.

Figure 3.17: Generators for the pure braid group P B3.

The pure braid group is generated by the generators {A1,2,A1,3,A2,3} which satisfy the pure braid
relations in Equation 1.7 of [KT08]. Recall the Gassner representation for Ai,j in Equation 1.1 (see [Knu05].
The group P B3 has the the following representations for the generators:

[A1,2]
φ =


1− t1 + t1t2 t1(1− t1) 0

1− t2 t1 0

0 0 1

 ,
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[A1,3]
φ =


1− t1 + t1t3 0 t1(1− t1)

(1− t2)(1− t3) 1 (1− t2)(t1 − 1)
1− t3 0 t1


and

[A2,3]
φ =


1 0 0

0 1− t2 + t2t3 t2(1− t2)
0 1− t3 t2

 .
Next, let us consider Equation 3.9:1− tj ti

1 0

 =

ti 0

0 tj


 tj−1ti 1

ti

1 0


t−1j 0

0 t−1i


 // (

tk 7→
1
tk

)
,

which comes from the (co)homology Gassner invariant. Let Γch(!) =
1− tj ti

1 0

 . Then Γch is an invariant

since the Gc is an invariant, and it assigns the same matrices to the generators of P B3 as [−]φ does. That is,

Γch(A1,2) = Γch(σ1)Γch(σ1) =


1− t1 + t1t2 t1(1− t1) 0

1− t2 t1 0

0 0 1

 ,

Γch(A1,3) = Γch(σ2)Γch(σ1)Γch(σ1)Γch(σ
−1
2 ) =


1− t1 + t1t3 0 t1(1− t1)

(1− t2)(1− t3) 1 (1− t2)(t1 − 1)
1− t3 0 t1


and

Γch(A2,3) = Γch(σ2)Γch(σ2) =


1 0 0

0 1− t2 + t2t3 t2(1− t2)
0 1− t3 t2

 .
The above shows that Γch(Ai,j ) = [Ai,j ]φ for 1 ≤ i < j ≤ 3. Thus the (co)homology Gassner invariant, when
restricted to the pure braid group P B3 yields the Gassner representation for P B3. The following proposition
shows that the Gassner invariant yields the Gassner representation.

Proposition 3.24. Let

Γch(σi) =


tT [i] 0

0 tT [i+1]

Gc(σi)
 1
tT [i+1]

0

0 1
tT [i]


 // (

tk 7→
1
tk

)
,

where Gc(σi) = (Gh(σi)−1) // mT . Then Γch(σi) is an invariant of braids. In particular, restricting Γch to the
pure braids yields the Gassner representation. That is Γch(Ar,s) = [Ar,s]φ.

Proof. The invariance of Γch follows immediately from the invariance of the cohomology Gassner invariant.
Recall that the generator Ar,s can be expressed as

Ar,s = σs−1σs−2 · · ·σr+1σ2
r σ
−1
r+1 · · ·σ

−1
s−2σ

−1
s−1.
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According to Lemma 3.22, we have

Γch(Ar,s) = Γch(σs−1)Γch(σs−2) · · ·Γch(σr+1)Γch(σr )Γch(σr )Γch(σ−1r+1) · · ·Γch(σ
−1
s−2)Γch(σ

−1
s−1).

But this is exactly [Ar,s]φ in Equation 1.1. The proposition follows.

3.5 AMathematica implementation of thehomologyGassner invariant

In this section, we perform computations of the homology Gassner invariant of braids using Mathematica.
We define a Mathematica function for the homology Gassner invariant of the generator σi and its inverse.
This function is then used to compute the invariant for a given braid β. Finally, we test the second and third
Reidemeister moves. A reader with Mathematica can get the notebook by clicking the following link:
GassnerInvariantMathematicaNotebook.nb

Notations:

• σi is the Mathematica function representing Gassner invariant, where βi represents the generator xi
of H1(X0,F ) and H1(X1,F ). Here i is the position of the over strand below the horizontal level of
the crossing σi . In the case of σ−1i , i is the position of the under strand instead. for an over-crossing
(positive crossing).

The function takes an argument h[T ,L1] and outputs h[ρ(T ),L2].

• Here, the argument h[T ,L1] has two parameters:

i. T is the set of labels of the strands of an (n+1) braid.

ii. L is an element of F ⟨β1, . . . ,βn⟩ �H1(X0;F ).

• The output h[ρ(T ),L1] also has two parameters where

i. ρ(T ) is a permutation of T induced by the braid.

ii. L2 is an element of F ⟨β1, . . . ,βn⟩ �H1(X1;F ).

• Mi evaluates the matrix corresponding to σi andM i is the inverse ofMi .

The code for the over-crossing: σi
In[1]:= σσσi_[h[T_,L_]]/;i>0:=h[

Permute[T,Cycles[{{i,i+1}}]],

Expand[L/.{βββi→→→βββi+1,βββi+1→→→tT[[i]] βββi+(1-tT[[i+1]]) βββi+1}]

]

In[2]:= Mi_[T_]:=Table[

Coefficient[σσσi[h[T,βββj]][[2]],βββk],

{j,1,Length[T]},{k,1,Length[T]}

]//Transpose

https://drive.google.com/file/d/1gLg1aEBLqLOwptO7nfAgMmhrAIvbBkpJ/view?usp=sharing
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The code for under-crossing: σ−1i
In[3]:=

_
σσσi_[h[T_,L_]]/;i>0:=h[

Permute[T,Cycles[{{i,i+1}}]],

Expand[L/.{βββi→→→
βββi+1

tT[[i+1]]
+
(tT[[i]]-1) βββi

tT[[i+1]]
,βββi+1→→→βββi}]//Simplify

]

In[4]:=
_

Mi_[T_]:=Table[

Coefficient[
_
σσσi[h[T,βββj]][[2]],βββk],

{j,1,Length[T]},{k,1,Length[T]}]//Transpose

Applying the code on the braid β below
Note that the free strand labeled is not involved.

321

σ2

σ−1
1

σ2

β = σ2σ
−1
1

σ2

1 23

3 2 1

3 21

Here, we compute the homology Gassner invariants of the generators σ2,σ−11 and σ2, and multiply them
to get the homology Gassner invariant of tβ.

In Theorem 3.23, we verified that the homology Gassner invariant is indeed and invairiat of braids. We
test this result using Mathematica below.

Testing Reidemeister 2 move
Here, we are verifying σ−11 σ1 = σ1σ

−1
1 (see Figure 3.16). Note: we ignore the free strand labeled 0.

In[5]:= {h[{1,2}, xβββ1 + yβββ2]//
_
σσσ1//σσσ1}=={h[{1,2}, xβββ1 + yβββ2]//σσσ1//

_
σσσ1}

Out[5]= True
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Testing Reidemeister 3 move
Finally, we test σ1σ2σ1 = σ2σ1σ2 (see Figure 3.15). Again, we ignore the free strand labeled 0.

In[6]:= {h[{1,2,3}, xβββ1 + yβββ2+ zβββ3]//σσσ1//σσσ2//σσσ1}=={h[{1,2,3}, xβββ1+ yβββ2+ zβββ3]//σσσ2//σσσ1//σσσ2}

Out[6]= True



Chapter 4

Flying Cars and The Gassner invariant

4.1 Summary of Chapter

In [BNa], the author explores the concept of cars, which involves assigning a (2n + 1) × (2n + 1) matrix
to a long knot with n crossings. This chapter introduces the concept of flying cars (see Definition 4.1), a
modification of the one discussed in the cited work above. Flying cars involve assigning an n×n matrix to
an n+1 string link or braid, where the leftmost strand is always free. It is demonstrated that this assignment
serves as an invariant of string links and is connected to the homology Gassner invariant. Furthermore, the
stitching operation is defined to establish a relationship between string links and braids. Finally, examples
are provided to illustrate this concept.

4.2 String Links and Flying Cars, Bridges and Traffic Counters

In this section, we give the definition of flying cars, which a modified version of the car concept in
[BNa]. This is similar to the "probabilistic" interpretation of the Burau representation for string discussed in
[LTW98], which is further extended to give a similar interpretation of the Gassner representation in Section
8 of [KLW01]. We also discuss an invariant flying cars assign to string links.

A flying car always moves forward along a path which has a start point i and an endpoint j . There
are bridges along the path. A traffic counter is placed at j to measure the probability Pi,j of the flying car
exiting at j . A flying car flies under a bridge with an (algebraic) probability ts and, it flies up a bridge with
probability 1 − ts, where t is a variable and s ∈ {−1,+1}. Let χ be the set of all possible paths from i to j .
Then the probability of starting at i and ending at j is

Pi,j =
∑
p∈χ

∏
b

prob(b),

where

prob(b) =


ts flying car flies under at bridge b

1− ts flying car flies up at bridge b
1 flying car flies over at bridge b
0 flying car flies down at bridge b

.

Relating this to labeled string links, the oriented strands are the path along which flying cars move and

46
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the crossings represent the bridges. Here we keep track of the labeled strand a flying car is on. Let L
be an (n + 1)-string link, T = {0,1, · · · ,n} be the labels of the strands of L, and T ′ = T − {0}. Let F ′ be
Q({tk : k ∈ T ′}), the field of rational functions in the variables tk , where k ∈ T ′ .

Definition 4.1 (Flying cars on string links). A flying car C on a string link (or braid) diagram is a continuous
map C : [0,1]→ R2 whose image lies in the projection of the string link (or braid) to the plane, and which
starts at one of the bottom endpoints labeled i and ends at one of the top endpoints labeled j with algebraic
probability

Pi,j =
∑
p∈χ

∏
c

prob(c),

where prob(c) is the probability measured after moving past a crossing c and χ is the set of all possible
paths of C from i to j . The probability prob(c) is defined as

prob(c) =


tsk flying car flies under at bridge c

1− tsk flying car flies up at bridge c
1 flying car flies over at bridge c
0 flying car flies down at bridge c

,

where k ∈ T ′ is the label of the over strand at crossing c and s ∈ {−1,+1}.

Let MatT ′×T ′ (F ′) be the collection of n × n labeled matrices with rows and columns labeled by T ′ .
Let C denote a flying car. Define the map C : SLn→MT ′×T ′ (F ′) by assigning a labeled (n+ 1)-string link
L ∈ SLn the n×n matrix

C(L) =
 T ′

T ′ Pi,j


i,j∈T ′

,

where Pi,j is the probability of the flying car C starting at qi × {0} and exiting at qj × {1}. Notice that we
ignore the free strand labeled 0, so the matrix C(L) does not include t0. This allows us to relate flying cars
to the reduced homology Gassner invariant (see Section 4.3) since the matrices of the latter do not have t0
when we take the labeling into consideration.

Let Ri,j and Rj,i denote an over-crossing and an under-crossing respectively where i is the label of the
over strand and j is the label the under strand. Then flying-cars assign the following matrices to Ri,j and
Rj,i

C(Ri,j ) =


i j

i 1 0

j 1− ti ti

 and C(Rj,i) =


i j

i 1 0

j 1− 1
ti

1
ti

 .
Figure 4.1 shows flying cars moving along the strands of an over and under-crossing.

It turns out that this assignment is an invariant of braids and string links. It is sufficient to show that C
remains unchanged under the three Reidemeister moves.

RM 1 Verifying invariance under Reidemeister 1 move.

(a) In Figure 4.2a, for a kink with a negative crossing, a car starts from the initial point at i. It can
either move under the bridge with probability t−1i , then move over the bridge with probability
1, and exit with probability t−1i × 1 = t−1i , or move up the bridge at the crossing and exit with
probability 1− t−1i . The total probability is t−1i + 1− t−1i = 1, which is the same probability for
no kink in Figure 4.2c.
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0 1

j

ji

i

(a) Positive
crossing: Car starts
at i

ti 1− ti

i j

j i

(b) Positive
crossing: Car starts
at j

1−
1
ti

1
ti

i j

ij

(c) Negative
crossing: Car starts
at i

1 0

i j

ij

(d) Negative
crossing: Car starts
at j

Figure 4.1: Flying car starting positions

i

i

(a) Kink with a
negative crossing

i

i

(b) Kink with a
positive crossing.

i

i

(c) Undoing the
kink.

Figure 4.2: Reidemeister 1 move: (a) and (b) are the equivalent to (c).

i

i j

j

(a) Type one
Reidemeister 2
move

j

j i

i

(b) Type two
Reidemeister 2
move.

i

i j

j

(c) Free strand

Figure 4.3: Reidemeister 2 move: (a) and (b) are the equivalent to (c).

k j i

i j k

(a) I

k j i

kji

(b) II.

Figure 4.4: Reidemeister 3 move: (a) and (b) are the equivalent.

(b) In Figure 4.2b, consider the kink with a positive crossing, where a car starts at the initial point i.
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The car has two options: it can descend to the lower strand and exit with a probability of 0, or
it can move over the bridge with a probability of 1 and return to the crossing. At the crossing,
the car can move up the bridge with a probability of 1 − ti and return to the crossing. This
process can repeat with probability

∞∑
k=1

(1− ti)k until it eventually moves under the bridge with

a probability of ti . The car finally exits with probability ti
∞∑
k=1

(1 − ti)k = 1
ti
ti = 1. Therefore,

the total probability is 1 + 0 = 1. Again, the probability is the same for no kink. This proves
invariance under Reidemeister 1 move.

RM 2 Verifying invariance under Reidemeister 2 move.

(a) In Figure 4.3a, there are four paths to consider: the paths from i to i, i to j , j to i, and j to j . In
each case, there are two options to consider. For instance, a car moving from i to i starts from i,
moves over strand j at the positive crossing with probability 1, then over strand j again at the
negative crossing with probability 1, and finally exits with probability 1 · 1 = 1. Alternatively,
the car starts at i, descends onto strand j at the positive crossing with probability 0, then moves
up strand i again with probability 1 − t−1i , and finally exits with probability 0 · (1 − t−1i ) = 0.
The total probability is 1 + 0 = 1. Checking the other situations similarly, the corresponding
probabilities for the paths i to j , j to i and j to j are 0, 0 and 1 respectively. This is the same as
the probabilities for the paths in Figure 4.3c.

(b) In Figure 4.3b, a similar situation is reached as in the case of Figure 4.3a. This proves invariance
under Reidemeister 2 move.

RM 3 Verifying invariance under Reidemeister 3 move.

In both Figure 4.4a and Figure 4.4b there are nine paths to consider: the paths from i to i, i to j , i to
k, j to i, j to k, j to j , k to i, k to j and k to k.

For instance, the path from k to j in Figure 4.4a is as follows: a car starts at k and moves under strand
i at the positive crossing with probability ti , then moves up to strand j with probability 1 − tj , and
finally exits at j with probability ti(1− tj ).

In the case of Figure 4.4b, there are two options: a car starts at k moves under strand j at the
first positive crossing with probability tj , move up onto strand i at the next positive crossing with
probability (1 − ti), descends onto strand j with probability 0, then finally exits with probability
tj (1− ti) ·0 = 0. Alternatively, the car starts at k, moves up onto strand j with probability 1− tj , then
moves under strand i with probability ti , and exits with probability ti(1− tj ). So, the total probability
is 0+ ti(1− tj ) = ti(1− tj ).

In both figures, the final probability for the path k to j is ti(1− tj ). Similarly, all the other eight paths
are the same. This proves invariance under Reidemeister 3 move.

From the above demonstration of the invariance of C under the Reidemeister moves, we have established
the following proposition.

Proposition 4.2. Let L be an oriented (n+ 1)-component string link. Then the assigned matrix C(L) = (Pi,j )

is an invariant of string links.
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4.3 Flying cars and the Homology Gassner invariant.

In this section, we discuss the relation between C(L) and Grh(L) of a labeled string link L. Here, L is of the
form as shown in Figure 3.13b. So, both C(L) and Grh(L) do not have t0 in all their entries. In view of this,
we have C(L), Grh(L) ∈MT ′×T ′ (F ′). In Example 3.18, we computed the homology Gassner invariant of Ri,j ,
and it is given by

Grh
(
Ri,j

)
=

0 ti
1 1− tj

 .
We have also seen above that flying-cars assign a matrix to Ri,j which is given by

C
(
Ri,j

)
=

 1 0

1− ti ti

 .
Let ρcol denote the permutation of the over-crossing and denote by mt the transposition of a matrix. The
subscript col of ρcol denotes a column permutation. Let Dn be the n × n matrix with the diagonal entries
given by di,i = 1− ti ,1 ≤ i ≤ n.When n = 2, then

D2 =

1− ti 0

0 1− tj

 .
Then, the two matrices Grh

(
Ri,j

)
and C

(
Ri,j

)
are related by the formula

Grh
(
Ri,j

)
=

(
D2 · C

(
Ri,j

)
·D−12

)
//ρcol //m

t . (4.1)

Thus, the homology Gassner invariant is given by first conjugating the matrix C(L) with Dn, followed
by a permutation of the columns and finally transposing the resulting matrix. That is

Grh (L) =
(
Dn · C (L) ·D−1n

)
//ρcol //m

t (4.2)

From equations, Equation 4.2 the commutative diagram below is obtained. This is useful because, given
the Gassner invariant Γ , one can produce the homology Gassner invariant and vice versa.

SLn

Matn(F ′) Matn(F ′)

C Grh

Dn(−)D−1n //ρcol //m
t

Figure 4.5: Relation between the homology Gassner and flying cars

At the end of Chapter 3, it was verified that the homology Gassner is an invariant of braids. In this
section, we have seen that the assignment C : L 7→ C(L) defines an invariant of labeled (n+ 1) string links
with values in GLn(F ); it is multiplicative under the multiplication of labeled string links obtained by
stacking one above the other. Thus, by the relation in Equation 4.2 we have verified Theorem 3.23 for string
links. This is the statement of Theorem 2.4 in [KLW01].
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4.4 Stitching operation, Braids and String links.

In this section, we define the stitching operation on string links an on the collectionMatT ′×T ′ (F ′), of n×n
labeled matrices. Given an (n+ 1)-string link L labeled by T = {0,1, · · · ,n}, let S i,jk : SLn+1 → SLn be the
stitching operation defined as follows: connect the head of a strand labeled i , 0 to the tail of another
strand labeled j , 0 and relabel the resulting strand k = min{i, j} as shown in Figure 4.6. Here, we require
that i , j to avoid circle components. We will see that this operation is well defined after Definition 4.3.

k

k

LL

j

ij

i

S
i,j
k

Figure 4.6: The stitching operation.

4.4.1 The stitching operation and the matrix from by flying cars.

L

i j

ijs

r

0

0

︸ ︷︷ ︸

K

K
︷ ︸︸ ︷

(a) An (n+1)-string link

L

i
j

j
i

r

s

0

0

(b) An n-string link after
stitching.

Figure 4.7: The stitching operation.

The stitching operation defined above induces an operation on the collection MatT ′×T ′ (F ′), of n × n
labeled matrices as follows: We denote the induced operation also by S i,jk . Let C(L) ∈MatT ′×T ′ (F ′) be the
labeled n×n matrix assigned the (n+1)-string link L in Figure 4.7a by the flying car C:

C(L) =


K i j

K a b c

i d e f

j g h k

 , (4.3)
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and let

Grh (L) =
(
Dn · C (L) ·D−1n

)
//ρcol //m

t

=


ρ(K) j i

K Ξ ψ φ

i θ β α

j ϵ δ γ

 , (4.4)

where T ′ = K ∪ {i, j}. Suppose strand i is stitched to strand j , and the resulting strand is relabeled k =

min{i, j}. Then, the stitching operation S i,jk on L yields a matrix L//S i,kk with entries described below.

1. When starting at position i, there are two possible paths for the car to exit at position j . The first
option is to directly exit at j with a probability of Pi,j . The second option is to exit j by first going
through a loop. In this case, the car exits i at the top with probability Pi,i . However, as strand i is
stitched to strand j , the car needs to fly back to the bottom at j along the stitched strands. From j ,
the car exits the top at i again with probability Pi,iPj,i . This process may repeat with a probability

of Pi,iP ∗j,i , where P
∗
j,i =

∞∑
n=1

P nj,i =
1

1−Pj,i . However, the loop terminates when the car exits the top at j .

The resulting probability is Pi,iP ∗j,iPj,j . Taking into account both paths, the final probability of a car

exiting the top at j , when starting at i, is
(
L//m

i,j
k

)
i,j

= Li,j + Pi,iP ∗j,iPj,j . Referring to the matrix C(L),

Pi,j = β, Pi,i = α, Pj,i = γ , and Pj,j = δ. Thus,
(
L//m

i,j
k

)
i,j

= β +α 1
1−γ δ.

2. When starting at position r , there are two possible paths for the car to exit at position s. Using the same
explanation above, the (r, s)-th entry of the matrix L//mi,kk is

(
L//m

i,j
k

)
r,s

= Pr,s+Pr,iP ∗j,iPj,s. Referring

to the matrix C(L), Pr,s = Ξr,s, Pr,i = φr , Pj,i = γ and Pj,s = ϵs, so that
(
L//m

i,j
k

)
r,s

= Ξr,s +φr
1

1−γ ϵs.

3. Again, when starting at position r , there are two possible paths for the car to exit at position j ,
the same explanation above applies. The (r, j)-th entry of the matrix C(L)//mi,kk is

(
L//m

i,j
k

)
r,j

=

Pr,j + Pr,iP ∗j,iPj,j = ψr +φr
1

1−γ δ.

4. Finally, when starting at position i, there are two possible paths for the car to exit at position s.
Referring to the above explanation

(
L//m

i,j
k

)
i,s

= Pi,s + Pi,iP ∗j,iPj,s = θs +α
1

1−γ ϵs.

Let S(Pj,i) denote the resulting matrix after stitching strand i to strand j , where Pj,i is (j, i)th entry γ of the
matrix Grh(L) in Equation 4.4. The dimension of S(Pj,i) is (n− 1)× (n− 1) and it is given by

S(γ) =


ρ(K) k

K Ξr,s +φr
1

1−γ ϵs ψr +φr
1

1−γ δ

k θs +α
1

1−γ ϵs β +α 1
1−γ δ

 // ti , tj 7→ tk . (4.5)

Definition 4.3. Given Grh (L) ∈ MatT ′×T ′ (F
′). Define the stitching operation, S i,jk : MatT ′×T ′ (F ′) →



4.4. STITCHING OPERATION, BRAIDS AND STRING LINKS. 53

MatT ′′×T ′′ (F ′′), on the collection of labeled n×n matrices by
ρ(K) j i

K Ξ ψ φ

i θ β α

j ϵ δ γ

 //S
i,j
k :=


ρ(K) k

K Ξr,s +φr
1

1−γ ϵs ψr +φr
1

1−γ δ

k θs +α
1

1−γ ϵs β +α 1
1−γ δ

 // ti , tj 7→ tk , k =min{i, j}.

The stitching operation S i,jk : MatT ′×T ′ (F ′) → MatT ′′×T ′′ (F ′′) is well-defined as it maps the n × n
identity matrix to the (n− 1)× (n− 1) identity matrix. In this process, we replace the block matrix Ξ with
the corresponding identity matrix, setting α = δ = 1 and all other entries to zero. Note that this is done on
the corresponding matrix without the permutation operation.

The diagram below describes the induced operation. Here, T ′′ = T ′ − {max{i, j}} and F ′′ = Q({tk : k ∈
T ′′}). Also,MatT ′′×T ′′ (F ′′) is the collection of labeled (n− 1)× (n− 1) matrices.

SLn+1 SLn

MatT ′×T ′ (F ′) MatT ′′×T ′′ (F ′′)

MatT ′×T ′ (F ′) MatT ′′×T ′′ (F ′′)

C

S
i,j
k

C

Dn(−)D−1n //ρcol //m
t

S
i,j
k

Dn−1(−)D−1n−1//ρcol //m
t

S
i,j
k

.

Thus, given a string link L and the corresponding matrix C(L), the matrix S(Pj,i) associated with stitching
strand i to strand j is computed as follows: Pick the (j, i)th entry Pj,i = γ of

Grh (L) =
(
Dn · C (L) ·D−1n

)
//ρcol //tr.

Find the minor Min(Pj,i), the row Row(P̂j,i) and the column Col(P̂j,i) of Pi,j , where ·̂ means omit Pj,i
from the row and column. Then, after stitching, S(γ) in Equation 4.5 can be written as

S(Pj,i) =Min(Pj,i) +
1

1−γ
Col(P̂j,i) ·Row(P̂j,i). (4.6)

We have seen fromLemma 3.22 that the assignmentGh : L→Gh(L) ismultiplicative under themultiplication
of labeled string links. So, to calculate the homology Gassner invariant Grh(β) of a coloured braid β, we
only need to compute the homology Gassner invariant of the braid generators and then combine them
appropriately to obtainGrh(β). However, this is not the case for string links, asG

r
h is not generallymultiplicative.

Fortunately, there is a solution to this issue: string links can be derived from braids using the stitching
operation, and this relationship is described by the following lemma.

Lemma 4.4 ([Vo18], Lemma 6.1.). Let L be a string link. Then L can be obtained as a partial closure of some
braid β.

Proof. In a string link L, some strands may have downward arcs that connect cups and caps (see Figure 4.8),
since the strands are not required to bemonotonic. Wewant to transform each downward arc into a stitching
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of the right-most outgoing strand with the right-most incoming strand. If there are no downward arcs, then
L is a braid and there is nothing to prove. Let us assume L has strands that are not monotonic. In this case, L
can be decomposed into its basic components, consisting of over-crossings!, under-crossings", and cups
and caps.

Cap Cup Downward arc between a cap and a cup

Figure 4.8: A downward arc connecting a cup and a cap.

Consider an arc connecting a cap and cup like the one on the right of Figure 4.8. Upward strands may
go over or under this piece like the one Figure 4.9, which can be transformed so that all downward arcs

Figure 4.9: A downward arc connecting a cup and a cap with over and under strands.

have one crossing as in Figure 4.10.

Figure 4.10: Simplified downward arc passing under or over a single strand.

Now, consider a downward arc with a negative crossing, similar to the picture on the left of Figure 4.11
and perform the following steps.

1. Perform a Reidemeister 1 move to create a kink with a negative crossing.

2. Pull the kink to the right, passing under all other strands by performing a sequence of Reidemeister
2 and 3 moves until the picture on the right is reached. Notice that the downward arc stitches the
right-most outgoing strand to the right-most incoming strand.

3. Repeat the two steps above until all downward strands inside the dashed rectangle as shown in
Figure 4.11 are exhausted.

If there are downward arcs with a positive crossing, similar to the picture on the left of Figure 4.12,
follow the same steps as mentioned earlier. However, this time the kink should have a positive crossing
and the kink passes over all other strands when pulling to the right. Once all downward arcs have been
exhausted, you will arrive at a diagram with all upward strands inside a dashed box and all downward arcs
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Figure 4.11: Moving a downward arc passing under a strand to the right.

Figure 4.12: Moving a downward arc passing over a strand to the right.

β

· · ·

· · ·

· · ·

· · ·

· · ·

L

Figure 4.13: Transforming a string link L to the partial closure of a β.

outside the box. This represents a partial closure of a braid as shown in Figure 4.13. Therefore, L is given
as the partial closure of a braid, which concludes the proof.

1 2

(a) String link L4

321

(b) Braid β.

Figure 4.14: A 2-string link and a 3-braid

Example 4.5. Consider the string link L4 in Figure 4.14a. On the leftmost side of Figure 4.15, the downward
arc of L4 is coloured and it goes over a strand. Referring to Figure 4.12, transform the red arc into a stitching
of the right-most outgoing strand and the right-most incoming strand, as described visually in Figure 4.15.
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L4

Figure 4.15: Transforming the 2-string link L4 to the partial closure of the braid β.

This will result in a partially closed braid. Specifically, when strands 1 and 3 of the braid β in Figure 4.14b
are stitched together, a different projection of L4 is obtained.

In the next example, wewill show that the homologyGassner invariant ofL4 is the same as the homology
Gassner invariant of partially closed braid β. We will first compute the cohomology Gassner invariant
whose transpose is the homology Gassner invariant. Then, we will compute that invariant C(β) of the braid
β, using flying cars. Next, we will stitch strand 1 to strand 3 and rename it 1. Finally, applying the formula
in Equation 4.1 gives the homology Gassner invariant of the partially closed braid, the same for the string
link L4.

c1

c2

c3

c4

u1 u2

v1 v2

z1,1

z2,1

321

σ2

σ
−1
1

σ2

1 2

Stitching Strand 1 to strand 3

Figure 4.16: Stitching strand 1 to strand 3.

The following example is help to explain the relation between braids and string links.

Example 4.6. 1. The cohomology Gassner invariant: The string link L4 has four crossings, labeled
c1, c2, c3 and c4 ordered according to Ordering 3.1. Let Y be the deformation retract of the complement
X = (D2 × [0,1] − L4). Using the cell structure given to the complement of a string described in
Section 2.4.1, Y has one 0-cell q = x0, six 1-cells u1,u2, z1,1, z2,1,v1,v2, and four 2-cells e1, e2, e3, e4.
The covering space Ỹ of Y is determined by ϵ : π1(X,q)→ ⟨t0, t1, t2⟩ By Proposition 2.6, the relative
chain groups of Ỹ are

C0(Ỹ , q̃;Z) = C0(Ỹ ;Z)/C0(q̃;Z) = 0,

C1(Ỹ , q̃;Z) = C1(Ỹ ;Z)/C1(q̃;Z) = C1(Ỹ ;Z)/0 = ⟨ ũ1, ũ2, z̃1,1, z̃2,1, ṽ1, ṽ2 ⟩,

C2(Ỹ , q̃;Z) = C2(Ỹ ;Z)/C2(q̃;Z) = C2(Ỹ ;Z)/0 = ⟨ ẽ1, ẽ2, ẽ3, ẽ4 ⟩.

By Lemma 3.5, the relative cohomology group H1(Y ,q;F ) is ker(C1(Y ;F )
d1−−−−−→ C2(Y ;F )), where

C1(Y ;F ) = ⟨Ũ1, Ũ2, Z̃1,1, Z̃2,1, Ṽ1, Ṽ2⟩ and C2(Y ;F ) = ⟨Ẽ1, Ẽ2, Ẽ3, Ẽ4⟩. By Description 2.13, the
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boundaries of the 2-cells are

∂2(̃e1) = (1− t1)ṽ1 + t1ũ1 − z̃1,1
∂2(̃e2) = (1− t2 )̃z1,1 + t1ṽ2 − ũ2
∂2(̃e3) = (1− t1)ṽ2 + t2z̃2,1 − z̃1,1
∂2(̃e4) = (1− t1 )̃z1,1 + t1z̃2,1 − ṽ1.

So the matrix of d1 is

d1matrix =


Ũ1(∂2(̃e1)) Ũ2(∂2(̃e1)) Z̃1,1(∂2(̃e1)) Z̃2,1(∂2(̃e1)) Ṽ1(∂2(̃e1)) Ṽ2(∂2(̃e1))

Ũ1(∂2(̃e2)) Ũ2(∂2(̃e2)) Z̃1,1(∂2(̃e2)) Z̃2,1(∂2(̃e2)) Ṽ1(∂2(̃e2)) Ṽ2(∂2(̃e2))

Ũ1(∂2(̃e3)) Ũ2(∂2(̃e3)) Z̃1,1(∂2(̃e3)) Z̃2,1(∂2(̃e3)) Ṽ1(∂2(̃e3)) Ṽ2(∂2(̃e3))

Ũ1(∂2(̃e4)) Ũ2(∂2(̃e4)) Z̃1,1(∂2(̃e4)) Z̃2,1(∂2(̃e4)) Ṽ1(∂2(̃e4)) Ṽ2(∂2(̃e4))


=


t1 0 −1 0 1− t1 0

0 −1 1− t2 0 0 t1
0 0 −1 t2 0 1− t1
0 0 1− t1 t1 −1 0


The nullspace of d1matrix is

〈


− 1−t1
t2t1−t1−t2
− t1
t2t1−t1−t2
(t1−1)t1
t2t1−t1−t2
(t1−1)2

t2t1−t1−t2
0

1


,



−−t2t1+t1+2t2−1t2t1−t1−t2
− t2−t22
t2t1−t1−t2
− t2
t2t1−t1−t2
− 1
t2t1−t1−t2

1

0



〉

So,

ker(d1) =
〈
−

t2Z1,1

t2t1 − t1 − t2
−

Z2,1

t2t1 − t1 − t2
− (−t2t1 + t1 +2t2 − 1)U1

t2t1 − t1 − t2
−

(
t2 − t22

)
U2

t2t1 − t1 − t2
+V1 ,

(t1 − 1)2Z2,1

t2t1 − t1 − t2
+
t1 (t1 − 1)Z1,1

t2t1 − t1 − t2
− (1− t1)U1

t2t1 − t1 − t2
− t1U2

t2t1 − t1 − t2
+V2

〉
,

which is H1(Y ,q;F ) by Lemma 3.5. Corollary 3.6 implies H1(X0,q;F ) = C1(X0;F ) = ⟨Ũ1, Ũ2⟩ and
H1(X1,q;F ) = C1(X1;F ) = ⟨Ṽ1, Ṽ2⟩. By definition of the cohomology Gassner invariant, the map
ι∗0 :H

1(X,q;F )→H1(X0,q;F ) is given by

ι∗0 :

 −
t2Z1,1

t2t1−t1−t2 −
Z2,1

t2t1−t1−t2 −
(−t2t1+t1+2t2−1)U1

t2t1−t1−t2 − (t2−t22)U2
t2t1−t1−t2 +V1 7→ − (−t2t1+t1+2t2−1)U1

t2t1−t1−t2 − (t2−t22)U2
t2t1−t1−t2

(t1−1)2Z2,1
t2t1−t1−t2 + t1(t1−1)Z1,1

t2t1−t1−t2 −
(1−t1)U1
t2t1−t1−t2 −

t1U2
t2t1−t1−t2 +V2 7→ − (1−t1)U1

t2t1−t1−t2 −
t1U2

t2t1−t1−t2

,

an it represented by thematrix

 t1(t2−1)−2t2+1t1(t2−1)−t2
t1−1

t1(t2−1)−t2
(t2−1)t2

t1(t2−1)−t2
t1

t2−t1(t2−1)

. Also, themap ι∗1 :H1(X,q;F )→H1(X1;F )
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is given by

ι∗1 :

 −
t2Z1,1

t2t1−t1−t2 −
Z2,1

t2t1−t1−t2 −
(−t2t1+t1+2t2−1)U1

t2t1−t1−t2 − (t2−t22)U2
t2t1−t1−t2 +V1 7→ Ṽ1

(t1−1)2Z2,1
t2t1−t1−t2 + t1(t1−1)Z1,1

t2t1−t1−t2 −
(1−t1)U1
t2t1−t1−t2 −

t1U2
t2t1−t1−t2 +V2 7→ Ṽ2

;

it is represented by
1 0

0 1

. The cohomology Gassner invariant of L4 is therefore

Gc(L4) = (ι∗0)
−1 =

 t1
t1+t2−1

t1−1
t1+t2−1

(t2−1)t2
t1+t2−1

−t1(t2−1)+2t2−1
t1+t2−1

 .
By Remark 3.21, inverting and transposing Gc(L4) gives the homology Gassner invariant of L4:

Grh(L4) =

 t2t1−t1−2t2+1t2t1−t1−t2
(t2−1)t2
t2t1−t1−t2

t1−1
t2t1−t1−t2 − t1

t2t1−t1−t2

 .
2. The invariant C(β) of the braid β: Let us analyze the car’s options starting from each initial point,

which are 1, 2, and 3. If we consider the initial point 1, the car can exit at the endpoint 1, 2, or 3.
To exit at 1, the car first passes under strand 3 at a negative crossing with probability 1

t3
, then passes

over strand 2 at a positive crossing with a probability of 1. This gives us a probability of 1
t3
for exiting

at 1. To exit at 2, the car first passes under strand 3 at a negative crossing with probability 1
t3
, then

moves down onto strand 2 at the positive crossing with a probability of 0, resulting in a probability
of 0 for exiting at 2. Finally, to exit at 3, the car moves up onto strand 3 at the negative crossing,
giving us a probability of 1− 1

t3
for exiting at 3.

Repeating the analysis for the initial points 2 and 3, we find that the invariant C(β) is

C(β) =


1 2 3

1 1
t3

0 1− 1
t3

2 1− t1 t1 0

3 (1− t2)(1− t1) (1− t2)t1 t2

 (4.7)

Applying Equation 4.2, the homology Gassner invariant of β is

Grh (β) =
(
D3 · C (β) ·D−13

)
//ρcol //tr

=


3 2 1

1 t1−1
t3

0 t2
2 0 t1 −t1 (t3 − 1)
3 1

t3
1− t2 (t2 − 1)(t3 − 1)


= Grh(σ2) · G

r
h(σ
−1
1 ) · Grh(σ2)

=


1 0 0

0 0 t1
0 1 1− t2



t1−1
t3

1 0
1
t3

0 0

0 0 1



1 0 0

0 0 t2
0 1 1− t3


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=


t1−1
t3

0 t2
0 t1 −t1 (t3 − 1)
1
t3

1− t2 (t2 − 1)(t3 − 1)

 , (4.8)

where ρcol =


0 0 1

0 1 0

1 0 0

 is the permutation matrix given by the permutation ρ : 1 7→ 3,2 7→ 2 and

3 7→ 1 induced by the braid β, and D3 =


1− t1 0 0

0 1− t2 0

0 0 1− t3

 .
3. Stitching strand 1 to strand 3 of β: Stitching strand 1 to strand 3 corresponds to finding the entry
P3,1 of Grh(β) in Equation 4.8 and applying the formula in Equation 4.6. The P3,1 entry of the matrix
Grh(β) is P3,1 = (t2 − 1)(t3 − 1). After applying the stitching operation, Grh(β) becomes the matrix
S(P3,1) :

S(P3,1) = Min(P3,1) +
1

1− P3,1
Col(P̂3,1)Row(P̂3,1)

=

 t1−1t3 0

0 t1

+ 1
1− (t2 − 1)(t3 − 1)

 t2
−t1(t3 − 1)

 · ( 1
t3

1− t2
)

=

 t1t3 − t2−1
t2(t3−1)−t3

(t2−1)t2
t2(t3−1)−t3

t1(t3−1)
(t2(t3−1)−t3)t3

t1
t3−t2(t3−1)


t3 7→ t1

Grh(L4) =

 t2t1−t1−2t2+1t2t1−t1−t2
(t2−1)t2
t2t1−t1−t2

t1−1
t2t1−t1−t2 − t1

t2t1−t1−t2

 ,
which is the same as the homology Gassner invariant of the string link L4.

In the previous example, we have demonstrated that the homology Gassner invariant of L4 can be
obtained from that of β through the stitching operation. In general, this is true. We state this as a theorem:

Theorem 4.7. Let L be an n− 1 string link. Then the homology Gassner invariant of L can be obtained from
the homology Gassner invariant of an n braid β labeled by T such that L is a partial closure of β.

Proof. According to Lemma 4.4, every string link L can be realized as a partial closure of some braid β. This
implies that there exists a braid β such that performing a partial closure on β yields the string link L.

Let L be an n− 1 string link, and let β be an (n) braid labeled by T ′ = {1, · · · ,n} such that L is a partial
closure of β. Assume the permutation induced by β is ρ =

(
1 ··· n−1 n
ρ(1) ··· ρ(n−1) ρ(n)

)
. Without loss of generality,

we assume that L is obtained from β by a single stitching. To show that the homology Gassner invariant of
L can be obtained from the homology Gassner invariant of β such that L is a partial closure of β, we need
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to show that the diagram below is commutative:

SLn Mn(F )

β Gh(β)

L Gh(L)

SLn−1 Mn−1(F )

S
ρ(n),n
ρ(n) //n≡ρ(n)

Gh

S
ρ(n),n
ρ(n) //tn 7→tρ(n)

Gh

,

where n ≡ ρ(n) mean relabel L = β // Sρ(n),nρ(n) after the stitching operation with 1, · · ·n− 1.

1. Let Xβ be the complement of β, and let Xβ0 and Xβ1 be the corresponding punctured disks. Compute
the homology Gassner invariant

Gh(β) :H1(X
β
0 ,q;F )→H1(X

β , Iq;F )→H1(X
β
1 ,q;F )

where H1(X
β
0 ,q;F ) � H1(Xβ , Iq;F ) � H1(X

β
1 ,q;F ) � F ⟨x1, · · ·xn⟩. Let Gh(β) =


Ξ ψ φ

θ β α

ϵ δ γ

 be the
n × n matrix representation of the homology Gassner invariant of β. In terms of labeled matrices,
recall that

Gh (β) =
(
Dn · C (β) ·D−1n

)
// ρcol // m

t ,

so

Gh (β) =


ρ(K) ρ(n− 1) ρ(n)

K Ξ ψ φ

n− 1 θ β α

n ϵ δ γ

 .
Next, apply the stitching operation to Grh(β) to obtain the (n− 1)× (n− 1) matrix

S(Pn,ρ(n)) = β // Gh // S
ρ(n),n
ρ(n) // tn 7→ tρ(n). (4.9)

2. Perform the stitching operation on β to obtain L. This involves connecting the head of the strand
labeled ρ(n) to the tail of the strand labeled n and renaming the strands appropriately. Note that each
stitching operation on the braid reduces the number of strands by one.

Let XL be the complement of L, and let XL0 and XL1 be the corresponding punctured disks. Now,
compute the homology Gassner invariant

Gh(L) :H1(X
L
0 ,q;F )→H1(X

L, Iq;F )→H1(X
L
1 ,q;F )

of L. Here, H1(X
L
0 ;F ) � H1(XL;F ) � H1(X

L
1 ;F ) � F ⟨x1, · · ·xn−1⟩, since the number of strands is

reduced by one after stitching. The homology Gassner invariant Gh(L) can be derived from Gh(β) :
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H1(X
β
0 ,q;F )→H1(Xβ , Iq;F )→H1(X

β
1 ,q;F ) as follows:

The stitching operation on β does not affect the number and types of crossings, meaning that the
former and latter remain the same in L. Moreover, the cell structure of L is similar to that of β with
the exception that two meridians are identified. This implies that the cycles and boundaries in the
homology groups involved in the computation of Gh(β) are not affected. However, the cycles un and
vρ(n) in H1(Xβ , Iq,F ) are identified. It follows that

H1(X
L, Iq,F ) =H1(X

β , Iq,F ) // un ≡ vρ(n). (4.10)

As a linear map, Gh(β) :H1(X
β
0 ,q;F )→H1(Xβ , Iq;F )→H1(X

β
1 ,q;F ) is given by

Gh(β) :
xK 7→ ΞxK +ψxn−1 +φxn
xn−1 7→ θxK + βxn−1 +αxn
xn 7→ ϵxK + δxn−1 +γxn

,

where xK is the vector


x1
...

xn−2

 and K = {1, · · ·n−2}. Since we are stitching the strand labeled ρ(n) to

the strand labeled n, the cycles un and vρ(n) are identified. Note that un is identified with xn. So, by
Equation 4.10, the last equation in the system becomes xn 7→ ϵ

1−γ xK + δ
1−γ xn−1. The implication is

that the linear system becomes

Gh(β // S
ρ(n),n
ρ(n) ) :

 xK 7→
(
Ξ+ φϵ

1−γ

)
xK +

(
ψ + φδ

1−γ

)
xn−1

xn−1 7→
(
θ + αϵ

1−γ

)
xK +

(
β + αδ

1−γ

)
xn−1

.

But this is the linear systemGh(L)with amatrix representation

Ξ+ φϵ
1−γ ψ + φδ

1−γ
θ + αϵ

1−γ β + αδ
1−γ

 ,which is exactly
the matrix in Equation 4.9. We have shown that

β // S
ρ(n),n
ρ(n) // n ≡ ρ(n) // Gh = β // Gh // S

ρ(n),n
ρ(n) // tn 7→ tρ(n).

It follows that the diagram is commutative, hence the theorem.



Chapter 5

Unitarity of the Gassner invariant

5.1 Summary of Chapter

In this chapter, we discuss the unitarity of the homology Gassner invariant with respect to a skew hermitian
product given by an intersection product defined on the cycles of the first homology groupsH1(X0;F ) and
H1(X1;F ). We provide details on the computation of the intersection product defined on the elements of
H1(X0;F ). Furthermore, we provide a detailed proof of the unitary statement in Theorem 3.2 of [KLW01]
(see Theorem 5.18). We also provide an alternative proof of Theorem 5.18 (see Theorem 5.20). Finally, we
present a Mathematica implementation of the unitarity of the homology Gassner invariant.

5.2 The intersection product on H1(P ;F ), P = Xj for j = 0,1

It is natural to obtain a skew-Hermitian matrix using the cup product on cohomology. However, achieving
this for the cohomology Gassner invariant is quite challenging. In contrast, obtaining the Hermitian matrix
via the intersection product defined on the cycles is easier in the context of the homology Gassner invariant.
We begin by discussing the intersection product presented in Section 3.2.1 of [KT08]..

Let α and β be two oriented closed loops on an oriented surfaceΣ. Deform α and β slightly, and assume
that they intersect transversely in a finite set of points that are not self-crossings of α or β. The algebraic
intersection number of α and β is the sum α · β =

∑
p∈α∩β

εp, where εp = +1 if the tangent vectors of α

and β at p form a positively oriented basis and εp = −1 otherwise. Let α,β represent the homology classes
[α], [β] ∈H1(Σ;Z) respectively. Then the algebraic intersection number on [α] and [β] is defined as

[α] · [β] = α · β =
∑
p∈α∩β

εp (5.1)

More on intersection number can be found in [GP74].
Let P represent the (n+1)-punctured disk, Xj , j = 0,1, which are subspaces of the complement X of an

(n+ 1) string link. Let P̃ → P be the covering space of P determined by the map ϵ : π1(X,x0)→ ⟨tk⟩nk=1.
Also, recall the local efficient system F = Q(⟨t0, · · · , tn⟩). The F -module H1(P ;F ) carries a natural F -
valued skew-hermitian form defined as follows. Consider the associated intersection product H1(P̃ ;Z) ×
H1(P̃ ;Z) → Z defined in Equation 5.1 whose value [α̃] · [β̃] on the homology classes [α̃], [β̃] ∈ H1(P̃ ;Z)

62
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represented by transversal oriented loops α̃, β̃ on P̃ is the algebraic intersection number of these loops
obtained by counting their intersections with signs ±1 determined by the orientations on P̃ . Note that the
orientation on P lifts to the covering space P̃ → P .

Now, tensor H1(P̃ ;Z) with F and define a pairing

⟨·, ·⟩ :
(
H1(P̃ ;Z)⊗Z[π1(X)] F

)
×
(
H1(P̃ ;Z)⊗Z[π1(X)] F

)
→F

by 〈
α̃, β̃

〉
=

∑
(k0,...,kn)∈Zn+1

(
α̃ · (tk00 . . . t

kn
n β̃)

)
tk00 . . . t

kn
n , (5.2)

whereF → F 1 is the automorphism sending ti to t−1i . SinceF is a field, thenZ⊗F � F . So,H1(P̃ ;Z)⊗Z[π1(X)]
F �H1(P̃ ;Z⊗Z[π1(X)] F ) �H1(P̃ ;F ). To simplify notations, let k = (k0, . . . , kn) ∈ Zn+1 and tk = tk00 . . . t

kn
n .

In this notation, Equation 5.2 becomes 〈
α̃, β̃

〉
=

∑
k∈Zn+1

(
α̃ · (tkβ̃)

)
tk (5.3)

Lemma 5.1. The intersection product in Equation 5.3 is well-defined.

Proof. The product α̃ ·(tkβ̃) represents the algebraic intersection number of the lifts α̃ and tkβ̃. This number
is finite because the covering map X̃0→ X0 maps α̃ bijectively onto α and maps the set α∩

(⋃
k∈Zn+1 t

kβ̃
)

bijectively onto the finite set α ∩ β. Consequently, the sum in Equation 5.2 is finite. Let φ̃ = ∂(β̃) be the
boundary of some chain β̃. Then if α̃ does not intersect the boundary of φ, there is nothing to show. If α̃
intersect the boundary of φ, it does so an even number of times. Half of the intersection points have −1
signs and the other half have +1 signs. Thus,

〈
α̃, β̃

〉
= 0. This shows that the pairing is well defined.

Lemma 5.2. The intersection product in Equation 5.2 is skew hermitian. That is, let γ,η ∈H1(X̃0;F ), then

1. ⟨γ, η⟩ = −⟨η, γ⟩.

2. ⟨f γ, η⟩ = f ⟨γ, η⟩ and ⟨γ, f η⟩ = f ⟨γ, η⟩, where f 7→ f is the automorphism of F , sending ti to t−1i .

Proof. Let γ,η ∈H1(P ;F ) and f ∈ F . Then

1. We show that ⟨γ, η⟩ = −⟨η, γ⟩.

⟨γ, η⟩ =
∑
k∈Zn

(
γ · (tkη)

)
tk

=
∑
k∈Zn

(
t−kγ · η

)
tk

= −
∑
k∈Zn

(
η · (t−kγ)

)
tk

= −
∑
k∈Zn

(
η · (tkγ)

)
t−k

= −⟨η, γ⟩.
1 F and F are the same.
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2. We show that ⟨f γ, η⟩ = f ⟨γ, η⟩ and ⟨γ, f η⟩ = f ⟨γ, η⟩. It suffices to show the case when f = tr,
for r ∈ Zn+1.

⟨γ, trη⟩ =
∑
k∈Zn

(
γ · (tr+kη)

)
tk

= t−r
∑
k∈Zn

(
γ · (tr+kη)

)
tr+k

= t−r⟨γ, η⟩.

and

⟨trγ, η⟩ =
∑
k∈Zn

(
trγ · (tkη)

)
tk

= tr
∑
k∈Zn

(
γ · (tk−rη)

)
tk−r

= tr⟨γ, η⟩.

5.2.1 Understanding the intersection product on X̃j , j = 0,1

. . .

. . . . . .

u0

ui
uj

un

b
b

bb

b

x0

Figure 5.1: The space X0 with loops u0,u1, · · · ,un.

In this subsection we will understand how to compute the intersection pairing on covering space of the
punctured disk shown in Figure 5.1.

Description 5.3 (Intersection pairing of two cycles). Let q = x0 ∈ P be the basepoint and let q̃ be a fixed
lift of q to P̃ (namely, fix q̃ ∈ P̃ is such that the projection of q̃ onto the base space P is q.) Given a curve
α in P , which begins and ends at p, let α̃ be the unique lift of α to P̃ for such that α̃(0) = q̃. Then we will
have a unique tuple w(α) ∈ Zn+1 for which α̃(1) = tw(α)q̃.

From Lemma 3.10 the homology groupH1(X0;F ) is generated by the set {β̃k}nk=1 over the field F , where
β̃k = (t0 −1)ũk − (tk −1)ũ0 (represented as a closed curve which start and end at x̃0 as shown in Figure 5.2,
also denoted β̃k , k = 1, · · · ,n) and ũi is the lift of the meridian ui (which are closed curves that generate the
fundamental group of X0, see Figure 5.1) such that ũi(0) = x̃0 and ũi(1) = ti x̃0 for i = 0,1, · · · ,n.

Every element in H1(P̃ ;Z) ⊗Z[π1(X)] F � H1(X0;F ) can be written as a finite linear combination of
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˜x0

tjt0
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βi

b

b

b

t2j
˜x0

t2i
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˜x0
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˜x0
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i

˜x0

t−1
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˜x0

b

˜

βj

b

b

b

tjti
˜x0 tjtit0

˜x0

Figure 5.2: A schematic 3-dimensional view of the covering space X̃0→ X0.

the elements of the set {β̃k}nk=1. Thus, for α̃, β̃ ∈ H1(P̃ ;Z) ⊗Z[π1(X)] F write α̃ =
∑
k=1

θk β̃k , θk ∈ F and

β̃ =
∑
r=1

λr β̃r , λr ∈ F . So,

⟨α̃, β̃⟩ =
∑
k,r

θkλr⟨β̃k , β̃r⟩,

where
⟨β̃k , β̃r⟩ =

∑
p∈βk∩βr

εpt
−w(βk#pβr).

and λ 7→ λ is F -linear automorphism of F which extends tk 7→ t−k := t−k11 . . . t−knn . See pages 100 and 101
of [KT08]. Here, βk#pβr is the curve in X0 that follows βk from its beginning up to the intersection point
p, and follows βr backward from p to the beginning of βr .

α

β

b
b

x0

d2

d1

b

b

(a) Intersection of two
loops.

α

p2

b
b

x0

d2

d1

b

b

b

p1

b

β

d1

d2

(b) Path through
intersection point
p1.

p2

b

b

x0

d2

d1

b

b

b

p1

b

β

α

d1

d2

(c) Path through
intersection point
p2.

Figure 5.3: A schematic diagram showing the intersection of α and β, and their intersection points.
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For example in Figure 5.3, the algebraic intersection pairing of α and β, ⟨α,β⟩2, is computed as follows.
Fix a positive orientation {d1,d2} on X0. Referring to Figure 5.3b, start at x0 and move along α following
the yellow path until the first intersection point p1 is encountered. Now, move along β, starting from p1,
following the blue path back to x0. This forms a path ξp1 whose lift ξ̃p1 to the covering space of P is such
that ξ̃p1(0) = x̃0 and ξ̃p1(1) = ϵ(ξp1 )ξ̃p1(0) = ϵ(ξp1 )x̃0.

The next intersection point is p2. Referring to Figure 5.3b, move along α following the yellow path
until p2 is encountered, and then along β following the blue path back to x0. Let ξp2 be the completed
path; it is such that ξ̃p2(0) = x̃0 and ξ̃p2(1) = ϵ(ξp2 )ξ̃p2(0) = ϵ(ξp2 )x̃0. Repeat the process for all the other
pi ∈ α ∩ β,pi , p1,p2. Then, the intersection pairing of α and β is given as

⟨α,β⟩ =
∑

pi∈α∩β
εpiϵ

(
α′piβ

′′
pi

)
, (5.4)

where ϵ
(
α′piβ

′′
pi

)
is the product of local coefficient assigned to the intersection point pi and εpi ∈ {−1,+1}

is the sign sgn(pi) of the intersection point pi , determined by the given orientation. This concludes the
description.

b b b

b

b b b

b b

˜x0

ti
˜x0

t2
0

˜x0

tit0
˜x0 tit

2
0

˜x0

t0
˜x0

ti
˜u0

˜ui t0
˜ui

˜u0

ti
˜ui

t2i
˜x0

t2i
˜u0

t0
˜u0

t2i t0
˜u0

tit0
˜u0

t2
0

˜ui

˜

βi

(a)A 2 dimensional view of the covering
space X̃0 showing the generator β̃i .

d1

d2

u0

−tru0

x0

b

b

b

t0uj

−ui

t0ui

−uj

b

(b) A projection of the generators β̃i , β̃j
onto the punctured disk X0 under the
covering map X̃0→ X0, where r = i, j .

Figure 5.4: The generator β̃i = (t0 − 1)ũi − (ti − 1)ũ0.

Example 5.4 (Intersection pairing ⟨β̃i , β̃j⟩ ). 1. (Self-intersection, that is when i = j): Consider the (n+
1)-punctured disk X0 in Figure 5.1 and X̃ the covering space determined by ϵ : π1(X0,x0)→ ⟨tk⟩nk=0.
Fixing γ̃0, recall from Lemma 3.10 that the homology groupH1(X0;F ) is isomorphic to F n with basis
{β̃i}ni=1, where β̃i = (t0 − 1)ũi − (ti − 1)ũ0. (See Figure 5.4)

Before computing ⟨β̃i , β̃i⟩, let us first understand the diagram in Figure 5.5. In Figure 5.5a the solid
loop is βi and the dashed loop is a small perturbation of βi . The path followed by βi is l1,0l2,i l3,0l4,i ,
and the path followed by the perturbation is l′1,0l

′
2,i l
′
3,0l
′
4,i . The loops lk,i and l

′
k,i are such that ϵ(lk,j ) =

ϵ(l′k,j ) = tj . In Figure 5.5b, the intersection points are numbered 1 through 16 3.

2 The expression ⟨α,β⟩ is interpreted as tracing the path α first, followed by β.
3We follow this order for simplicity. Any order can be chosen.



5.2. THE INTERSECTION PRODUCT ON H1(P ;F ), P = Xj FOR j = 0,1 67

bb

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

d1

d2

l′
2,i

l′
4,i

l′
1,0

l′
3,0

l2,i
l1,0

l4,il3,0

x0

s

x0

b

(a) Self intersection of β̃i .

bb

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

d1

d2

x0

s

x0

b

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

16
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(c) The path through the intersection
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(d) The path through the intersection
point 2 is λ1λ2.

Figure 5.5: Self intersection points.

The self-intersection product ⟨β̃i , β̃i⟩ is computed by using Description 5.3 as follows. In Figure 5.5c,
the path through the intersection point 1 is ζ1 = l1l2l3l4, which is formed by the yellow path followed
by the red, pink and blue paths in that order. This path is such that its lift ζ̃1 satisfies ζ̃1(0) = x̃0 and
ζ̃1(1) = ϵ(ζ1)x̃0 = ϵ(l1l2l3l4)x̃0. Thus ϵ(ζ1) = ϵ(l1l2l3l4) = t0tjt−10 t−1j = 1 and the sign at 1 is −1.

Next, in Figure 5.5d the path through the intersection point 1 is ζ2 = λ1λ2, which is formed by the
yellow path followed by the blue path. Again, this path is such that its lift ζ̃2 satisfies ζ̃2(0) = x̃0 and
ζ̃2(1) = ϵ(ζ2)x̃0 = ϵ(λ1λ2)x̃0. Thus ϵ(ζ2) = ϵ(λ1λ2) = t−1i . The sign at 2 is +1.

Now, let ζ3,ζ4, · · ·ζ16 be the corresponding paths passing through the intersection points 3,4, · · · ,16
respectively. Then repeating the above process for these points, we have the following table.
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Int. pt. k sgn(k) ϵ(ζk) sgn(k)ϵ(ζk)
1 -1 1 -1
2 +1 t−1i t−1i
3 -1 t0t

−1
i −t0t−1i

4 +1 t0 t0
5 -1 t−1i −t−1i
6 +1 t0t

−1
i t0t

−1
i

7 -1 t0 −t0
8 +1 1 1

Int. pt. k sgn(k) ϵ(ζk) sgn(k)ϵ(ζk)
9 -1 t0ti −t0ti
10 +1 t0 t0
11 -1 1 −1
12 +1 ti ti
13 -1 t−10 −t−10
14 +1 1 1
15 -1 t−1i −t−1i
16 +1 t−10 t−1i t−10 t−1i

Summing up the entries of the last column, we have

⟨β̃i , β̃i⟩ =
16∑
k=1

sgn(k)ϵ (ζk) =
(t0 − 1)(ti − 1)(1− t0ti)

t0ti
.

2. (Intersection when i , j) The intersection product ⟨β̃i , β̃j⟩ of β̃i and β̃j is also computed in a similar
way using Figure 5.6 together with Description 5.3, where the yellow path is the generator βi and the
green path is the generator βj . The intersection product is
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(a) The intersection point of β̃i and β̃j
shown on the disk X0.
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(b) Numbered intersection points

Figure 5.6: Intersection points of βi and βj .

⟨β̃i , β̃j⟩ = −
(t0 − 1)(ti − 1)(tj − 1)

tj
, for i < j.

This completes the example. Thus, we have the following lemma.

Lemma 5.5 (Intersection product onX0). Consider the n-punctured diskX0 in Figure 5.1 and X̃0 the covering
space determined by ϵ : π1(X,x0)→ ⟨tk⟩nk=0. Fixing ũ0, the intersection pairing on the generators β̃1, . . . , β̃n
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of H1(X0;F ) is given by the following formulas:

⟨β̃i , β̃j⟩ =



(t0−1)(ti−1)(1−t1ti )
t0ti

, i = j (self − intersection)

− (t0−1)(ti−1)(tj−1)
tj

, i < j

− (t0−1)(ti−1)(tj−1)
t0tj

, i > j

(5.5)

where β̃m = (t0 − 1)ũm − (tm − 1)ũ0, m , 1. .

Proof. From Example 5.4 and property 1 of Lemma 5.2, we have proved that

⟨β̃i , β̃j⟩ =



(t0−1)(ti−1)(1−t0ti )
t0ti

, i = j (self − intersection)

− (t0−1)(ti−1)(tj−1)
tj

, i < j

− (t0−1)(ti−1)(tj−1)
t0tj

, i > j

The intersection product on X1 is similar to the intersection product on X0. The points and loops on X0

and X1 differ by a permutation induced by the associated string link. Thus, fixing ũ0, the formulas for the
intersection pairing on X1 is the same as Equation 5.5, with appropriate ti ’s. So, in general, the intersection
product is given by

⟨β̃i , β̃j⟩ =



(t0−1)(tT [i]−1)(1−t0tT [i])
t0tT [i]

, i = j (self − intersection)

− (t0−1)(tT [i]−1)(tT [j]−1)
tT [j]

, i < j

− (t0−1)(tT [i]−1)(tT [j]−1)
t0tT [j]

, i > j

, (5.6)

where T = {0,1, · · · ,n} is the set of labels and T [k] is the label at position k in T .Here, note that the order of
set T corresponding toX0 may differ from the order of the set T corresponding toX1 due to the permutation
induced by the string link (see the conventions in Chapter 1).

5.3 Relation between intersection product and cup product

In this section, we discuss an abstract relation between the intersection product and the cup product. Details
can be found in [Hat02].

Definition 5.6 (Cap product: [Hat02]). Let R be a ring. For an arbitrary space Y , define an R-bilinear cap
product

∩ : Ck(Y ;R)×Cl(Y ;R)→ Ck−l(Y ;R)

for k ≥ l by setting σ ∩ϕ = ϕ(σ |[v0,...,vl ])σ |[vl ,...,vk ] for a k-simplex σ : ∆k → Y and a cochain ϕ ∈ Cl(X;R).
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The definition of cap product can be extended to homology and cohomology by using representatives
of the homology and cohomology classes: ∩ :Hk(Y ;R)×H l(Y ;R)→Hk−l(Y ;R) for k ≥ l.

Definition 5.7 (Cup product: [Hat02]). Let φ ∈ Ck(Y ;R) and ψ ∈ Cl(Y ;R). The cup product φ ⌣ ψ ∈
Ck+l(Y ;R) is the cochain whose value on a singular simplex σ : ∆k+l → X is given by the formula

(φ⌣ψ)(σ ) = φ(σ |[v0,...,vk ])ψ(σ |[vk ,...,vk+l ]),

where the right-hand side is the product inR. The cup product is defined on cocycles by using representatives
of the cohomology classes:⌣:Hk(Y ;R)×H l(Y ;R)→Hk+l(Y ;R).

Theorem 5.8 (Poincaré Duality: Theorem 3.30 [Hat02]). If M is a closed Z-orientable n-manifold with
fundamental class [M] ∈ Hn(M;Z), then the map DM : Hk(M;Z) → Hn−k(M;Z) defined by DM (α) =

[M]∩α is an isomorphism for all k.

Theorem 5.9 (Lefschetz Poincaré Duality: Theorem 3.34 [Hat02]). Suppose M is a compact Z-orientable
n-manifold whose boundary ∂M is decomposed as the union of two compact (n − 1)-dimensional manifolds
A and B with a common boundary ∂A = ∂B = A∩ B. Then the map DM : Hk(M,A;Z)→ Hn−k(M,B;Z)
defined by DM (α) = [M]∩α, where [M] ∈Hn(M,∂M;Z), is an isomorphism for all k.

Setting A and B to be the empty set reduces Theorem 5.9 to Theorem 5.8 The duality theorems also hold
when we consider local coefficients. Refer to [Hat02] and [KLW01] for more details.

Applying the Poincaré Duality map to both factors in⌣:Hk(M;R)×Hn−k(M;Z)→ Z, the cup product
is the intersection ⟨ ,⟩ : Hn−k(M;Z) × Hk(M;Z) → Z. More specifically, suppose U and V are closed,
oriented submanifolds ofM , of dimensions k and n−k respectively. SupposeU andV intersect transversely,
and u =DM [U ],v =DM [V ], then ⟨u,v⟩ is the intersection number of u and v described above. If we replace
M with P̃ and tensor with the field P , then we get the intersection product define in Equation 5.2.

5.4 The homology Gassner invariant is unitary

In this section, we detail the proof of the unitarity of the homology Gassner invariant as presented in
[KLW01]. Following this, we will provide a coordinate-based example to illustrate the theorem. In what
follows, the ring R is Z.

Theorem 5.10 (Theorem 3.2 of [KLW01]). For a ∈H1(X0;F ) and b ∈H1(X1;F ), ⟨Gh(a),b⟩ = ⟨a,G−1h (b)⟩.

Before proving the theorem, let us look at the following lemmas. First of all, let us understand the
boundary X = (D2× [0,1]−L). The boundary of X is made up of the two punctured disks X0 and X1, and a
disjoint union of cylinders denoted T . Figure 5.7 shows an example of the boundary of the complement of
a 3-string link. Note that up to homotopy, all the complement of all n-string links have the same boundary.

Lemma 5.11. Hi(S1;F ) = 0 and H i(S1;F ) = 0 for i = 0,1, where F =Q(t)

Proof. The cell structure of S1 consist od a 0-cell q and a 1-cell γ . The cellular chain complex for the

universal covering of S1 is 0
∂2−−−−−→C1 = ⟨γ̃⟩

∂1−−−−−→C0 = ⟨q̃⟩
∂0−−−−−→0. Note that ∂1(γ̃) = t − 1. The chain

complex is therefore 0→ F t−1−−−−−−→F → 0 with all homology groups equal to 0. Thus Hi(S1;F ) = 0 for
i = 0,1.

A similar argument shows that the cellular cochain complex of S1 is 0→ F t−1−−−−−−→F → 0, and it has
cohomology groups H i(S1) for i = 0,1 is 0.
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Figure 5.7: The boundary of X; ∂X = X1 ⊔ T ⊔X0.

According to Lemma 5.11, H1(X0 ∪T ∪X1;F ) �H1(X0 ∪X1;F ) since H1(T ;F ) �
⊕

H1(S1;F ) = 0.

Consider the diagram of inclusions and their corresponding induced homomorphisms. We may sometimes
abuse notation by using the same symbol for both inclusion and induced maps.

X0 ∪ T ∪X1 H1(X0 ∪X1;F )

X0 X1 H1(X0;F ) H1(X1;F )

X H1(X;F )

ι ι∗

j0

i0

j1

i1

H1(−;F )

i0∗

j0∗

i1∗

j1∗

Figure 5.8: Inclusions and their corresponding induced maps

The pair (X,X0∪T ∪X1) induces a long exact sequence, part of which has been shown in the first row
of the diagram below.

H2(X,X0 ∪X1;F ) H1(X0 ∪X1;F ) H1(X;F ) H1(X,X0 ∪X1;F )

H1(X0;F )⊕H1(X1;F ) H1(X0;F )⊕H1(X1;F )

∂ ι∗

j∗=j0∗+j1∗ i∗=i0∗+i1∗

Figure 5.9: Long exact sequence

From the diagrams in Figure 5.8 and Figure 5.9, we have the following lemma

Lemma 5.12. Let a ∈ H1(X0;F ). Then there exists A ∈ H2(X,X0 ∪X1;F ) such that ∂A = a−Gh(a) if and
only if ι∗(a−Gh(a)) = 0.

Proof of Lemma 5.12. Let a ∈ H1(X0;F ). From Figure 5.8, we have the following mappings which are all
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isomorphisms.

H1(X0;F ) H1(X;F ) H1(X1;F )

a i0∗(a) Gh(a)

i0∗

Gh

i1∗

Note that (a,−Gh(a)) ∈H1(X0;F )⊕H1(X1;F ). From the first upward arrow in Figure 5.9, we have

j(a,−Gh(a)) = j0∗(a)− j1∗(Gh(a)) = a−Gh(a).

Note that the square in Figure 5.9 is commutative, that is ι∗ ◦ j∗ = i∗. Thus,

ι∗(j∗(a,−Gh(a))) = i∗(a−Gh(a)
)
= i0∗(a)− i1∗(Gh(a)) = i0∗(a)− i0∗(a) = 0

since i1∗(Gh(a)) = i0∗(a). This implies that there exists A ∈H2(X,X0∪X1;F ) such that ∂A = a−υh(a).

Now, we state the excision theorem to aid in the proof of the next lemma.

Theorem 5.13 (Excision Theorem: Theorem 2.20 [Hat02]). For subspaces A,B ⊂ Y whose interior cover Y ,
the inclusion (B,A∩B) ↪→ (Y ,A) induces isomorphisms Hn(B,A∩B)→Hn(X,A) for n.

The following lemma establishes an isomorphic relation between the homologies of the boundary ∂X
and its subspace X0 ∪X1 by excising the subpace T in ∂X.

Lemma 5.14. The maps i1∗ : H1(X0 ∪X1;F )→ H1(∂X;F ) and i2∗ : H2(X,X0 ∪X1;F )→ H2(X,∂X;F )

are injective and isomorphism respectively.

Proof. The short exact sequence 0 → C∗(X0 ∪ X1)
i1−−−−→C∗(∂X) ↠ C∗(∂X,X0 ∪ X1) → 0 ( of the pair

(∂X,X0 ∪X1), where X0 ∪X1 ⊂ ∂X ) induces a long exact sequence,

H2(∂X,X0 ∪X1;F ) H1(X0 ∪X1;F ) H1(∂X;F ) H1(∂X,X0 ∪X1;F )

H2(T ,∂T ;F ) H1(T ,∂T ;F )

H0(T ;F ) H1(T ;F )

0 0

i1∗

� Excision � Excision

� Poincare Duality � Poincare Duality ,

of the pair (∂X,X0∪X1). T deformation retract to the disjoint union of S1. By Lemma 5.11, bothH0(T ;F )

and H1(T ;F ) are 0. The long exact sequence then reduces to

0→H1(X0 ∪X1;F )
i1∗−−−−−→H1(∂X;F )→ 0.

This proves that i1 is isomorphic and hence injective. Similarly, the short exact sequence 0→ C∗(∂X,X0∪
X1)

i2−−−−→C∗(X,X0∪X1)↠ C∗(X,∂X)→ 0 of the triple (X;∂X,X0∪X1), whereX0∪X1 ⊂ ∂X ⊂ X, induces
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the following long exact sequence.

H2(∂X,X0 ∪X1;F ) H2(X,X0 ∪X1;F ) H2(X,∂X;F ) H1(∂X,X0 ∪X1;F )

H2(T ,∂T ;F ) H1(T ,∂T ;F )

H0(T ;F ) H1(T ;F )

0 0

i2∗

� Excision � Excision

� Poincare Duality � Poincare Duality ,

The same argument above shows that i2 is an isomorphism.

Remark 5.15. 1. Up to homotopy, the complement of X is a 3-manifold with a 2-dimensional manifold
boundary ∂X. SettingM = X,A = ∅ and B = ∂X in Theorem 5.9, we have the isomorphism

DX :H1(X;R)→H2(X,∂X;R),

where DX := ∩[X,∂X]

2. ∂X is a 2-dimensional manifold without boundary. Replacing X with its boundary, ∂X, we have

D∂X :H1(∂X;R)→H1(∂X;R),

where D∂X := ∩[∂X]

Now, Referring to Lemma 5.14, Theorem 5.8, Theorem 5.9 and Remark 5.15, the commutative diagram
in Figure 5.10 can be constructed. This leads us to the next lemma.

H2(X,X0 ∪X1;F ) H2(X,∂X;F ) H1(X;F )

H1(X0 ∪X1;F ) H1(∂X;F ) H1(∂X;F )

i2∗

∂ ∂

∩[X,∂X]

i3∗

i1∗ ∩[∂X]

.

Figure 5.10: A commutative diagram.

Lemma 5.16. IfM ∈H2(X,∂X;F ) and N ∈H2(X,∂X;F ), then ⟨∂M,∂N ⟩ = 0.

Proof. Let φ,ψ ∈ H1(X;F ) such that M = φ ∩ [X,∂X] and N = ψ ∩ [X,∂X]. M ∈ H2(X,∂X;F ) and
N ∈H2(X,∂X;F )

Now, from the commutative diagram in Figure 5.10, the intersection product ofM and N is computed
as follows. Note that since the fundamental class [∂X] of ∂X is bounded by that of X, then i3∗[∂X] = 0. So,

⟨∂M,∂N ⟩ := (i∗3(φ)⌣ i∗3(ψ))∩ [∂X]

= (i∗3(φ⌣ψ)∩ [∂X]

= (φ⌣ψ)∩ i3∗([∂X])

= 0.
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Corollary 5.17. Let A ∈H2(X,X0 ∪X1;F ) and B ∈H2(X,X0 ∪X1;F ). Then ⟨∂A,∂B⟩ = 0.

Proof. Referring to the commutative diagram in Figure 5.10, it is clear from Lemma 5.16 that ⟨∂A,∂B⟩ =
0.

Now, we are in a good position to prove Theorem 5.10.

Proof of Theorem 5.10. Let a ∈H1(X0;F ) and b ∈H1(X1;F ), thenwewant show that ⟨vh(a),b⟩ = ⟨a,G−1h (b)⟩.
By Lemma 5.12 there exist A ∈H2(X,X0∪X1;F ) and B ∈H2(X,X0∪X1;F ) such that ∂A = a−Gh(a) and
∂B = G−1h (b)− b.

By Corollary 5.17, ⟨∂A,∂B⟩ = 0. On the other hand,〈
∂A,∂B

〉
=

〈
a−Gh(a),−b+G−1h (b)

〉
X0∪X1

= ����:0⟨ a,−b⟩ +
〈
a,G−1h (b)

〉
X0

+ ⟨ −Gh(a),−b⟩X1
+
��������:0〈
−Gh(a),G−1h (b)

〉
=

〈
a,G−1h (b)

〉
X0
− ⟨ Gh(a),b⟩X1

.

It follows that
〈
a,G−1h (b)

〉
X0

= ⟨ Gh(a),b⟩X1

The following theorem shows that the reducedGassner invariant is unitarywith respect to the intersection
pairing on in Lemma 5.5.

Theorem 5.18 (Unitary Condition). Let L be a string link. Then the Gassner invariant

Grh(L) :H1(X0;F ) −→H1(X1;F )

satisfies
⟨ Grh(L)x,G

r
h(L)y ⟩ = ⟨ x,y ⟩ (5.7)

Proof. Equation 5.7 follows immediately from the proof of Theorem 5.10 (see Corollary 5.4) which states that
if a ∈H1(X0;F ) and b ∈H1(X1;F ), then ⟨Gh(a),b⟩ = ⟨a,G−1h (b)⟩. This shows that the Gassner invariant is
unitary.

Example 5.19 (The homology Gassner invariant of the generator σi is unitary.). In this example we
demonstrate the unitary condition of the homology Gassner invariant for the braid generators using the

formulas obtained above: Gh(Ri,j ) =
0 ti
1 1− tj

 and G(Rj,i) =
 tj−1ti 1

1
ti

0

 These formulas correspond to the

diagrams in Figure 5.11. The local coefficient system here is F = Q(t0, ti , tj ). Let η : tk 7→ 1
tk

be the map
that inverts tk . For Ri,j , the matrices corresponding to the intersection products on X0 and X1 are

(t0−1)(ti−1)(1−t0ti )
t0ti

− (t0−1)(ti−1)(tj−1)
tj

− (t0−1)(ti−1)(tj−1)
t0ti

− (t0−1)(tj−1)(t0tj−1)
t0tj

 and


(t0−1)(tj−1)(1−t0tj)

t0tj

(1−t0)(ti−1)(tj−1)
ti

(1−t0)(ti−1)(tj−1)
t0tj

(t0−1)(ti−1)(1−t0ti )
t0ti


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0 i j

j i0

(a) Ri,j .
0 j i

i j0

(b) Rj,i

Figure 5.11: Over and under crossing

respectively. So, we have

0 1

ti 1− tj



(t0−1)(tj−1)(1−t0tj)

t0tj

(1−t0)(ti−1)(tj−1)
ti

(1−t0)(ti−1)(tj−1)
t0tj

(t0−1)(ti−1)(1−t0ti )
t0ti


0 ti
1 1− tj

 //η =

(t0−1)(ti−1)(1−t0ti )

t0ti
− (t0−1)(ti−1)(tj−1)

tj

− (t0−1)(ti−1)(tj−1)
t0ti

− (t0−1)(tj−1)(t0tj−1)
t0tj

 .
Also, for Rj,i , the matrices corresponding to the intersection products on X1 and X0 are

(t0−1)(ti−1)(1−t0ti )
t0ti

− (t0−1)(ti−1)(tj−1)
tj

− (t0−1)(ti−1)(tj−1)
t0ti

− (t0−1)(tj−1)(t0tj−1)
t0tj

 and


(t0−1)(tj−1)(1−t0tj)

t0tj

(1−t0)(ti−1)(tj−1)
ti

(1−t0)(ti−1)(tj−1)
t0tj

(t0−1)(ti−1)(1−t0ti )
t0ti


respectively. So, we have

 tj−1ti 1
ti

1 0



(t0−1)(ti−1)(1−t0ti )

t0ti
− (t0−1)(ti−1)(tj−1)

tj

− (t0−1)(ti−1)(tj−1)
t0ti

− (t0−1)(tj−1)(t0tj−1)
t0tj



 tj−1ti 1

1
ti

0

 //η
 =


(t0−1)(tj−1)(1−t0tj)

t0tj

(1−t0)(ti−1)(tj−1)
ti

(1−t0)(ti−1)(tj−1)
t0tj

(t0−1)(ti−1)(1−t0ti )
t0ti

 .
This completes the example.

5.5 Alternative proof of Theorem 5.18

In this section, we present an alternative proof of the unitary condition of the homology Gassner invariant
for a string link, which relies on Theorem 4.7, utilizing the relationship between braids and string links as
presented in Lemma 4.4. We then conclude with an example demonstrating the unitary property of the
homology Gassner invariant for a string link.

Let L be a string link obtained from the partial closure of a braid β using repeated stitching operation.
Let Gβ = Grh (β) be the homology Gassner invariant of β,

Grh (β) =
(
Dn · C (β) ·D−1n

)
//ρcol //m

t

=


ρ(K) ρ(n− 1) ρ(n)

K Ξ ψ φ

n− 1 θ β α

n ϵ δ γ

 ,
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where Ξ is an (n−2)× (n−2)matrix, ψ and φ are (n−2)×1matrices and, θ and ϵ are 1× (n−2)matrices
and Z = {1,2, · · · ,n− 2} ∪ {n− 1,n} is the set of colours assigned to the strands of β.

Suppose Gβ is unitary with respect to Ω0 and Ω1, where Ω0 =


Z n− 1 n

Z βZ,Z βZ,n−1 βZ,n
n− 1 βn−1,Z βn−1,n−1 βn−1,n
n βn,Z βn,n−1 βn,n


andΩ1 =


ρ(Z) ρ(n− 1) ρ(n)

ρ(Z) βρ(Z,Z) βρ(Z,n−1) βρ(Z,n)
ρ(n− 1) βρ(n−1,Z) βρ(n−1,n−1) βρ(n−1,n)
ρ(n) βρ(n,Z) βρ(n,n−1) βρ(n,n)

 are thematrices corresponding to the intersection

products onX0 andX1 respectively, where βi,j := ⟨β̃i , β̃j⟩ (see Equation 5.5), ρ(Z) represents the permutation
of the element of Z , βρ(i,j) := ⟨β̃ρ(i), β̃ρ(j)⟩) and βZ,Z = {βi,j : i, j ∈ Z} . That is,

(Gβ//mt)Ω1 (Gβ//η) =Ω0, (5.8)

where η : tk 7→ 1
tk
. If the strand labeled ρ(n) is stitched to the strand labeled n, where ρ(n) , n, then we

will demonstrated that the homology Gassner invariant of the resulting string link is unitary. It suffices to
do this for one stitching operation.

SupposeL is the string link obtained after stitching strand ρ(n) to strandn. The entry of Gβ corresponding
to the stitching operation is Pn,ρ(n) = γ and the resulting matrix is

S(γ) =

Ξ+ 1
1−γφ · ϵ ψ + 1

1−γ δ ·φ
θ + 1

1−γα · ϵ β + 1
1−γα · δ

 // tρ(n), tn 7→ tρ(n).

The matrix S(γ) can be reproduced as a block matrix using elementary matrices as follows: a bold-faced
letter here will denote a matrix, or a vector, whose dimension depends on the context. Let

Hγ−1 = Gβ −


0 0 0

0 0 0

0 0 1

 =

Ξ ψ φ

θ β α

ϵ δ γ − 1


and let

Eφ =


1 0 −φ
0 1 0

0 0 1

 , Eα =


1 0 0

0 1 −α
0 0 1

 , E 1
γ−1

=


1 0 0

0 1 0

0 0 1
γ−1


be elementary matrices, where the block matrices

0 0
0 0

 and
1 0
0 1

 corresponds to the block matrixΞ ψ

θ β

 of Gβ . Then, notice that

Eφ·Eα ·E 1
γ−1
·Hγ−1 =


1 0 1

1−γφ

0 1 1
1−γα

0 0 1
γ−1



Ξ ψ φ

θ β α

ϵ δ γ − 1

 =

Ξ+ 1

1−γφ · ϵ ψ + 1
1−γ δ ·φ 0

θ + 1
1−γα · ϵ β + 1

1−γα · δ 0
1
γ−1ϵ

1
γ−1δ 1

 =


0
S(γ)

0
1
γ−1ϵ

1
γ−1δ 1

 .
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So,

Hγ−1 =


1 0 −φ
0 1 −α
0 0 1−γ




0
S(γ)

0
1
γ−1ϵ

1
γ−1δ 1

 (5.9)

Now, let Q =


0 0 0

0 0 0

0 0 1

. Then Gβ =Hγ−1 +Q. So, Equation 5.8 becomes

(Gβ//mt)Ω1 (Gβ//η) = ((Hγ−1 +Q) //mt)Ω1 ((Hγ−1 +Q) //η)

= (Hγ−1//m
t)Ω1 (Hγ−1//η) + (Hγ−1//m

t)Ω1Q+QΩ1(Hγ−1//η) +QΩ1Q

= Ω0. (5.10)

The last three summands on the left hand side of Equation 5.10 evaluate to the following:

(Hγ−1//m
t)Ω1Q =


Ξ//mt θ//mt ϵ//mt

ψ//mt β δ

φ//mt α γ − 1



βρ(Z,Z) βρ(Z,n−1) βρ(Z,n)
βρ(n−1,Z) βρ(n−1,n−1) βρ(n−1,n)
βρ(n,Z) βρ(n,n−1) βρ(n,n)



0 0 0

0 0 0

0 0 1


=


0 0 m1

0 0 m2

0 0 m3

 , (5.11)

where

m1 = (Ξ//tr)βZ,n + (θ//mt)βρ(n−1,n) + (ϵ//mt)βρ(n,n)

m2 = (ψ//tr)βZ,n + ββρ(n−1,n) + δβρ(n,n)

m3 = (φ//tr)βZ,n +αβρ(n−1,n) + (γ − 1)βρ(n,n),

QΩ1(Hγ−1//η) =


0 0 0

0 0 0

0 0 1



βρ(Z,Z) βρ(Z,n−1) βρ(Z,n)
βρ(n−1,Z) βρ(n−1,n−1) βρ(n−1,n)
βρ(n,Z) βρ(n,n−1) βρ(n,n)



Ξ//η ψ//η φ//η

θ//η β//η α//η

ϵ//η δ//η (γ//η)− 1


=


0 0 0
0 0 0

w1 w2 w3

 , (5.12)

where

w1 = (Ξ//η)βρ(n,Z) + (θ//η)βρ(n,n−1) + (ϵ//η)βρ(n,n)

w2 = (ψ//η)βρ(n,Z) + (β//η)βρ(n,n−1) + (δ//η)βρ(n,n)

w3 = (φ//η)βn,Z + (α//η)βρ(n,n−1) + ((γ//η)− 1)βρ(n,n),
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and

QΩ1Q =


0 0 0

0 0 0

0 0 βρ(n,n)

 . (5.13)

So, we have

(Hγ−1//tr)Ω1 (Hγ−1//η) = Ω0 − (Hγ−1//mt)Ω1Q −QΩ1(Hγ−1//η)−QΩ1Q

=


βZ,Z βZ,n−1 βZ,n
βn−1,Z βn−1,n−1 βn−1,n
βn,Z βn,n−1 βn,n

−

0 0 m1

0 0 m2

0 0 m3

−

0 0 0
0 0 0

w1 w2 w3

−

0 0 0

0 0 0

0 0 βρ(n,n)


=


βZ,Z βZ,n−1 βZ,n −m1

βn−1,Z βn−1,n−1 βn−1,n −m2

βn,Z −w1 βn,n−1 −w2 βn,n −m3 −w3 − βρ(n,n)

 . (5.14)

But from Equation 5.9,

H t
γ−1 =


1
γ−1ϵ

t

S(γ)//mt 1
γ−1δ

0 0 1



1 0 0

0 1 0

−φ −α 1−γ

 (5.15)

and

Hγ−1//η =


1 0 −φ//η
0 1 −α//η
0 0 1−γ//η




0
S(γ)//η

0
1
γ−1ϵ//η

1
γ−1δ//η 1

 . (5.16)

Notice that 
1 0 0

0 1 0

−φ −α 1−γ

Ω1


1 0 −φ//η
0 1 −α//η
0 0 1−γ//η

 =

βρ(Z,Z) βρ(Z,n−1) f1
βρ(n−1,Z) βρ(n−1,n−1) f2

f3 f4 f5

 ,
where f1, f2, f3 and f4 are entries resulting from the matrix multiplication which can be ignored. It follows
from Equation 5.14, Equation 5.15 and Equation 5.16 that

(S(γ)//mt)

 βρ(Z,Z) βρ(Z,n−1)
βρ(n−1,Z) βρ(n−1,n−1)

 (S(γ)//η) =  βZ,Z βZ,n−1
βn−1,Z βn−1,n−1

 ,
after the renaming tρ(n), tn 7→ tρ(n).That is, S(γ) // tρ(n), tn 7→ tρ(n) is unitarywith respect to thematrices βρ(Z,Z) βρ(Z,n−1)
βρ(n−1,Z) βρ(n−1,n−1)

 // tρ(n), tn 7→ tρ(n) and
 βZ,Z βZ,n−1
βn−1,Z βn−1,n−1

, which are the correspondingmatrices

for the intersection product on the spacesX1 andX0 respectively after stitching. This shows that the unitary
condition is preserved after the stitching operation. We have proved the following theorem, which is an
alternative prove of Theorem 5.18:

Theorem 5.20. Let L be an (n + 1)-string link whose strands are labeled by T = 0,1, · · · ,n . Suppose L is
the partial closure of an (n+2) braid β. If the homology Gassner invariant Gh(β) of β is unitary with respect
to the intersection products Ω0 and Ω1, then Gh(L) is also unitary with respect to the intersection products
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 βρ(Z,Z) βρ(Z,n−1)
βρ(n−1,Z) βρ(n−1,n−1)

 // tρ(n), tn 7→ tρ(n) and

 βZ,Z βZ,n−1
βn−1,Z βn−1,n−1

. □

Example 5.21 (The homologyGassner invariant ofL4 is unitary). In Example 4.6, we computed te homology
Gassner invariant of the string link L4, which is

1 2

Grh(L4) =

 t2t1−t1−2t2+1t2t1−t1−t2
(t2−1)t2
t2t1−t1−t2

t1−1
t2t1−t1−t2 − t1

t2t1−t1−t2

 .
The local efficient system here is F =Q(t0, t1, t2). Since the string link L4 induces the identity permutation,
then the matrices corresponding to the intersection products on X0 and X1 are the same: (t0−1)(t1−1)(1−t0t1)t0t1

− (t0−1)(t1−1)(t2−1)
t2

− (t0−1)(t1−1)(t2−1)
t0t1

(t0−1)(t2−1)(1−t0t2)
t0t2

 .
We have

(Grh(L4) // m
t)

 (t0−1)(t1−1)(1−t0t1)t0t1
− (t0−1)(t1−1)(t2−1)

t2

− (t0−1)(t1−1)(t2−1)
t0t1

(t0−1)(t2−1)(1−t0t2)
t0t2

 (Grh(L4) // η) =
 (t0−1)(t1−1)(1−t0t1)t0t1

− (t0−1)(t1−1)(t2−1)
t2

− (t0−1)(t1−1)(t2−1)
t0t1

(t0−1)(t2−1)(1−t0t2)
t0t2

 .
This shows that the homology Gassner invariant for the string link L4 is unitary with respect to the matrix (t0−1)(t1−1)(1−t0t1)t0t1

− (t0−1)(t1−1)(t2−1)
t2

− (t0−1)(t1−1)(t2−1)
t0t1

(t0−1)(t2−1)(1−t0t2)
t0t2

 .

5.6 A Mathematica implementation of the unitary property

In this section, we implement the unitary condition using Mathematica. Referring to the notations from
Section 3.5, we define a Mathematica function µ := ⟨−,−⟩ for the intersection product on X0 and X1. This
function takes two parameters, h[T ,L1] and h[T ,L2]. We then test the unitary condition for the homology
Gassner invariant of the braid β and the string link L4 presented below. Note that when computing the
intersection product, we do not ignore the strand labeled 0. A reader withMathematica can get the notebook
by clicking the following link: GassnerInvariantMathematicaNotebook.nb

https://drive.google.com/file/d/1gLg1aEBLqLOwptO7nfAgMmhrAIvbBkpJ/view?usp=sharing
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The intersection product

Example of intersection product on X0 and X1

2

X0

X1

0 1

20 1

Here, we compute the matrices of intersection products on X0 and X1 corresponding to the braid generator
σ1. The matrices are not equal since the induced permutation is not the identity permutation.

Here, we test the unitary condition for the homology Gassner invariant of the braid generators σ1 and σ−11

using matrices.
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Unitary property for Grh(σk), k = 1,2,3
Here, we test the unitary condition for the homologyGassner invariant of the braid generators σk , k = 1,2,3.
Note that they all evaluate to true.

Unitary property for Grh(β) Here, we compute the matrices of intersection products on X0 and X1

321

σ2

σ−1
1

σ2

β = σ2σ
−1
1

σ2

1 23

3 2 1

3 21

corresponding to the braid β. Note that the matrices are not equal since the induced permutation is not the
identity permutation. We then test the unitary condition for the homology Gassner invariant of β.
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Unitary property for Grh(L4)

1 2

Here, we compute the matrices of intersection products on X0 and X1 corresponding to the braid L4. Note
that the matrices are not equal since the induced permutation is not the identity permutation. We then test
the unitary condition for the homology Gassner invariant of L4.



Chapter 6

Concluding Remarks

The research presented in this thesis has made substantial contribution to knot theory, specifically to the
understanding of the Gassner invariant for string links and braids, and the verification of the unitary
condition. The key results can be summarized as follows:

1. Utilizing the (co)homological approach presented in [KLW01], we have derived matrices (formulas)

Gh(σi) =
0 tT [i]
1 1− tT [i+1]

 and Gc(σ−1i ) =


tT [i+1]−1
tT [i]

1
1
tT [i]

0

 ,
for both the homology and cohomologyGassner invariants base on the topological properties of string
links and braids. These matrices can be derived from each other by taking the inverse transpose in
appropriate basis, offering a wider perspective on the Gassner invariant and broadening its potential
applications.

2. We have introduced the concept of "flying cars", which assigns an invariant C(L) to a labeled (n+1)-
component string link L. We have also established a connection between the homology Gassner
invariant and of flying cars:

SLn

Matn(F ′) Matn(F ′)

C Grh

Dn(−)D−1n //ρcol //m
t

In [BNb] and [BNS13], the author introduces a tangle invariant known as Γ -Calculus, which is further
discussed in [Hal16] and [Vo18]. This invariant applies to both string links (tangles) and w-tangles
(a more generalized form of string links) and is represented as an n × n matrix. Interestingly, the
matrices derived from flying cars are transposes of those obtained from Γ -Calculus. This establishes a
connection between the homologyGassner invariant and Γ -Calculus through their respective relationships
with flying cars.

83
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3. Additionally, this thesis provides formulas for the intersection product

µ := ⟨−,−⟩ :H1(Xj ;F )×H1(Xj ;F )→F ,

defined on the cycles of the homology group H1(Xj ;F ) for j = 0,1. The formulas are:

⟨β̃i , β̃j⟩ =



(t0−1)(tT [i]−1)(1−t0tT [i])
t0tT [i]

, i = j (self − intersection)

− (t0−1)(tT [i]−1)(tT [j]−1)
tT [j]

, i < j

− (t0−1)(tT [i]−1)(tT [j]−1)
t0tT [j]

, i > j

,

Recall that in [Abd97] and [BN14], the authors explicitly define different Hermitian matrices to prove
the unitary condition, but they do not provide details on how these matrices were derived. In contrast,
we have not only provided formulas that define Hermitian matrices, but we have also demonstrated
their natural origins. The cup product offers an even more natural method to obtain a Hermitian
matrix, presenting an area for further exploration.

4. Furthermore, we have confirmed that the homology Gassner invariant is unitary with respect to the
Hermitian matrices derived from the intersection product. This verification opens new avenues for
exploring the analytic properties of the Gassner invariant.

In conclusion, the findings of this research not only enhance our understanding of the Gassner invariant
and its computation, but also offer the flexibility to work with either the homology or cohomology Gassner
invariant. The provided formulas facilitate the use of computer programs to simplify computations. The
insights gained from this thesis hold the potential to inspire and guide future advancements in the field.
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