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[%t f:81={2€C:|z| =1} = R be a continuous function. Show that there exists z € S*
such that f(z) = f(—=2).
Answer.
Let g : S — R be defined by g(2) = f(z) — f(—=2).
Fix z, € S* and consider a := g(z;,). Then,
—a=f(=2) = f(2) = f(=2) = f(=(=2)) = 9(==)

Since S! is connected and g is continuous, we have g(S*) connected. The above shows that
both a,—a € g(S'), and since the only connected subspaces of R are convex, we thus have
(assuming without loss of generality that a > 0), that [—a,a] C g(S*). But then, —a < 0 < a,
so 0 € g(Sl), which is to say there exists some z € S such that

0=yg(2) = f(z) — f(—=)
and hence f(z) = f(—2). [ ]
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Q3

If A C X and A is path connected, is A always path connected too?
Answer. No. The topologist’s sine curve yields a counter example.

Set X = R? and take A C X to be

= () )

Then, A is path connected because given any (to, sin(%)), (tl,sin(%)) € A, the function
a:[0,1] — A defined by

alt) = (to +t(t —to), Sin(mD

is a path from ¢, to t; lying in A.
We will show that A is not path connected. First, a technical lemma.
Lemma. Let r >0 and y € [—1,1]. There exists 0 < t <1 such that sin(1) = r.

Proof. Since sin is surjective, we can choose some t' > 0 such that sin(¢’") = y. Then, choose

N € N large enough so that ¢t = m‘ < r, so that

1
sin(;) =sin(t’ +27N) =sin(t') =y

Claim. A = AU ({0} x [-1,1)).
Proof. We show the (D) inclusion first.

Let (z,y) € AU ({0} x [—1,1]). If (z,y) € A, we’re done. Otherwise, x = 0 and y € [—1, 1].
Given any neighborhood B, ((z,y)) of (z,y), we can choose by our lemma some 0 < t < 7
such that sin(}) = y, so that (¢,sin(1)) € 4 and |(z,y) — (¢,sin(3))| = [t| < r. In other
words, B, ((x,y)) intersects A. So, (z,y) € A.

For the other inclusion, let (z,y) € A. Since A C [0,00) x [—1, 1] which is closed, we must
have A C [0,00) x [~1,1], s0 £ > 0 and y € [~1,1]. If z = 0, then (z,y) € {0} x [~1,1] and
we're done. Otherwise, z > 0. We’ll show that y = sin(%) by showing |y — sin(%)] < ¢ for
every € > 0. Given € > 0, choose by continuity some ¢ > 0 such that if |z — 2’| < §, then
sin2) ~ sin(2)
every (z’,y’) € U satisfies |z — 2’| < ¢ and |y’ — y| < §. Since (z,y) € A, we can find
(z’,y") € UN A, so that y = sin( L ), and hence
() -sn(5)
sin( — | —sin| - ]| <e
z’ T

So, y = sin(2) and hence (z,y) € A C AU ({0} x [-1,1]).

< 5. Then, there exists a neighborhood U of (z,y) sufficiently small so that

(1 e
y—smz gy—sm; +

Both inclusions show A = AU ({0} x [—1,1]) as needed. [ ]

Finally, we show that A is not path connected. The following proof was adapted from
Munkres.
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Suppose for the sake of contradiction that A is path connected, so that there exists a path
v :10,1] — A from (0,0) to some point (z,,y,) € A.

The preimage v/ ~1 ({0} x [—1,1]) is closed by continuity, so it has a largest element b and so,
since A = AU ({0} x [~1,1]), the image ' ((b, 1]) is contained in A. By translating and

scaling as necessary, we obtain a continuous map v : [0,1] — A where v(0) = b € {0} x [—1,1]
and y(t) € A for t > 0, which is to say v(t) = (x(t),y(t)) for some continuous z,y : [0,1] = R

where z(t) = 0 and y(t) = m for ¢t > 0.

We define sequences (u,, ), (t,,) as follows: for each n, choose by our lemma some some
z(0)=0<u, < x(%) such that sin(%) = (—1)"™ and apply the intermediate value theorem to
 to obtain some 0 < t, < % such that z(t,) = u,,.

Then, the sequence (t,,) converges to 0, but the sequence y(t,) = sin(x(% )) = sin(%) =

(—1)™ does not converge, contradicting continuity of y.

Thus, A C R? is a path connected set whose closure is not path connected, so it is not true
that the closure of path connected sets is always path connected. ]
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Q4

Show that an open connected subset U of R™ is path-connected.
Answer.
Recall that we defined connected-ness to exclude empty sets, so U # 0 and fix z, € U. Define

S = {z € U : there exists a path in U from z, to x}

We claim that S is both open and closed in U.

For S open, let € S be arbitrary. Since « € U, and U is open, there exists € > 0 such that
the ball B_(z) C U. We'll show that every ’ € B.(x) is also in S. Fix 2’ € B_(z). Since balls
in R™ are convex, the straight line path connecting = and z’ lies in B, (x) and therefore in U.
Since z is connected to z via a path in U and z is connected to z’ via a path in U, we have
a path from z to x’ lying in U, so that 2’ € S. Thus, S is open.

Now, for S closed, we use the equivalence of closure and sequential closure in metric spaces.
Let z € S (where S is the closure in U), so that there exists a sequence (z,,) in S converging
to z. Since x € U, we have some € > 0 such B_(z) C U, and since z,, — x, we have some

N € N such that zy € B,(x). Again, balls are convex, so the straight line path connecting
zy and z lies in B_(z) and therefore in U, and so, since z; is connected to x5 via a path in
U and z is connected to  via a path in U, we have a path from z, to = via a path in U.
Thus, S contains its closure and hence is closed.

Now, the constant path gives a path from x to itself, so certainly z, € S, and hence S is
not-empty. But, given that U is connected, the only non-empty, clopen subset of U is U itself,
so that S = U. In other words, every « € U is connected to z, via a path in U, but then, U
itself is path-connected, since given any two z,y € U, we can combine the paths from x to z
and from z;, to y to obtain a path from z to y.

Thus, open connected subsets of R™ are path connected. ]
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Q5

Let X be an uncountable set.

(a)
(b)

Show that the finite complement topology on X is compact.
Is the countable-complement topology on X compact?

Answer.

(a)

Let U = {U,} be an open cover of X. Fix U, € U. Since U, is open, its complement is
finite, so write U3 = {z;,...,z,} and let, for each 1 <1 < n, a; be such that z; € U,, .
Then,

X=U, uUs CcU, U (Uoz1 U U Uan)

so that {Uao, . Uan} is a finite subcover of U.
Thus, every open cover of X has a finite subcover, so X is compact.

No. We will exhibit a closed subspace of X which is not compact. First, we show that
subspaces of X also have the countable-complement topology.

Lemma. Let S C X have the subspace topology. Then, the topology on S is the
countable-complement topology.

Proof. Let U C S be open in the subspace topology. Then, U = S N U’ where U’ is open
in X, which is to say either U’ = () in which case U = ) is open, or X \ U’ is countable
so that

S\U=8\U" c X\U’
must also be countable, so U is open in the countable-complement topology on S.

Conversely, suppose U C S is open in the countable-complement topology. If U = §), then
obviously U is open in the subspace topology on S as well. Otherwise, S \ U is countable
and U = SN (S°UU) where S¢UU is open in X because

X\ (SUU)=(X\S)NX\U=85\U
is countable.
Thus, the subspace topology on S is equal to the countable complement topology on S. m
Since X is infinite, it has a countable subspace, call it N' = {z, x,, z5, ...}.

Note that NV is closed, since its complement has a countable complement (namely, N')
and hence is open.

Now, for each z;, the singleton {z,} has countable V-complement, so is open in the
subspace NV, by our lemma. Therefore, the set & = {{ml}}z , forms an open cover of V.
But, U can have no finite subcover, since any finite union of elements in U is finite, and
therefore can not contain N.

So, NV is closed but not compact. Since X has a closed but not compact subspace, we
have by the contrapositive of the “closed subspaces of compact spaces are compact”
theorem from class that X is not compact. [ |
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Q6

Show that every compact subspace A of a metric space M is closed and bounded.
Is the converse true?

Answer.

Let M be a metric space and A C M be compact.

We show boundedness first. Fix some z, € M and consider & = {B,.(z,) : r > 0}. Clearly, &
is an open cover of A, since given any a € A, the distance d(a, z) is finite and hence in

B, (z) for some r > 0. By compactness of A, U has a finite subcover B, (zy), ..., B, (zg)-
Taking r = max{ry,...,r, }, we then have A C B,.(z,), so A is bounded.

For closedness of A, recall that every metric space is Hausdorff, since given any two points
d(z,y)

z,y, the balls of radius =5 centered at x,y separate them, and we showed in class that
compact subspaces of Hausdorff spaces are closed.

Thus, every compact subspace A of a metric space M is closed and bounded. [ ]
No, the converse is not true. Let M = R with the bounded metric, i.e

d(z,y) = min(|z —y[, 1)

Under this metric, R is a closed and bounded subset of itself, but is not compact because the
above metric induces the standard topology on R under which R is not compact, as was
shown in class.
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Q7
Show that if A and B are disjoint compact subsets of a Hausdorff space X, then there exists
disjoint open sets U and V in X such that AC U and BC V.

Answer.
We first show that we can separate individual points of A from the entirety of B.
Claim. For each x € A, there exist disjoint open sets U, V,,, such that x € U, and B C V,,.

Proof. Let x € A. For each y € B, we have x # y, since A, B are disjoint, so choose by the
Hausdorfl condition some disjoint open sets ®,, ¥, such that z € ®,,y € ¥, .

Then, the collection of all ¥, form an open cover of B, so by compactness of B, we get

Y151 Yp sO that ¥, ..., ¥, = cover B. Set

U, = ﬂ ®, and V, = U v,
i=1 i=1
Clearly, U,,, V,, are open, z € U, and B C V,. Also, U,,V, are disjoint, for if b € V, then b €

¥, for some i and so b ¢ @, by construction, and hence b ¢ U,. [ |

For each x € A, let U, V,, be as in the above claim. Then, the collection of all U, form an
open cover of A, so by compactness of A, we get @y, ...,x,, such that U, ,...,U, cover A.
Then, set

U= OU% and V= ﬁvxi
i=1 i=1

Clearly, U,V are open. By choice of the z;, we have A C U, and since B C Va, for each i, we
also have B C V. Moreover, U,V are disjoint, for if a € U, then a € U, for some i and so a ¢
V.., by construction, and hence a ¢ V. [ |
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