Problem 1 (40 points). Let K be a knot in \mathbb{R}^3 presented by a planar diagram D. With a massive use of van Kampen's theorem, show that the fundamental group of the complement of K has a presentation (the "Wirtinger presentation", as discussed in class) with one generator for each edge of D and two relations for each crossing of D, as indicated in the figure below.

Problem 2 (20 points). The trefoil knot above, whose fundamental group is $G_1 = \langle \alpha, \beta, \gamma : \alpha = \gamma^{\beta}, \beta = \alpha^{\gamma}, \gamma = \beta^{\alpha} \rangle$ is in fact the torus knot $T_{3/2}$, whose fundamental group, as computed in class, is $G_2 = \langle \lambda, \mu : \lambda^2 = \mu^3 \rangle$. Prevent the collapse of mathematics by showing that these two groups are isomorphic.