

c) Prove if $F_i: x \rightarrow Y$, $G_i: Y \rightarrow Z$ are continuous for $i = 0.1$, and if $F_0 \sim F_1$, $G_0 \sim G_1$, then $G_{0} \circ F_{0} \sim G_{1} \circ F_{1}$ $PF:$ Assume $F_0 \sim F_1$, $G_0 \sim G_1$, then there exists continuous H^1 : $X \times I \rightarrow Y$ and H^1 : $Y \times I \rightarrow Z$ st.</u> Ex EX, H'(x,0) ⁼ Fo(x), H(x, 1) ⁼ Fi(x): VytY, H"(y,0) ⁼ Goly), H"(y,1) ⁼ Gily). • Define H: XxI-> 2 by H(x,t) = H"(H'(x,t),t) · Since H' and H" are continuous, then H is continuous • Yx EX, H(x,0) = H"(H'(x,0),0) = H"(F6(x),0) = Go (F6(x)) H(x,1) = H'(H'(x,1),1) = H''(F(k),1) = G((F((x)) Thus $G_{0}F_{0}\overset{H}{\sim}G_{1}F_{1}$, as needed. m

Q3 Let X be a path connected space. X is simply connected if for some π o \in X, the group $\pi(x, x)$ is trivial. S^1 = { $x \in \mathbb{R}^2$: $|x|=1$ } is the unit circle in \mathbb{R}^2

a) Show X is simply connected iff any paths Yo and Y1 that have the same end points in X are path homotopic.

 \overrightarrow{H} : \Rightarrow : Assume X is simply connected and let 2 paths Yo and Yi be given st. γ_0 (o) = γ_1 (o) = γ_0 and $\gamma_0(1) = \gamma_1(1) = \chi_1$. Show $\gamma_0 \sim \gamma_1$

· Consider π (x,76), by X is path connected and simply connected, the foundamental group $\frac{1}{2}$ for any loose point is trivial. Hence $\pi(x, x_0) = \{[x_0, x_1]$.

• Since Yo and Yi have the same endpoints, then $\gamma_0 * \overline{\gamma_1} \in \pi(\times, \pi_0) \Rightarrow \gamma_0 * \gamma_1 \in [\epsilon_{\pi_0}]$. Similarly, $Y_1 * \overline{Y_1} \in \mathbb{R} \times \mathbb{R}$, By the equivalence relation of \sim , $Y_0 * \overline{Y_1} \approx \mathbb{R} \times \mathbb{R} \times \overline{Y_1}$ \Rightarrow Yo \ast $\overline{\gamma_1}$ \sim Y₁ \ast $\overline{\gamma_1}$. Then there exists a path homotopy H: IXI \rightarrow X between Y₀ \ast $\overline{\gamma_1}$ and $\gamma_1 * \overline{\gamma_1}$.

$$
H = \frac{1}{\frac{1}{\sqrt{6}}}
$$

$$
= \frac{1}{\sqrt{6}} = \frac{1}{\sqrt{11}}
$$

$$
= \frac{1}{\sqrt{11}} = \frac{1}{\sqrt
$$

 \Leftarrow . Assume any two paths γ and γ with the same endpoints in λ are path-homotopic . Show X is simply connected.

. Wog assume X is non-empty so can take $x_0 \in X$ and show $\pi(x_0, x_0)$ is trivial.

· Fix path Y:[ō]]→X in π(X:⁄ko), & Y(o)=xo and Y(1)=xo. Show Y ∈ [exp], Which is to Show γ' γ e_{∞} . Whay suppose $\gamma' \neq e_{\infty}$, otherwise by the veflexivity of \sim "we're done. Then \exists β ϵ (o_1) sit. $\gamma'(\rho_0) \neq \gamma_0$, Let $\gamma'(\rho_0) = \gamma_1$.

· Then YIO,pJ and YI[po,i] are 2 paths from 20 to 21. By assumption, YI[G,pJ ? "VI[poi]. So there exists a path homotopy H' from γ [p,p] to $\overline{\gamma}$ [p_p].

. Define H: IXI -> X by H(sit) = { H'(sit), if ossspo Then H is a homotopy between $\left(\begin{array}{c} \gamma(s) \end{array}\right)$, otherwise

 γ | β _/ β ϵ γ | Γ _{/ β}, Γ γ γ | Γ _{/ β}, Γ _{/ γ}, γ γ | Γ γ _{γ}, γ

b) Show X is simply connected iff every continuous function λ : $\delta' \rightarrow$ X is homotopic to a constant function.

 $H: \Rightarrow$: Assume X is simply connected. Fix continuous $\lambda: 5^1 \rightarrow X$ and show $\exists \lambda \in X$ and Constant function F_{\times} : $S \rightarrow \times$ s.t. F_{\times} = \times and $\lambda \sim F_{\times}$.

· We can parametrize 5' into a path Y: [on] \rightarrow R² by Y'lt) = (Cos(21(t), Sin(27(t)), then Y
· We can parametrize 5' into a path Y: [on] \rightarrow R² by Y'lt) = (Cos(21(t), Sin(27(t)), then Y
s and ends at (1,0). Then 70 starts and ends at (1.0). Then $\lambda \circ \gamma$: [0,1] $\rightarrow \times$ is a path in \times that starts and ends at λ (1.0), let x_0 = λ (1.0), Show λ \sim Fx_0 .

re-Allio), Show X - Fxo
• Notice both 7o Y and *exo a*re paths of the same endpoints, by X is simply connected and Q3a Nor $\varphi^{\mathcal{H}'}$ exo, where H' is a path homotopy between Nor and exo

 \cdot Define H: $S \times I \rightarrow X$ by $H((u,v), t) = \int H'(arctan(\frac{u}{u}), t)$, $u > c$ $|$ H'(π +arctan($\overset{\omega}{\alpha}$), t), u <0 $H'(\dot{\tau}, \tau)$, if $(u,v) = (0,1)$
 $H'(\frac{2}{2}, \tau)$, if $(u,v) = (0,1)$.

By checking the limit of H at the ends of each subinterval in the definition above. It can be shown continuous. (And at the interior of each subinterval ^H is continuous since I' is.)

H((u,v),o) = \H'(ardan(X),o) = xor(arctan(X)) = x(u,v)_. eithenvay,
H((u,v),0)= H^{1} l π +arctan($\frac{W}{W}$, b) = λ or(π +arctan($\frac{W}{W}$)) = λ (u,v), u <0 $\left[$ H ((u v), v) = $H(t + arctan(\vec{u}, b)) = x \cdot r(x + arctan(\vec{u}, b) = \lambda(u, v), u < 0$
 $H'(a, b) = x \cdot r(a) = \lambda(b, 1), \text{ if } (u, v) = (b, 1)$
 $H'(a, b) = x \cdot r(a) = \lambda(b, -1), \text{ if } (u, v) = (b, -1)$
 $H''(a, b) = x \cdot r(a) = \lambda(b, -1), \text{ if } (u, v) = (b, -1)$
 $H''(a, b) = x \cdot r(a) = \lambda(a, b)$
 $H''(a, b) = x \cdot r(a) = \lambda$

In similar manner, we can check $H((u,v),t) = C_{\chi_0}(u,v) = \chi_0 = F_{\chi_0}(u,v)$

Thus H is a homotopy between A and the constant fanction fro, as needled.

=>: See next page

 \Leftarrow : Assume every continuous λ : S' \rightarrow X is homotopic to a constant fanction. Show X is simply connected. Hissume every continuous $x \rightarrow x$ is nomotopic 13 a constant fenction. Onow \land is
covinected.
Wog X is non-empty, so can pick xo∈X and we show π (X,xo) = {[exo]}. Fix a loop γ

· in Ti(X, xo) and we can parametrize it by some $\widehat{\lambda}:$ [0,1] \rightarrow \times sit. $\widehat{\lambda}$ (0) = $\widehat{\lambda}$ (1) = xo. Notice that in Ti(X, xo) and we can parametrize it by some $\widehat{\lambda}:$ [0,1] \rightarrow \times sit. $\widehat{\lambda}$ (0) = $\widehat{\lambda}$ (īn TT(X,do) and We can parametrize it by some λ: [o,i]→X s;t; λ(o)=λ())=%. Notico th
as λ(o)=λ(), the domain of λ is [o,i]\0~1 ≅ S'. Then λ can also be considered as a continuous function from s to \times , which by assumption, is homotopic to some constant function e_{Λ} I (6)= $\tilde{\lambda}$ (1), the domain of $\tilde{\lambda}$ is [5]\o~1 \cong 5'. Then $\tilde{\lambda}$ can also be considered
wows fanction from 5' to X, which by assumption, is homotopic to some cansta
In other words, $\tilde{\lambda}$ ^{ky'} Cx1, where H

 \cdot It follows that H['](0, t) is a path that traces x_0 to x_1 in the retraction of $\hat{\lambda}$ to $e_{\text{X}1}$. Let's . It follows that H'(0,t) is a path that traces ∞ to ∞ in the retraction of $\hat{\chi}$ to $e_{\rm Xi}$ let
call this path ϕ . Then $\phi*\overline{\phi}$ is a loop at ∞ that sets out to ∞ and yetznus back to ∞ followi the same path. By a theorem, $\phi * \overline{\phi} \rightarrow \overline{\phi}$. Then $\phi * \overline{\phi}$ is a loop at x_0
By a theorem, $\phi * \overline{\phi}$ ϕ ϕ

mo parm. Ey a hasham, $\frac{1}{\ell}$, $\frac{1}{\ell}$, then by transitivity of \sim , we will have T γ e_{∞} . as desired.

We show H is a path-homotopy between γ and ℓ xo: ω H is continuous: since H is continuous, then it suffices to check continuuty of H at its s ubintewal endpoints. Indeed, $s = \frac{1}{3}$: H'(0,3st) = H'(0,t), H'(3s+,t) = H'(0,t); S= $\frac{2}{3}$: H'(3S-1,t) = H'(1,t), we remember that at any t, H'(1,t) is a retraction of the loop γ , hence it is also a loop, so H'(1, t) = H'(0, t). But then this agrees with H'(0,3 τ (1- $\frac{2}{5}$)) $= H'(0, \tau)$, so H is continuous at $s = \frac{1}{3}$ too (2) $H(\omega t) = H'(\omega_1 \omega) = \lambda(\omega) = \chi_0$ $H(\omega) =$ $H'(0,0) = \chi_0$ $H(s, 0) = H'(0, 0) * H'(35-1, 0)$ = $\frac{1}{365555} * H'(0, 0)$ $=$ X₀ $*$ H¹(35+1,0) $\frac{1}{3}$ \leq 5 \leq $\frac{2}{3}$ $*$ X₀ $\begin{align*} \mathcal{P} \quad H^{1}(351, 0) \mid \frac{1}{3} \in S \stackrel{>}{\rightarrow} \mathbb{R} \quad \text{by a change of variable this is} \quad H^{1}(S_{1} \circ) \quad \text{where } 0 \leq S \leq 1. \ \text{and by definition of } H^{1}, \text{ this is } \quad \widehat{\lambda}(S) \quad \text{for } \quad S \leq \lambda \quad \text{which is precisely } \mathcal{V}. \quad H(s_{1}) = H^{1}(0,3S)|_{\text{obs}} \leq \frac{1}{3} \times H^{1}(351, 1) \mid \frac{1}{3} \leq S \leq \frac$ $H(s_1) = H'(0, 85) | s_6 s_6 \pm \frac{1}{3} * H'(351) | s_8 s_6 \pm \frac{1}{3} * H'(0, 311.5) | s_8 s_6 \pm \frac{1}{3}$ $\frac{[H'(0,35)] \text{adsc3}}{[H'(0,35)] \text{adsc3}} \times \mathcal{C}_{X_1}(351)$ $\frac{1}{35}\left(\frac{1}{355}\times 10^{15} \times 10$ $= 0 * x_1 * 2$

Warning: The author is not confident of their solution of Q4.

 Q 4 S^2 ={ $\pi \in \mathbb{R}^3$: $|x|$ = 1} S^2 with 1 point removed is homeomorphic to \mathbb{R}^2 a) Show any continuous $\lambda_0: S^1 \to S^2$ which is not surjective is homotopic to a constant fanction. a) Show any commusus '/b: S'→ S (duich is hist surjective is homologic 10 a constant lisulation).
Pf: • Suppose continuous 7o: S'→ S is not surjective, then = p∈s3 s.t. 7o(s') < s2\{ip}. Then $S^2\backslash\{\rho\}$ is homeomorphic to \mathbb{R}^2 : \exists homeomorphism f: $S^2\backslash\{\rho\}\to\mathbb{R}^2$, then f^{\dashv} also exists and is continuou · foxo : S+ 1R2 , Since IR2 is simply connected , by Q3b , Eges' and constant function $e_{\mathsf{f}(\boldsymbol{\lambda}\circ\boldsymbol{\varphi})}$ s.t. $\mathsf{f\circ\lambda\circ\sim e_{\mathsf{f}(\boldsymbol{\lambda}\circ\mathsf{l}\boldsymbol{\varphi})}}$, let H' be their homotopy. .(q)) s.t. 1°^0´° ∈f_("oolq), iet H 0e their homotopy.
· Show ?o ~е_{?oq{)}: |et H:5'x∑→5° be H(s;t)= f~(H'(s;t)). H is continuous asf¹ & \cdot Show λ \sim $e_{\lambda \circ (q)}$: let H \cdot S'x I \Rightarrow S' be H(s, t) =
H'are. H(s, o) = f+(H'(s, o)) = f+(f o λ , (s)) = λ ,(s). 1((5,1) = f*(H'(5,1)) = f*(eq_{(70(q)})\(5)) = f*(f(70(q)))) = 70(q) = e10(q₎) (s).
H((5,1) = f*(H'(5,1)) = f*(eq_{(70(q)})\(5)) = f*(f(70(q)))) = 70(q) = e10(q₎) (s). Thus λ . is homotopic to a constant function.

b) Show any continuous $\lambda: S^1 \rightarrow S^2$ is homotopic to a continuous non-surjective $\lambda S^1 \rightarrow S^2$. Pf : It suffices to consider a surjective continuous $\lambda: S \rightarrow S^2$ and we show it is homotopic to a non-surjective continuous function from S to S^2 . Since $S \cong [0,1/0 \sim$ 1, then it isequivalent to a non-surjective continuous function from S' to S". Since S ≅ l°;1)/0~1, then it
to consider â: [5;1]\0~1 → s², a closed path that is surjective on s³, induced by A She buyish the summodes position home of the collection of $\frac{1}{2}$ buyish that it is surjective on $\frac{1}{3}$, induced
Let z po be small and $\mathcal U$ be the collection of open disks of radius ϵ on ϵ .

M

·

bidded in production of organisation of open disks of radius ϵ on $\frac{S}{S}$.
Since S^2 is compact, by the Lebesgue Number Lemma, = $S > 0$ sit. $\forall \rho \in S^2$, = $u \in \mathcal{U}$ sit $B_8(p) \subset \mathcal{U}$. Then $\{ \mathfrak{Z}^1(\mathcal{B}_8(p)) : p \in S^2 \}$ is an open cover of $[\overline{p}_0]$.

· [0,1] is compact so there is a finite subcover $\{\vec{\lambda}^{\text{-}}(\mathsf{B}_{\beta}(\rho_{i}))\colon i\leq i\leq n\}$ = $\{(a_{i},a_{i+1})\colon i\leq i\leq n\}$ of To ,T. For any ⁱ , X/(9i , Gi+1) < Bg(Pi) <U for some 2-disk Ue2l . by the Lebesque or Isn's. For any c, A(ui,uiti), C is it is some 2-aisk in E 2c, by the Lebesgue
Number Lemma. So λ_l (ai,aiti)) < U. Siau 2 is small, it is ensured that λ_l (ai,aiti)) is
a single line segment in U.

. We know U is homeomorphic to R^2 and R^2 is simply connected, any paths in U with the we those it is numerously include it. We it is simply estimately, any pains in a long
same endpoints are path-homotopic. Then, λ ((ai,Ai+1)) is path-homotopic to a straight line seame emapoints are feath-nomologic. Their, Allentrian, 1, 15 feath-n
Segment in U with the same endpoints. The image of

ent in U with the same endpoints.
• By concatenating path-homotopic paths, we get $\hat{\lambda}$ = $\hat{\lambda}$ lanaz) *...* $\hat{\lambda}$ lan, anti) being path-homotopic to the finite concatenation of line segments , which is ^a line segment. Then $\hat{\lambda}$ is homotopic to a continuous function that maps S onto a line segment in \mathcal{S} . and this, of course, cannot be surjective in s^2 . E

 1) With the same language as the previous exercise, decluce s^2 is simply connected. with the same huighoge as the prenows exercise, acance ≥ is simply connected.
By Q3b), S² is simply connected iff any continuous 7:^{s}→s2} is homotopic to a constant function. By Q3b), S² is simply conneded iff any continuous 7:S¹->S² is homotopic to a constant func
By Q46), any continuous 7:5¹->S² is homotopic to a non-surjective 7o:5¹->S², by Q4a) a ry œ+10, any continuous A.0 23 is homolopic to a nun-surjective &0.3 5,5 by œ+4, a
non-surjective 20:S'→S' is homotopic to a constant fanction. So by transitivity of '∼" (proven in non-surjective ?u:S'→S² is homotopic to a constant fanction. So by transitivity of '∼" (proven īn
Q2a), any continuows ?l:S'→S² is homotopic to a constant function, thus S° is simply conneckol

m