This is a preview of what students will see when they are submitting the assignment. Interactive features are disabled.

Homework Assignment 5

Solve and submit your solutions of the following problems. Note that the questions are not of equal values. Note also that the late policy is very strict - you will lose 5% for each hour that you are late. In other words, please submit on time!

Due date

Friday, October 17, 2025 11:59 pm (Eastern Daylight Time)

Late penalty

5% deducted per hour

Q1 (10 points)

Recall that if H < G, the *index of H* in G is (G : H) := |G/H|.

Let G be a group and H_1 and H_2 be finite-index subgroups of G. Show that $H_1 \cap H_2$ is also of finite index in G and that $(G: H_1 \cap H_2) \leq (G: H_1)(G: H_2)$.

Hint. Might it be true that $g(H_1 \cap H_2) = (gH_1) \cap (gH_2)$? If so, so what?

Q2 (10 points)

Let G be a group and let H be a subgroup of finite index. Prove that there is a normal subgroup N of G, contained in H, so that (G:N) is also finite. (Hint: Let (G:H)=n and find a morphism $G\to S_n$ whose kernel is contained in H.)

Q3 (10 points)

If p is a prime, a p-group means "a group whose order is a power of p".

Let G be a finite group and p be a prime. Show that if H is a p-subgroup of G, then $(N_G(H):H)$ is congruent to (G:H) mod p. You may wish to study the action of H on G/H by multiplication on the left.

Q4 (15 points)

For each of the following G sets X, find all of the orbits \mathcal{O}_i , verify that $|X| = \sum_i |\mathcal{O}_i|$, and write each orbit \mathcal{O}_i as a coset space G/H_i :

- 1. $G = S_3$, $X = \underline{3}^2$ with $\sigma((i, j)) = (\sigma i, \sigma j)$. (Recall that $\underline{3} = \{1, 2, 3\}$).
- 2. $G = S_3$, $X = \underline{3}^3$ with $\sigma((i, j, k)) = (\sigma i, \sigma j, \sigma k)$.
- 3. $G = S_n$, $X = 2^n = \mathcal{P}(\underline{n})$, with the obvious action of permutations on subsets.

Q5 (15 points)

- 1. Let X be a transitive G-set, let $x, y \in X$ and let $g \in G$ and assume that gx = y. Prove that $\mathrm{Stab}_X(x) = \mathrm{Stab}_X(y)^g$.
- 2. Recall that a morphism $\phi: X \to Y$ between G-sets X and Y is a function $\phi: X \to Y$ that satisfies $g\phi(x) = \phi(gx)$ for every $g \in G$ and every $x \in X$. Let X and Y be two transitive G-sets, and let $x_0 \in X$ and $y_0 \in Y$. Show that there is a morphism $\phi: X \to Y$ of G-sets that satisfies $\phi(x_0) = y_0$ if and only if $\operatorname{Stab}_X(x_0) < \operatorname{Stab}_Y(y_0)$.
- 3. For a G-set X, let $\operatorname{Aut}(X)$ denote the set of all invertible morphisms $\phi\colon X\to X$. Let X be the transitive G-set G/H, for some H< G. Show that for every $x,y\in X$ there is a $\phi\in\operatorname{Aut}(X)$ such that $\phi(x)=y$ if and only if H is normal in G. In other words, the action of $\operatorname{Aut}(X)$ on X is transitive iff $H\vartriangleleft X$.

Ready to submit?

- Please ensure all pages are in order and rotated correctly before you submit
- You will not be able to resubmit your work after the due date has passed.

