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Definition: A group G is finitely generated if there exist finitely many g1, gs,...,gn such that G =
<glagQ7 e 7gn>
Theorem 1. If M is a finitely generated Abelian group, then there exists nonnegative integers r,s; and
primes p;, 1 = 1,2,...,k such that

M =77 x HZ/ple
i=1

Furthermore, r is unique, and the pairs (p;, s;) are unique up to permutation.

Definition: For a possibly infinite set X, ZX := {f : X — Z : support f is finite}, that is, the set of
all functions f : X — Z such that f maps only finitely many elements of X to nonzero elements of Z. It is

easy to check that Z¥ is an Abelian group, where the operation is function addition. In practice, we denote
elements of ZX by v, and its z-th coordinate v(z) by v, as in the ordinary case.

Definition: Let X,Y be sets, a ¥ x X-matrix in Z is a function A: Y x X — Z, (y,z) - A, .. Fixing
r € X, A, is a function that takes y, that is, in Z¥. We can think of it as the column of the matrix. We
denote the set of all column-finite (the support of A. , is finite for each x € X) Y x X-matrices in Z by

My« x(Z).

Just like in the ordinary case, A induces the multiplication by A map, A : ZX — ZY,

Av = Z A. Vs

rzeX

The multiplication by A map is a homomorphism because

’01+’U2 ZA 'U1+’l)2

zeX

=Y A1)+ D> Aa(va)e
zeX zeX

= Avq + Avy

Definition: Given A € My« x(Z), we define
My =7Y/im A
(we can do this since Z¥ is Abelian)

Lemma 1. If M is a finitely generated Abelian group, then M = My for some A € Maxx(Z), where G is
finite.

Proof. Pick G to be a finite set of generators of M, define 7g : Z¢ — M by ng(v) = dea vgg. It is clear
that g is a homomorphism (we used the fact that M is Abelian here), and since G is a set of generators,
T is surjective, so

M = 7%/ kerng



by the first isomorphism theorem.

Now let X be a set of generators ! of ker 7, and define 7y : ZX — Z& by

mx(u) = Z Ugp®

zeX

But then 7x is multiplication by the matrix A € Mg« x(Z), given by

A=z

3

Indeed,

mx(u) = Z Ugp X

zeX

:5 TUy

zeX

= Z A puy

zeX

= Au

It is clear that ker mg = im wx = im A, so

M =7%/im A= My

O

Proposition 1. Let A € Mgxx(Z). If G = G1 UGy, X = X1 U Xy are partitions of X, G respectively, and

that A is 0 outside of G1 X X1 and G x X, then

MAEMAl XMA2

where Ay, As are the restrictions of A to G1 x X1, G X X5 respectively.

Remark 1.1. In this case we write A = A1 & As. We can interpret this as A being block-diagonal, with

block matrices Ay, As.

Proof. Define ¢ : M4, x My, — M4 by

¢(uim Ap,vim Ay) = (u,v)im A

where (u,v) € ZF1Y92 = 7C (u,v) : G — Z is

g€ Gy

g € Ga

In fact, we can write (v, u) instead of (u,v), since the set G is not ordered. We make the analogous definition

for (wy,wsy) € ZX1VX2 = 72X,

We now verify that ¢ is an isomorphism.

1X is not necessarily finite even though Z€ is finitely generated: Who said a subgroup of a finitely generated group must

be finitely generated?



(i) ¢ is well-defined since if (ujim Aj,viim As) = (ugim Ap,veim Ay), then ug — ug € im Ay, v — vg €
im As, for some wy € ZX1, wy € ZX2, we have uy — ug = Ajwy,v1 — vg = Asws and hence

(u1,v2) — (uz,v2) = (U1 — uz,v1 — va)

= (Alwla Azwz)

= A(wl, ’U)g)

€im A

hence (u1,v1)im A = (ug, ve)im A.

(ii) Repeating the same argument as above but in the reverse direction shows that ¢ is injective.
(iii) ¢ is clearly surjective.
(iv) ¢ is clearly a homomorphism.

Hence ¢ is an isomorphism, completing the proof. O

Proposition 2. Let A € Mgxx(Z). If A’ = PAQ, where P € Mgxa(Z),Q € Mxxx(Z) are both invertible
(in Maxa(Z), Mxxx(Z) respectively), then

Ma 22 Ma,

Proof.
7X 2,76 ™ 5 78 /im A

QT Pi
72X A 76 T 76 fim A
Define ¢ : Z¢ /im A — Z% /im A’ by
¢(vim A) = Pvim A’
(i) ¢ is well-defined. If v;im A = voim A, then for some w € Z¥, we have

v — vy = Aw
P’Ul — P’Ug = PAw
Puv; — Pvg = PAQuw' for some w € ZX (1)
Puviim A’ = Pugim A’
we can do (1) because @ is invertible.
(ii) Similarly, ¢ is injective. Indeed, if Pvyim A" = Puvgim A’ then
Pvy — Pvy € im A
P(vy —v3) = PAQw, for some w € Z~
v1 — U9 = AQuw (2)
viim A = voim A
we can do (2) because P is invertible.
(iii) Since P is surjective, ¢ is clearly surjective.

(iv) Clearly ¢ is a homomorphism.

We conclude that Z/im A = Z /im A’, that is, M4 = M. 0O



Just like ordinary matrices, we can perform row/column operations on a matrix A € Mgxx(Z). For
example, if A’ is obtained from A by adding 3 times column z; to column zo, then A’ , = A ., +34.,,.
What’s different is that now we might add a column to infinitely many others at once.

Proposition 3. Let A € Mgxx(Z), then we can add an integer multiple of column/row to another by
multiplying an invertible Q € Mxxx(Z)/P € Mgxa(Z) on the right/left. We can also add multiples of a
column to possibly infinitely many other columns all at once by doing the same.

Proof. Suppose we want to add ¢, € Z times column A. ,, to columns A. ,_, for & € A a possibly infinite
set, all at once, consider the matrix @ € Mxxx(Z) given by

1, z=2a

— /
QI,JE’ - Coy T =T0,T = Ty

0, otherwise

It is easy to verify that @) does the desired column operation, it remains to verify that @ is invertible. In
fact, it is also easy to verify that the inverse of () is given by

1, z=u1x
-1
Quu =94 —Cas T=10,2 =4
0, otherwise
both Q and Q! are in Mxxx(Z).
The row case are left to the readers as an exercise. O

‘We can now prove the original theorem, which classifies all finitely generated Abelian group.

Proof. Let M be a finitely generated Abelian group, then M = M4 for some A € Mgy x(Z) where G is
finite, say it has order |n|, by Lemma 1.

Consider the collection C = {PAQ : P € Myy4(Z),Q € Mxxx(Z) both invertible}. Let A; € C be such
that (A1)g, o, is positive but smallest among all other entries in all matrices in the collection C, for some
g1 € G,y € X. Such A; must exist, otherwise A is clearly the zero matrix, M4 = Z%/{0} = Z" and we are
done.

Now all entries in the same row or column as (A1), 4, is a multiple of (A1), 4,, otherwise, performing
a row/column operation, which corresponds to multiplications of invertible matrices on the left/right by
Proposition 3, we can make some entry even smaller but remain positive as the remainder of the division
algorithm, which contradicts the minimality of (A1)g, 2, Without loss of generality, we will assume that
(A1)g, «, is the only nonzero entry in its column, since we can eliminate all others by performing either a
finite row operation, or a possibly infinite column operation, by multiplication of invertible matrices on the
left /right.

But then A; = ((A1)g,,2,) ® Az for some As € M 14,1 x x\{2:}(Z). It is easy to verify that

M(Ar)gy0) =L/ (A1) g1 01 L

g91,%1

hence

Ma, = Z/(Al)gl,ﬁclz X MA2

1



that is,
My = Z/(Al)gl,ﬂilz X Ma,

by Proposition 2. Repeating this process, if the process stops somewhere, that is, some Ay, is the zero matrix,
then

Ma=7/(A)g e Z % - x L) (An_y) Z x Z¥

In—k:Tn—k
otherwise we have
MA = Z/(Al)glawlz Koo X Z/(An)gannZ

which is essentially the same form.

Anyways, we have
1

Ma=Z" x [[Z/(A)g, . Z

i=1
for some nonnegative [, and positive (4;)g, »,’s. But previously we proved a theorem that says if (a,b) = 1,
then Z/aZ x Z/bZ = 7. /abZ. Hence we have the desired representation

k
M= Ms27" x HZ/pfiZ
i=1

The uniqueness of this representation is a homework question. O



