	Homework Assignment 8
Nov 17	Q2 as Prove \sim is an equivalence relation
	<u>Pf:</u> Let $F_0: X \to Y, F_1: X \to Y, F_2: X \to Y$ be continuous functions
	(1) Show $F_0 \sim F_0$: Define H: $X \times I \rightarrow Y$ by $H(x,t) = F_0(x)$, then H is continuous as F_0 is
	$\forall \pi \in X, H(x_1, 0) = F_{\sigma}(x_1), H(x_{\sigma}, 1) = F_{\sigma}(x_1).$ Hence Fo and Fo are homotopic.
	② Show For $\stackrel{\mathcal{H}}{\sim}$ Fi ⇒ Fi $\stackrel{\mathcal{H}}{\sim}$ For Assume For ~ Fi then there exists a continuous H': X×I→Y s.t.
	H(x10)=Fo(x), H(X11)=F(x). Define H: X×I→Y by H(x1,t)=H(x11-t). Since H' is
	continuous, then H is continuous. $\forall x \in X$, $H(x_1, 0) = H'(x_1, 1) = F_1(x)$, $H(x_1, 1) = H'(x_1, 0) = F_0(x_1, 0)$
	hence Fi and Fo ave homotopic.
	③ Show Fo $\stackrel{H'}{\to}$ Fr, Fr $\stackrel{H''}{\to}$ F2 $\stackrel{H}{\to}$ F2: Assume Fo \sim F1 and Fr \sim F2, then there exists cartin
	$H': X \times I \rightarrow Y \text{ and } H'': X \times I \rightarrow Y \text{ s.t. } \forall x \in X, H'(x, o) = F_{o}(x), H'(x, i) = F_{i}(x), H''(x, o) = F_{i}(x),$
	$H'(X_1) = F_2(X)$. Now define $H: X \times I \rightarrow Y$ as follows:
	$H(x,t) = \begin{cases} H(x,2t), \ 0 \le t \le \frac{1}{2} \end{cases}$
	(H"(ג, zt+), ż≤t≤l.
	H is well-defined: if $t=\pm$, $H'(\pi,1) = F_1(\pi) = H'(\pi,0)$. Because H' is continuous on the close
	subset $X \times [0, \Xi]$ and H" is continuous on the closed subset $X \times [\Xi, I]$, H is continuous on $X \times I$
	ABO, $\forall x \in X$, $H(x, o) = H'(x, o) = F_0(x)$, $H(x, i) = H'(x, i) = F_0(x)$. Thus $F_0 \sim F_2$.
	b) If Υ is a path in X and F: X->Y is continuous, F* Y = FoY is a path in Y.
	Show if rop rin X, then Frrop First in Y.
	<u>PF:</u> Assume $V_0 \approx Y_1$, then they have the same start point to and endpoint π_1 , and there exists
	$Continuous H': IXI \longrightarrow X \text{ s.t. } H'(S,o) = \mathcal{V}_{0}(S), H'(S,i) = \mathcal{V}_{1}(S), H'(o,it) = \mathcal{X}_{0}, H'(i,it) = \mathcal{X}_{1}$
	• Define $H: I \times I \rightarrow Y$ by $H(s,t) = F(H'(s,t))$. Since Fand H' are continuous then $H=F_{\bullet}$
	is continuous
	· Show F*70 な F*71: HIS,0) = F(H'(S,0)) = F(Y_0(S)) = F*76 (S)
	$H(s_{11}) = F(H'(s_{11})) = F(Y_1(s_1)) = F_*Y_1(s_1)$
	H(O;t) = F(H'(O;t)) = F(xo), the starting point of F* Xo and F* Y
	$H(I_1t) = F(H'(I_1t)) = F(x_1)$, the end point of F* % and F* Y ₁
	Hence Fx 70 p Fx ri, as needed.

c) Prove if $F_i: X \to Y$, $G_i: Y \to Z$ are continuous for $i = p_1$, and if $F_0 \sim F_1$, $G_0 \sim G_1$, then $G_0 \circ F_0 \sim G_1 \circ F_1$.

<u>PF</u>: Assume $F_0 \sim F_1$, $G_0 \sim G_1$, then there exists continuous $H': X \times I \rightarrow Y$ and $H': Y \times I \rightarrow Z$ st. $\forall x \in X, H'(x, 0) = F_0(x), H'(x, 1) = F_1(x); \forall y \in Y, H''(y, 0) = G_0(y), H'(y, 1) = G_1(y).$

· Define H: X×I→ Z by H(オ,t)= H'(H'(オ,t),t)

· Since H' and H' are continuous, then H is continuous

 $\cdot \ \forall x \in X, \ H(x, o) = H''(H'(x, o), o) = \ H''(F_0(x), o) = \ \mathscr{C}_0(F_0(x))$

$$H(x_{i},i) = H'(H'(x_{i},i),i) = H''(F_i(x_i),i) = G_i(F_i(x_i))$$

Thus GooFo ~ GIOFI, as needed.

Q3 Let X be a path connected space. X is simply connected if for some $x_0 \in X$, the group $\pi_i(X, x_0)$ is trivial. $S^1 = \{x \in \mathbb{R}^2 : |x| = 1\}$ is the unit circle in \mathbb{R}^2 a) Show X is simply connected iff any paths Yo and Y1 that have the same end points in X are

path homotopic.

 \underline{PF} : \Rightarrow : Assume X is simply connected and let 2 paths Vo and VI be given s.t. $Y_0(0) = Y_1(0) = X_0$ and $Y_0(1) = Y_1(1) = X_1$. Show $Y_0 \neq Y_1$

 Consider TT(X, πο), by X is path connected and simply connected, the Bundamental group for any base point is trivial. Hence TT(X, πο)= { [Exo]}.

• Since Yo and YI have the same endpoints, then $Y_0 * \overline{Y_1} \in \mathbb{T}(X, x_0) \Rightarrow Y_0 * Y_1 \in [e_{X_0}]$. Similarly, $Y_1 * \overline{Y_1} \in [e_{X_0}]$. By the equivalence relation of \sim , $Y_0 * \overline{Y_1} \cap e_{X_0} \cap Y_1 * \overline{Y_1}$ $\Rightarrow Y_0 * \overline{Y_1} \cap Y_1 * \overline{Y_1}$. Then there exists a path homotopy $H': I \times I \to X$ between $Y_0 * \overline{Y_1}$ and $Y_1 * \overline{Y_1}$.

 \in : Assume any two paths Yo and Yi with the same endpoints in X are path-homotopic. Show X is simply connected.

· Wog assume X is non-empty so can take XOE X and show T(X176) is trivial.

• Fix path $Y: [5,1] \rightarrow X$ in $\pi(X, x_0)$, so $Y(0) = x_0$ and $Y(1) = x_0$. Show $Y \in [e_{X_0}]$, which is to show $Y \gamma$ exo. Whog suppose $Y \neq e_{X_0}$, otherwise by the reflexivity of $\tilde{\gamma}$ we're done. Then $\exists \rho \in (0,1)$ sit. $Y(\rho_0) \neq x_0$. Let $Y(\rho_0) = x_1$.

• Then Y [0,p] and Y [[p,1] are 2 paths from to to XI. By assumption, Y [[5,p] p Y [[poi]. So there exists a path homotopy H' from Y [[0,p] to Y [[p,1].

• Define H: $I \times I \rightarrow X$ by H(s;t) = S H'(s;t), if $o \le S \le po$. Then H is a homotopy between Y(s), otherwise

YLEO, PJ & YLEO, IJ and YLEO, J * YLEO, J, but then this is Y of Exo.

b) Show X is simply connected iff every continuous function 7: 5¹→X is homotopic to a constant function.

<u>PF:</u> \Rightarrow : Assume X is simply connected. Fix continuous $\lambda: 5' \rightarrow X$ and show $\exists x_0 \in X$ and constant function $F_{x_0}: 5' \rightarrow X$ s.t. $F_{x_0} = x_0$ and $\lambda \sim F_{x_0}$.

• We can parametrize 5' into a path Y. [01] $\rightarrow \mathbb{R}^2$ by Y(t) = (Cos(2rt), sin(2rt)), then Y starts and ends at (110). Then $\mathcal{N} \circ Y$: [01] $\rightarrow X$ is a path in X that starts and ends at $\mathcal{N}(10)$, let $\mathcal{X}_0 = \mathcal{N}(10)$, show $\mathcal{N} \sim F_{X_0}$

· Notice both 70° and $2x_0$ are paths of the same endpoints, by X is simply connected and 03a, 70° f $2x_0$, where H is a path homotopy between 70° and $2x_0$

• Define $H: S' \times I \rightarrow X$ by $H((u,v), t) = \begin{cases} H'(arctan(tx), t), u > 0 \\ H'(t+arctan(tx), t), u < 0 \\ H'(t,t), if (u,v) = (0,1) \\ H'(t,t), if (u,v) = (0,7). \end{cases}$

By checking the limit of H at the ends of each subinterval in the definition above, H can be shown continuous. (And at the intervolver of each subinterval H is continuous since H' is.)

$$H((u,v), o) = \begin{cases} H'(atdan(t, 0), o) = \Lambda \circ Y(atdan(t, 0)) = \lambda(u,v), u > 0. \\ H'(t + atdan(t, 0)) = \lambda \circ Y(\pi + atdan(t, 0)) = \lambda(u,v), u < 0 \\ H'(t, 0) = \Lambda \circ Y(t) = \lambda(0,1), if (u,v) = (0,1) \\ H'(t, 0) = \lambda \circ Y(t) = \lambda(0,-1), if (u,v) = (0,-1) \end{cases}$$

In similar manner, we can check $H((u,v), 1) = e_{X_0}(u,v) = x_0 = F_{X_0}(u,v)$.

Thus H is a homotopy between λ and the constant function F_{70} , as needed.

⇒: See next page

 \Leftrightarrow : Assume every continuous $\lambda: S' \rightarrow X$ is homotopic to a constant function. Show X is simply connected.

• Wlog X is non-empty, so can pick $x_0 \in X$ and we show $TT(X, x_0) = \{ [e_{x_0} \} \}$. Fix a loop γ in $TT(X, x_0)$ and we can parametrize it by some $\hat{\lambda} : [o_1] \to X$ sit. $\hat{\lambda}(o) = \hat{\lambda}(1) = x_0$. Notice that as $\hat{\lambda}(o) = \hat{\lambda}(1)$, the domain of $\hat{\lambda}$ is $[o_1] \setminus 0 \sim I \cong S'$. Then $\hat{\lambda}$ can also be considered as a continuous function from S^1 to X, which by assumption, is homotopic to some constant function e_{X_1} In other words, $\hat{\lambda} \stackrel{H'}{\to} e_{X_1}$, where $H' : I \times I \to X$ is the homotopy between them.

• It follows that H'(0,t) is a path that traces xo to x1 in the retraction of \hat{A} to Ex1. Let's call this path ϕ . Then $\phi * \phi$ is a loop at x0 that sets out to x1 and returns back to x0 following the same path. By a theorem, $\phi * \phi \approx \infty$.

Thus, it suffices to show $\mathcal{T} \not \Rightarrow \not \Rightarrow \not \Rightarrow f$, then by transitivity of ~, we will have $\mathcal{T} \not \Rightarrow e_{x_0}$, as desired.

• Define H:
$$I \times I \rightarrow X$$
 by:
H(s,t) = $\begin{cases} H'(0,3st), & 0 \le s \le \frac{1}{3} \\ H'(3s-1,t), & \frac{1}{3} \le s \le \frac{1}{3} \\ H'(0,3t(t,s)), & \frac{1}{3} \le s \le 1 \end{cases}$

We show H is a path-homotopy between Y and Exo: (1) H is continuous: since H' is continuous, then it suffices to check continuity of H at its subintential endpoints. Indeed, S=3: H'(0,3st) = H'(0,t), H'(3s+,t)=H'(0,t), $S=\frac{1}{3}$: H'(3S+1,t) = H'(1,t), we remember that at any t, H'(1,t) is a retraction of the loop r, hence it is also a loop, so H'(1,t)=H'(0,t). But then this agrees with H'(0,3t(1-言)) =H'(0,t), SO H is continuous at S= \$ too. (2) $H(o_1t) = H'(o_1o) = \hat{\lambda}(o) = \chi_0$ $H(I,o) = H'(o,o) = X_o$ (3) H(5,0) = H'(0,0) * H'(35-1,0) | = 5 < = = + H'(0,0)= Xo * H1(35+,0) == xo p H'(35+1, 0) | \$ ≤ 5 ≤ 3, by a change of variable this is H'(S̃, o) where 0 ≤ S̃ ≤ 1. and by definition of H', this is $\hat{\lambda}(\hat{s})$ for $o \in \hat{s} \leq 1$, which is precisely γ' . $= H'(0,35)|_{0 \le 5 \le \frac{1}{3}} \times P_{X_1}(35+1) \times H'(0,3-35)|_{\frac{3}{3} \le 5 \le 1}$ = () * X1 * (2)

• Since we have verified $H(o_1t) = x_0$, $H(I_1t) = x_0$, $H(s_10) = Y$, and $H(s_11) = \phi + \overline{\phi}$. $\Upsilon \phi \neq * \overline{\phi}$. This completes the proof.

Below is a visual demonstration:

- under the homotopy H' between the parametrizing Euction 2 of r and exi:

Warning: The author is not confident of their solution of Q4.

Q4 $S^2 = \{x \in \mathbb{R}^3: |x| = i\}$ S^2 with i point removed is homeomorphic to \mathbb{R}^2 a) Show any continuous $\lambda_0: S' \to S^2$ which is not surjective is homotopic to a constant function. <u>Pf</u>: Suppose continuous $\lambda_0: S' \to S^2$ is not surjective, then $\exists p \in S^2$ s.t. $\lambda_0(S') \subset S^2 \setminus \frac{1}{9}$. Then $S^2 \setminus \frac{1}{9}$ is homeomorphic to $\mathbb{R}^2: \exists$ homeomorphism $f: S^2 \setminus \frac{1}{9} \to \mathbb{R}^2$, then f^4 also exists and is continuous $\cdot f \circ \lambda_0: S' \to \mathbb{R}^2$, since \mathbb{R}^2 is simply connected, by Q3b, $\exists q \in S'$ and constant function $e_{f(\lambda_0(q))}$ s.t. $f \circ \lambda_0 \sim e_{f(\lambda_0(q))}$, let H' be their homotopy. \cdot show $\lambda_0 \sim e_{\lambda_0(q)}: |et H: S' \times I \to S'$ be $H(s,t) = f^-(H'(s,t))$. H is continuous $a \leq f^{-1} \&$ H' are. $H(s_1 \circ) = f^-(H'(s_1 \circ)) = f^-(f \circ \lambda_0(s)) = \lambda_0(s)$. $H(s,i) = f^-(H'(s_i)) = f^-(e_{f(\lambda_0(q))}(s)) = f^-(f(\lambda_0(q))) = \lambda_0(q) = e_{\lambda_0(q)}(s)$. Thus λ_0 is homotopic to a constant function.

b) Show any continuous $\lambda: S^1 \to S^2$ is homotopic to a continuous non-surjective $\lambda: S^1 \to S^2$. <u>Pf:</u> It suffices to consider a surjective continuous $\lambda: S^1 \to S^2$ and we show it is homotopic to a non-surjective continuous function from S¹ to S². Since $S^1 \cong [0,1]/0 \sim 1$, then it is equivalent to consider $\hat{\lambda}: [0,1]/0 \sim 1 \to S^2$, a closed path that is surjective on S², induced by λ .

• Let 200 be small and 2l be the callection of open disks of radius ϵ on S^2

Since S² is compact, by the Lebesgue Number Lemma, $\exists \varsigma > 0$ sit. $\forall p \in S^2$, $\exists u \in \mathbb{Z}$ sit. $B_{\varsigma}(p) \subset \mathcal{U}$. Then $\{\mathfrak{A}^+(B_{\varsigma}(p)): p \in S^2\}$ is an open cover of $[\mathfrak{D}_1]$.

• [0,1] is compact so there is a finite subcover $\{\hat{\lambda}^{-}(B_{g}(p_{i})): i \leq i \leq n\} = \{(a_{i}, a_{i+1}): i \leq i \leq n\}$ of [0,1]. For any i, $\lambda((a_{i}, a_{i+1})) \subset B_{g}(P_{i}) \subset U$ for some z-disk $U \in \mathbb{Z}$, by the Lebesque Number Lemma. So $\lambda((a_{i}, a_{i+1})) \subset U$. Since z is small, it is ensured that $\lambda((a_{i}, a_{i+1}))$ is a single line segment in U.

We know U is homeomorphic to \mathbb{R}^2 and \mathbb{R}^2 is simply connected, any paths in U with the same endpoints are path-homotopic. Then, $\lambda((a_i,A_{i+1}))$ is path-homotopic to a straight line segment in U with the same endpoints. the image of

• By concatenating path-homotopic paths, we get $\hat{\lambda} = \hat{\lambda}|_{a_{11}a_{21}} \times \cdots \times \hat{\lambda}|_{a_{n}, a_{n+1}}$ being path-homotopic to the finile concatenation of line segments, which is a line segment. Then $\hat{\lambda}$ is homotopic to a continuous function that maps S' onto a line segment in S^2 , and this, of course, cannot be surjective in S.

c) With the same language as the previous exercise, deduce s^2 is simply connected.

By Q3 b), S² is simply connected iff any continuous $\lambda:S' \to S^2$ is homotopic to a constant function. By Q4b), any continuous $\lambda:S' \to S^2$ is homotopic to a non-surjective $\lambda_0:S' \to S^2$, by Q4a) a non-surjective $\lambda_0:S' \to S^2$ is homotopic to a constant function. So by transitivity of ' \sim " (proven in Q2a), any continuous $\lambda:S' \to S^2$ is homotopic to a constant function, thus S² is simply connected.