Problem 1. A topological space X is called "locally path connected" if every point in it has arbitrarily small neighborhoods that are path connected. Namely, if $x \in X$ and if U is a neighborhood of x, then there is a path connected open set V such that $x \in V \subset U$.

On the subject of liftings: Prove that if X is path connected, locally path connected, and simply connected, and if $p: (E, e_0) \to (B, b_0)$ be a covering map, then every $f: (X, x_0) \to (B, b_0)$ has a unique lift to a map $\tilde{f}: (X, x_0) \to (E, e_0)$ such that $\tilde{f}/\!\!/p = f$.

Hint. Lift paths, lift endpoints of paths, worry about well-definedness, worry about continuity.

On the right. A space that is path-connected but not locally path-connected.

Problem 2. With the obvious assumptions and definitions, prove that $\pi_1((X, x_0) \times (Y, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$.

Problem 3. Let *M* denote the Möbius band.

- 1. Show that $\pi_1(M) \cong \mathbb{Z}$.
- 2. Is there a retraction from M to its boundary?



