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Definition: A group G is finitely generated if there exist finitely many g1, g2, . . . , gn such that G =
⟨g1, g2, . . . , gn⟩.

Theorem 1. If M is a finitely generated Abelian group, then there exists nonnegative integers r, si and
primes pi, i = 1, 2, . . . , k such that

M ∼= Zr ×
k∏

i=1

Z/psii Z

Furthermore, r is unique, and the pairs (pi, si) are unique up to permutation.

Definition: For a possibly infinite set X, ZX := {f : X → Z : support f is finite}, that is, the set of
all functions f : X → Z such that f maps only finitely many elements of X to nonzero elements of Z. It is
easy to check that ZX is an Abelian group, where the operation is function addition. In practice, we denote
elements of ZX by v, and its x-th coordinate v(x) by vx as in the ordinary case.

Definition: Let X,Y be sets, a Y ×X-matrix in Z is a function A : Y ×X → Z, (y, x) → Ay,x. Fixing
x ∈ X, A·,x is a function that takes y, that is, in ZY . We can think of it as the column of the matrix. We
denote the set of all column-finite (the support of A·,x is finite for each x ∈ X) Y × X-matrices in Z by
MY×X(Z).

Just like in the ordinary case, A induces the multiplication by A map, A : ZX → ZY ,

Av =
∑
x∈X

A·,xvx

The multiplication by A map is a homomorphism because

A(v1 + v2) =
∑
x∈X

A·,x(v1 + v2)x

=
∑
x∈X

A·,x(v1)x +
∑
x∈X

A·,x(v2)x

= Av1 +Av2

Definition: Given A ∈ MY×X(Z), we define

MA = ZY /im A

(we can do this since ZY is Abelian)

Lemma 1. If M is a finitely generated Abelian group, then M ∼= MA for some A ∈ MG×X(Z), where G is
finite.

Proof. Pick G to be a finite set of generators of M , define πG : ZG → M by πG(v) =
∑

g∈G vgg. It is clear
that πG is a homomorphism (we used the fact that M is Abelian here), and since G is a set of generators,
πG is surjective, so

M ∼= ZG/ kerπG
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by the first isomorphism theorem.

Now let X be a set of generators 1 of kerπG, and define πX : ZX → ZG by

πX(u) =
∑
x∈X

uxx

But then πX is multiplication by the matrix A ∈ MG×X(Z), given by

A·,x = x

Indeed,

πX(u) =
∑
x∈X

uxx

=
∑
x∈X

xux

=
∑
x∈X

A·,xux

= Au

It is clear that kerπG = im πX = im A, so

M ∼= ZG/im A = MA

Proposition 1. Let A ∈ MG×X(Z). If G = G1 ∪G2, X = X1 ∪X2 are partitions of X,G respectively, and
that A is 0 outside of G1 ×X1 and G2 ×X2, then

MA
∼= MA1

×MA2

where A1, A2 are the restrictions of A to G1 ×X1, G2 ×X2 respectively.

Remark 1.1. In this case we write A = A1 ⊕ A2. We can interpret this as A being block-diagonal, with
block matrices A1, A2.

Proof. Define ϕ : MA1 ×MA2 → MA by

ϕ(uim A1, vim A2) = (u, v)im A

where (u, v) ∈ ZG1∪G2 = ZG, (u, v) : G → Z is

(u, v)g =


ug, g ∈ G1

vg, g ∈ G2

In fact, we can write (v, u) instead of (u, v), since the set G is not ordered. We make the analogous definition
for (w1, w2) ∈ ZX1∪X2 = ZX .

We now verify that ϕ is an isomorphism.

1X is not necessarily finite even though ZG is finitely generated: Who said a subgroup of a finitely generated group must
be finitely generated?
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(i) ϕ is well-defined since if (u1im A1, v1im A2) = (u2im A1, v2im A2), then u1 − u2 ∈ im A1, v1 − v2 ∈
im A2, for some w1 ∈ ZX1 , w2 ∈ ZX2 , we have u1 − u2 = A1w1, v1 − v2 = A2w2 and hence

(u1, v2)− (u2, v2) = (u1 − u2, v1 − v2)

= (A1w1, A2w2)

= A(w1, w2)

∈ im A

hence (u1, v1)im A = (u2, v2)im A.

(ii) Repeating the same argument as above but in the reverse direction shows that ϕ is injective.

(iii) ϕ is clearly surjective.

(iv) ϕ is clearly a homomorphism.

Hence ϕ is an isomorphism, completing the proof.

Proposition 2. Let A ∈ MG×X(Z). If A′ = PAQ, where P ∈ MG×G(Z), Q ∈ MX×X(Z) are both invertible
(in MG×G(Z),MX×X(Z) respectively), then

MA
∼= MA′

Proof.

ZX ZG ZG/im A

ZX ZG ZG/im A′

A π

P

A′ π

Q

Define ϕ : ZG/im A → ZG/im A′ by

ϕ(vim A) = Pvim A′

(i) ϕ is well-defined. If v1im A = v2im A, then for some w ∈ ZX , we have

v1 − v2 = Aw

Pv1 − Pv2 = PAw

Pv1 − Pv2 = PAQw′ for some w ∈ ZX (1)

Pv1im A′ = Pv2im A′

we can do (1) because Q is invertible.

(ii) Similarly, ϕ is injective. Indeed, if Pv1im A′ = Pv2im A′, then

Pv1 − Pv2 ∈ im A′

P (v1 − v2) = PAQw, for some w ∈ ZX

v1 − v2 = AQw (2)

v1im A = v2im A

we can do (2) because P is invertible.

(iii) Since P is surjective, ϕ is clearly surjective.

(iv) Clearly ϕ is a homomorphism.

We conclude that ZG/im A ∼= ZG/im A′, that is, MA
∼= MA′ .
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Just like ordinary matrices, we can perform row/column operations on a matrix A ∈ MG×X(Z). For
example, if A′ is obtained from A by adding 3 times column x1 to column x2, then A′

·,x2
= A·,x2 + 3A·,x1 .

What’s different is that now we might add a column to infinitely many others at once.

Proposition 3. Let A ∈ MG×X(Z), then we can add an integer multiple of column/row to another by
multiplying an invertible Q ∈ MX×X(Z)/P ∈ MG×G(Z) on the right/left. We can also add multiples of a
column to possibly infinitely many other columns all at once by doing the same.

Proof. Suppose we want to add cα ∈ Z times column A·,x0
to columns A·,xα

, for α ∈ Λ a possibly infinite
set, all at once, consider the matrix Q ∈ MX×X(Z) given by

Qx,x′ =



1, x = x′

cα, x = x0, x
′ = xα

0, otherwise

It is easy to verify that Q does the desired column operation, it remains to verify that Q is invertible. In
fact, it is also easy to verify that the inverse of Q is given by

Q−1
x,x′ =



1, x = x′

−cα, x = x0, x
′ = xα

0, otherwise

both Q and Q−1 are in MX×X(Z).

The row case are left to the readers as an exercise.

We can now prove the original theorem, which classifies all finitely generated Abelian group.

Proof. Let M be a finitely generated Abelian group, then M ∼= MA for some A ∈ MG×X(Z) where G is
finite, say it has order |n|, by Lemma 1.

Consider the collection C = {PAQ : P ∈ Mg×g(Z), Q ∈ MX×X(Z) both invertible}. Let A1 ∈ C be such
that (A1)g1,x1 is positive but smallest among all other entries in all matrices in the collection C, for some
g1 ∈ G, x1 ∈ X. Such A1 must exist, otherwise A is clearly the zero matrix, MA = ZG/{0} ∼= Zn and we are
done.

Now all entries in the same row or column as (A1)g1,x1 is a multiple of (A1)g1,x1 , otherwise, performing
a row/column operation, which corresponds to multiplications of invertible matrices on the left/right by
Proposition 3, we can make some entry even smaller but remain positive as the remainder of the division
algorithm, which contradicts the minimality of (A1)g1,x1

. Without loss of generality, we will assume that
(A1)g1,x1

is the only nonzero entry in its column, since we can eliminate all others by performing either a
finite row operation, or a possibly infinite column operation, by multiplication of invertible matrices on the
left/right.

But then A1 = ((A1)g1,x1
)⊕A2 for some A2 ∈ MG\{g1}×X\{x1}(Z). It is easy to verify that

M((A1)g1,x1 )
∼= Z/(A1)g1,x1

Z

hence
MA1

∼= Z/(A1)g1,x1
Z×MA2
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that is,
MA

∼= Z/(A1)g1,x1Z×MA2

by Proposition 2. Repeating this process, if the process stops somewhere, that is, some Ak is the zero matrix,
then

MA
∼= Z/(A1)g1,x1

Z× · · · × Z/(An−k)gn−k,xn−k
Z× Zk

otherwise we have
MA

∼= Z/(A1)g1,x1
Z× · · · × Z/(An)gn,xn

Z

which is essentially the same form.

Anyways, we have

MA
∼= Zr ×

l∏
i=1

Z/(Ai)gi,xi
Z

for some nonnegative l, r and positive (Ai)gi,xi ’s. But previously we proved a theorem that says if (a, b) = 1,
then Z/aZ× Z/bZ ∼= Z/abZ. Hence we have the desired representation

M ∼= MA
∼= Zr ×

k∏
i=1

Z/psii Z

The uniqueness of this representation is a homework question.
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