Homework Assignment 3

Solve and submit your solutions of the following problems. Note that the late policy is very strict - you will lose 5% for each hour that you are late. In other words, please submit on time!

Due date

Friday, October 3, 2025 11:59 pm (Eastern Daylight Time)

Late penalty

5% deducted per hour

Q1 (10 points)

- 1. A permutation $\sigma \in S_n$ has a cycle decomposition consisting of k cycles, of lengths l_1, \ldots, l_k . What is the order of σ ?
- 2. What is the smallest n for which S_n contains an element of order 18?
- 3. What is the maximal order of an element in S_{13} ? In S_{26} ?

Not for credit, and not so easy: If you're in the mood, figure out and plot the maximal order of an element in S_n as a function of n.

Q2 (10 points)

- 1. Let $\sigma, \tau \in S_n$ be permutations, and assume that σ has a cycle decomposition $\sigma = (a_{11}, a_{12}, \ldots, a_{1l_1})(a_{21}, a_{22}, \ldots, a_{2l_2}) \cdots (a_{k1}, a_{k2}, \ldots, a_{kl_k}).$ Prove that the cycle decomposition of $\sigma^{\tau} = \tau^{-1} \sigma \tau$ is $(\tau^{-1}a_{11}, \tau^{-1}a_{12}, \ldots, \tau^{-1}a_{1l_1})(\tau^{-1}a_{21}, \tau^{-1}a_{22}, \ldots, \tau^{-1}a_{2l_2}) \cdots (\tau^{-1}a_{k1}, \tau^{-1}a_{k2}, \ldots, \tau^{-1}a_{kl_k}).$
- 2. Prove that two permutations σ_1 and σ_2 in S_n are conjugate iff the sequences of lengths of cycles in their cycle decompositions are the same (up to a permutation of these lengths).

Q3 (10 points)

- 1. Define a relation on permutations in S_n by $\sigma_1 \sim \sigma_2$ if σ_1 is a conjugate of σ_2 . Show that \sim is an equivalence relation.
- 2. We call the equivalence classes for the relation \sim "the conjugacy classes of S_n ". How many conjugacy classes are there in S_2 ? In S_3 ? In S_4 ? In S_5 ?

Q4 (10 points)

Let $\sigma \in G = S_{20}$ be a permutation whose cycle decomposition consists of one 5-cycle, two 3-cycles, and one 2-cycle. What is the order of the centralizer of σ , $C_G(\sigma) := \{\tau \in G : \sigma\tau = \tau\sigma\}$.

Q5 (10 points)

Let H be a subgroup of index 2 in a group G. Show that H is normal in G.

Hint. There's $G/H = \{gH : g \in G\}$, and there's $H \setminus G = \{Hg : g \in G\}$.

Q6 (10 points)

- 1. A group G is called *cyclic* if it is generated by a single element inside G. In other words, if there is a single element $a \in G$ whose set of powers, positive and negative, is G. Show that if G is cyclic then it is isomorphic either to \mathbb{Z} or to \mathbb{Z}/n for some n
- 2. Show that if G/Z(G) is cyclic then G is Abelian. (Recall that Z(G) is the centre of G, the set of all elements in G that commute with all elements of G).

Ready to submit?

 \rightarrow

Please ensure all pages are in order and rotated correctly before you submit

 \rightarrow

You will not be able to resubmit your work after the due date has passed.

