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Everything You Always Wanted to Know About Covering Spaces

Some Coverings of 8ab (from Hatcher’s Algebraic Topology, page 58):
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⟨ ⟩

⟨a, b2, bab−1⟩

(A) (B)

⟨a2, b2, ab⟩

(C)

⟨a2, b2, aba−1, bab−1⟩

(D)

⟨a, b2, ba2b−1, baba−1b−1⟩

(E)

⟨a3, b3, ab−1, b−1a⟩

(F)

⟨a3, b3, ab, ba⟩

(H)

⟨a2, b2, (ab)2, (ba)2, ab2a⟩

(I)

⟨a2, b4, ab, ba2b−1, bab−2⟩

(G)

⟨a4, b4, ab, ba, a2, b2⟩

(J)

⟨b2nab−2n−1, b2n+1ab−2n : n ∈ Z⟩

(K)

⟨bnab−n : n ∈ Z⟩

(L)

⟨a⟩ ⟨ab⟩

(M)

⟨a, bab−1⟩

(N)

Unbased Covering Spaces.
Let B be a topological space and let C(B) be the category of covering spaces of B: The category
whose objects are (unbased!) coverings X → B and whose morphisms are maps between such
coverings that commute with the covering projections – a morphism between pX : X → B and
pY : Y → B is a map α : X → Y so that the diagram below is commutative:
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Every topologists’ highest hope is to find that her/his favourite category of topological objects is
equivalent to some category of easily understood algebraic objects. The following theorem realizes
this dream in full in the case of the category C(B) of covering spaces of any reasonable base space
B:

Theorem 1. (Classification of covering spaces)

• If B has base point b0 and fundamental group G = π1(B, b0), then the map which assigns to
every covering p : X → B its fiber p−1(b0) over the basepoint b0 induces a functor F from the
category C(B) of coverings of B to the category S(G) of G-sets - sets with a right G-action
and set maps that respect the G action.

• If in addition B is connected, locally connected and semi-locally simply connected then the
functor F is an equivalence of categories. (In fact, this is iff).

If indeed the categories C(B) and S(G) are equivalent, one should be able to extract everything
topological about a covering p : X → B from its associated G-set F(X) = p−1(b0). The following
theorem shows this to be right in at least two ways:

Theorem 2. For B connected, locally connected and semi-locally simply connected and X a cov-
ering of B:

• The set of connected components of X is in a bijective correspondence with the set of orbits
of G in F(X).

• Let x0 ∈ F(X) = p−1(b0) be a basepoint for X that covers the basepoint b0 of B. Then the
fundamental group π1(X,x0) is isomorphic via the projection p⋆ into G = π1(B, b0) to the
stabilizer group {h ∈ G : x0h = x0} of x0 in F(X).

(Both assertions of this theorem can be sharpened to deal with morphisms as well, but we will not
bother to do so).
Based Covering Spaces. There are similar theorems (call them Theorem 1’ and Theorem 2’)
relating the category of based covering spaces with the category of based G-sets.
The Main Point. Ok. Every math technician can spend some time and effort and understand
the statements and (only then) the proofs of these two theorems. Your true challenge is to digest
the following statement:

All there is to know about covering spaces follows from these two theorems

In particular, the following facts are all simple algebraic corollaries of these theorems:

Corollary 3. If X is connected then its covering number (“number of decks”) is equal to the index
of H = p⋆π1(X) in G = π1(B), and the decks of X are in a non-canonical correspondence with the
left cosets H\G of H in G.

Corollary 4. If B is semi-locally simply connected, there exists a unique (up to base-point-preserving
isomorphism) “universal covering space U of B” (a connected and simply connected covering U).



Corollary 5. The group of automorphisms of the universal covering U is equal to G = π1(B).

Corollary 6. π1(S
1) ∼= Z.

Corollary 7. π1(SO(3)) ∼= Z/2Z.

Corollary 8. If B is semi-locally simply connected, then for every H < G = π1(B) there is a
unique (up to base-point-preserving isomorphism) connected covering space X with p⋆π1(X) = H.

Corollary 9. If Xi for i = 1, 2 are connected coverings of B with groups Hi = pi⋆π1(Xi) and if
H1 < H2 then X1 is a covering of X2 of covering number (H2 : H1).

Corollary 10. If B is semi-locally simply connected there is a bijection between conjugacy classes
of subgroups of G = π1(B) and unbased connected coverings of B.

Corollary 11. A connected covering X is normal (for any x1, x2 ∈ p−1(b) there is an automorphism
τ of X with τx1 = x2) iff its group p⋆π1(X) is normal in G = π1(B).

Corollary 12. If X is a connected covering of B and H = p⋆π1(X), then Aut(X) = NG(H)/H
where NG(H) is the normalizer of H in G.

Proposition 13. If we forgot anything, it follows too.

Steps in the proofs of Theorem 1 and 2.

1. Use path liftings to construct a right action of G on p−1(b0).

2. Show that this is indeed a group action and that morphisms of coverings induce morphisms
of right G-sets.

3. Start the construction of an “inverse” functor G of F : Use spelunking (cave exploration) to
construct a universal covering U of B, if B is semi-locally simply connected.

4. Show that F(U) = G.

5. Use the construction of U or the general lifting property for covering spaces to show that
there is a left action of G on U .

6. For a general right G-set S set G(S) = S×G U = {(s, u) ∈ S×U}/(sg, u) ∼ (s, gu) and show
that G(S) is a covering of B and F(G(S)) = S.

7. Show that G is compatible with maps between right G-sets.

8. Understand the relationship between connected components and orbits.

9. Prove Theorem 2.

10. Use the existence and uniqueness of lifts to show that G ◦ F is equivalent to the identity
functor (working connected component by connected component).

A Deep Thought Question. What does it at all mean “G◦F is equivalent to the identity functor”
(and first, why can’t it simply ”be” the identity functor)? And even harder, what does it at all
mean for two categories to be “equivalent”? If you answer this question correctly, you’ll probably
re-invent the notions of “natural transformation between two functors” and “natural equivalence”,
that gave the historical impetus for the development of category theory.
From the Wikipedia entry for Natural Transformation:

https://en.wikipedia.org/wiki/Natural_transformation


Saunders Mac Lane, one of the founders of category theory, is said to have remarked, “I
didn’t invent categories to study functors; I invented them to study natural transforma-
tions.” Just as the study of groups is not complete without a study of homomorphisms,
so the study of categories is not complete without the study of functors. The reason
for Mac Lane’s comment is that the study of functors is itself not complete without the
study of natural transformations.

The context of Mac Lane’s remark was the axiomatic theory of homology. Different
ways of constructing homology could be shown to coincide: for example in the case of a
simplicial complex the groups defined directly, and those of the singular theory, would
be isomorphic. What cannot easily be expressed without the language of natural trans-
formations is how homology groups are compatible with morphisms between objects,
and how two equivalent homology theories not only have the same homology groups,
but also the same morphisms between those groups.


