

This is a preview of what students will see when they are submitting the assignment. Interactive features are disabled.

Homework Assignment 11

Solve and submit your solutions of the following problems. Note also that the late policy is very strict - you will lose 5% for each hour that you are late. In other words, please submit on time!

Due date

Friday, January 23, 2026 11:59 pm (Eastern Standard Time)

Late penalty

5% deducted per hour

Q1 (10 points)

Let q and p be primes in a PID R such that $p \not\sim q$, let \hat{p} denote the operation of "multiplication by p ", acting on any R -module M , and let s and t be positive integers. On each of the R -modules R , $R/\langle q^t \rangle$, and $R/\langle p^t \rangle$, determine $\ker \hat{p}^s$ and $\text{Im } \hat{p}^s$.

Q2 (15 points)

Definition. The "rank" of a module M over a commutative domain R is the maximal number of R -linearly-independent elements of M . (Linear dependence and independence is defined as in vector spaces).

Definition. An element m of a module M over a commutative domain R is called a "torsion element" if there is a non-zero $r \in R$ such that $rm = 0$. Let $\text{Tor } M$ denote the set of all torsion elements of M . A module M is called a "torsion module" if $M = \text{Tor } M$.

Let M be a module over a commutative domain R .

- Show that $\text{Tor } M$ is always a submodule of M .
- Suppose that M has rank n and that x_1, \dots, x_n is a maximal set of linearly independent elements of M . Show that $\langle x_1, \dots, x_n \rangle$ is isomorphic to R^n and that $M/\langle x_1, \dots, x_n \rangle$ is a torsion module.
- Conversely show that if M contains a submodule N which is isomorphic to R^n for some n , and so that M/N is torsion, then the rank of M is n .

Q3 (10 points)

Show that the ideal $\langle 2, x \rangle$ in $R = \mathbb{Z}[x]$, regarded as a module over R , is finitely generated but cannot be written in the form $R^k \oplus \bigoplus R/\langle p_i^{s_i} \rangle$.

Q4 (10 points)

Let M and N be modules over a ring R . In class we've defined their direct sum, $M \oplus N$. The purpose of this exercise is to give a "functional" definition of the direct sum, namely, a definition in terms of the properties that $M \oplus N$ ought to have, instead of the "constructive" definition that was given in class.

Definition An "abstract direct sum" of M and N is a triple $(S, \alpha : M \rightarrow S, \beta : N \rightarrow S)$ consisting of a module S and two morphisms α and β as indicated, such that whenever there is a triple $(P, a : M \rightarrow P, b : N \rightarrow P)$ there is a unique $\lambda : S \rightarrow P$ such that $a = \lambda \circ \alpha$ and $b = \lambda \circ \beta$.

- Prove that $M \oplus N$, along with the obvious inclusions $\alpha : M \rightarrow M \oplus N$ and $\beta : N \rightarrow M \oplus N$, is an abstract direct sum of M and N .
- Show that the abstract direct sum of M and N is unique. Namely, show that if $(S, \alpha : M \rightarrow S, \beta : N \rightarrow S)$ and $(S', \alpha' : M \rightarrow S', \beta' : N \rightarrow S')$ are both abstract direct sums of M and N , then S and S' are isomorphic.