Problem 1. Just in case you thought commutative diagrams cannot get any worse, here's a question to prove you wrong (though actually, it is surprisingly easy).

- 1. Define a category \mathcal{S} of "short exact sequences of chain complexes".
- 2. Define a category \mathcal{L} of "long exact sequences".
- 3. Construct a functor $\mathcal{H}: S \to \mathcal{L}$. (We've constructed this functor on objects already, so you don't need to do that again. The challenge is to do it on morphisms and to verify that starting from a morphism \mathcal{F} in \mathcal{S} , its image $\mathcal{H}(\mathcal{F})$ is indeed a morphism in \mathcal{L}).

Problem 2. Given a morphism $f: (X, A) \to (Y, B)$, show that the diagram

$$H_n(X, A) \xrightarrow{\delta} H_{n-1}(A)$$

$$f_* \downarrow \qquad f_* \downarrow$$

$$H_n(Y, B) \xrightarrow{\delta} H_{n-1}(B)$$

is commutative.

Problem 3. Given a triple of spaces $B \subset A \subset X$, construct a long exact sequence relating $H_*(X, A)$, $H_*(A, B)$, and $H_*(X, B)$.

Problem 4. Khovanov homology is an invariant of knots obtained by first defining a chain complex C, and then taking its homology. To show that Khovanov homology does not change when the knot moves, one has to show that pieces of C can be cancelled off — be removed without changing the homology.

- 1. Suppose C' is an acyclic subcomplex of C ("acyclic" is a different word for "exact", or "having no homology"). Show that C' can be cancelled off. Namely, that the quotient C/C' has the same homology as the original complex C.
- 2. Suppose \mathcal{C}' is a subcomplex of \mathcal{C} , and that the quotient complex \mathcal{C}/\mathcal{C}' is acyclic. Then \mathcal{C}' has the same homology as \mathcal{C} (roughly, the complement of \mathcal{C}' can be cancelled off).
- 3. There is a third theorem along these lines. What does it say?