Theorem. Let R be a commutative ring, let $A \in M_{n \times n}(R)$ be a matrix and let $\chi_A(t) := \det(tI - A)$ be the characteristic polynomial of A. Then $\chi_A(A) = 0$.

Froof. Substitute A into t in $\det(tI - A)$, get $\chi_A(A) = \det(AI - A) = \det(0) = 0$.

Alas, the same froof also froves that $\rho_A(A) = 0$, where $\rho_A(t) := \operatorname{tr}(tI - A)$, and indeed, evaluation does not commute with taking the determinant.

Proof of Theorem. For any matrix M over any commutative ring there is "the adjugate matrix $\operatorname{adj}(M)$ of M", defined using the minors of M, which satisfies $\det(M)I = (\operatorname{adj} M)M$. Use this with M = tI - A, over the ring R[t],

and find that in the ring $M_{n\times n}(R[t])$ we have

$$\chi_A(t)I = \det(tI - A)I = (\operatorname{adj}(tI - A))(tI - A).$$

Now note that the ring $M_{n\times n}(R[t])$ is isomorphic to the ring $M_{n\times n}(R)[t]$, and on the latter there is a linear "evaluation at t=A" map $\operatorname{ev}_A \colon M_{n\times n}(R)[t] \to M_{n\times n}(R)$, defined by "putting A to the right of all the coefficients"; namely, by $\sum B_k t^k \mapsto \sum B_k A^k$. This evaluation map ev_A is not multiplicative, but nevertheless it annihilates anything that has a right factor of (tI-A) (exercise!). Hence under ev_A the above equality becomes $\chi_A(A)I=0$.

Dror Bar-Natan: Classes: 2025-26: MAT 347 Groups, Rings, Fields:

The Cayley-Hamilton Theorem

http://drorbn.net/25-347

Theorem. Let R be a commutative ring, let $A \in M_{n \times n}(R)$ be a matrix and let $\chi_A(t) := \det(tI - A)$ be the characteristic polynomial of A. Then $\chi_A(A) = 0$.

Froof. Substitute A into t in $\det(tI - A)$, get $\chi_A(A) = \det(AI - A) = \det(0) = 0$.

Alas, the same froof also froves that $\rho_A(A) = 0$, where $\rho_A(t) := \operatorname{tr}(tI - A)$, and indeed, evaluation does not commute with taking the determinant.

Proof of Theorem. For any matrix M over any commutative ring there is "the adjugate matrix $\operatorname{adj}(M)$ of M", defined using the minors of M, which satisfies $\det(M)I = (\operatorname{adj} M)M$. Use this with M = tI - A, over the ring R[t],

and find that in the ring $M_{n\times n}(R[t])$ we have

$$\chi_A(t)I = \det(tI - A)I = (\operatorname{adj}(tI - A))(tI - A).$$

Now note that the ring $M_{n\times n}(R[t])$ is isomorphic to the ring $M_{n\times n}(R)[t]$, and on the latter there is a linear "evaluation at t=A" map $\operatorname{ev}_A \colon M_{n\times n}(R)[t] \to M_{n\times n}(R)$, defined by "putting A to the right of all the coefficients"; namely, by $\sum B_k t^k \mapsto \sum B_k A^k$. This evaluation map ev_A is not multiplicative, but nevertheless it annihilates anything that has a right factor of (tI-A) (exercise!). Hence under ev_A the above equality becomes $\chi_A(A)I=0$.

Dror Bar-Natan: Classes: 2025-26: MAT 347 Groups, Rings, Fields:

The Cayley-Hamilton Theorem

http://drorbn.net/25-347

Theorem. Let R be a commutative ring, let $A \in M_{n \times n}(R)$ be a matrix and let $\chi_A(t) := \det(tI - A)$ be the characteristic polynomial of A. Then $\chi_A(A) = 0$.

Froof. Substitute A into t in $\det(tI - A)$, get $\chi_A(A) = \det(AI - A) = \det(0) = 0$.

Alas, the same froof also froves that $\rho_A(A) = 0$, where $\rho_A(t) := \operatorname{tr}(tI - A)$, and indeed, evaluation does not commute with taking the determinant.

Proof of Theorem. For any matrix M over any commutative ring there is "the adjugate matrix $\operatorname{adj}(M)$ of M", defined using the minors of M, which satisfies $\det(M)I = (\operatorname{adj} M)M$. Use this with M = tI - A, over the ring R[t],

and find that in the ring $M_{n\times n}(R[t])$ we have

$$\chi_A(t)I = \det(tI - A)I = (\operatorname{adj}(tI - A))(tI - A).$$

Now note that the ring $M_{n\times n}(R[t])$ is isomorphic to the ring $M_{n\times n}(R)[t]$, and on the latter there is a linear "evaluation at t=A" map $\operatorname{ev}_A \colon M_{n\times n}(R)[t] \to M_{n\times n}(R)$, defined by "putting A to the right of all the coefficients"; namely, by $\sum B_k t^k \mapsto \sum B_k A^k$. This evaluation map ev_A is not multiplicative, but nevertheless it annihilates anything that has a right factor of (tI-A) (exercise!). Hence under ev_A the above equality becomes $\chi_A(A)I=0$.

Dror Bar-Natan: Classes: 2025-26: MAT 347 Groups, Rings, Fields:

The Cayley-Hamilton Theorem

http://drorbn.net/25-347

1

Theorem. Let R be a commutative ring, let $A \in M_{n \times n}(R)$ be a matrix and let $\chi_A(t) := \det(tI - A)$ be the characteristic polynomial of A. Then $\chi_A(A) = 0$.

Froof. Substitute A into t in $\det(tI - A)$, get $\chi_A(A) = \det(AI - A) = \det(0) = 0$.

Alas, the same froof also froves that $\rho_A(A) = 0$, where $\rho_A(t) := \operatorname{tr}(tI - A)$, and indeed, evaluation does not commute with taking the determinant.

Proof of Theorem. For any matrix M over any commutative ring there is "the adjugate matrix $\operatorname{adj}(M)$ of M", defined using the minors of M, which satisfies $\det(M)I = (\operatorname{adj} M)M$. Use this with M = tI - A, over the ring R[t],

and find that in the ring $M_{n\times n}(R[t])$ we have

$$\chi_A(t)I = \det(tI - A)I = (\operatorname{adj}(tI - A))(tI - A).$$

Now note that the ring $M_{n\times n}(R[t])$ is isomorphic to the ring $M_{n\times n}(R)[t]$, and on the latter there is a linear "evaluation at t=A" map $\operatorname{ev}_A : M_{n\times n}(R)[t] \to M_{n\times n}(R)$, defined by "putting A to the right of all the coefficients"; namely, by $\sum B_k t^k \mapsto \sum B_k A^k$. This evaluation map ev_A is not multiplicative, but nevertheless it annihilates anything that has a right factor of (tI-A) (exercise!). Hence under ev_A the above equality becomes $\chi_A(A)I=0$.