

This handout is to be read twice: First read red only, to ascertain that everything in red is easy and boring. Then read black and red, to actually understand the proof.

Theorem. The alternating group A_n is simple for $n \neq 4$. **Remark.** Easy for $n \leq 3$ and false for n = 4 as there is a $\phi: A_4 \to A_3$ (see below). So we assume that $n \geq 5$.

Reminder (from HW3). Two permutations in S_n are conjugate iff the sequences of lengths of cycles in their cycle decompositions are the same (up to a permutation of these lengths).

Lemma 1. Every element of A_n is a product of 3-cycles. *Proof.* Every element of A_n is a product of an even number of 2-cycles, and (12)(23) = (123) and (12)(34) = (123)(234).

Lemma 2. If $N \triangleleft A_n$ contains a 3-cycle, then $N = A_n$. Proof. WLOG, $(123) \in N$. Then for all $\sigma \in S_n$, $(123)^{\sigma} \in A_n$. Indeed, if $\sigma \in A_n$, this is clear. Otherwise $\sigma = (12)\sigma'$ with $\sigma' \in A_n$, and then as $(123)^{(12)} = (123)^2$, we have that $(123)^{\sigma} = (123)^{(12)\sigma'} = ((123)^2)^{\sigma'} \in N$. And so N contains all the 3-cycles, and so by Lemma 1, $N = A_n$. \square Proof of the Theorem. We now assume that $N \triangleleft A_n$ is not trivial, and check a few cases. In each case we find that $N = A_n$:

Case 1. N contains an element whose cycle decomposition has a cycle of length ≥ 4 .

```
Resolution. \sigma = (123456)\sigma' (with \sigma' fixing 1,2,3,4,5,6) implies \sigma^{-1}\sigma^{(123)} = (236) \in N. \square

Case 2. N contains an element with two cycles of length 3. Resolution. \sigma = (123)(456)\sigma' implies \sigma^{-1}\sigma^{(124)} = (12436) \in N. \square

Case 3. N contains \sigma = (123) \cdot (\text{disjoint 2-cycles}). Resolution. \sigma^2 = (132) \in N. \square

Case 4. N contains a disjoint product of 2-cycles. Resolution. \sigma = (12)(34)\sigma' \in N implies \sigma^{-1}(123)\sigma(123)^{-1} = (13)(24) = \tau \in N implies \tau^{-1}(125)\tau(125)^{-1} = (13452) \in N.
```

```
{p0, p1, p2, p3} = {(0, 0, 0), (0, 1, 1), {1, 0, 1}, {1, 1, 0}};
tube[a_, b_] := Tube[{a, b}, .1];
ImageCrop@Graphics3D[{
      {Red, tube[p0, p1], tube[p2, p3]},
      {Green, tube[p0, p2], tube[p1, p3]},
      {Blue, tube[p0, p3], tube[p2, p1]}
}, ViewPoint → {7, 6, 4}, Boxed → False]
```