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Question 2

Let x1, x5, ... be a sequence of points in a product space [[ X,. Show that this sequence
converges to the point z iff 7 (x,) — 7, (x) for every a. Is the same fact true in the box
topology?

Answer.

[e.o]

(=>) Suppose the sequence (z),~
open neighborhood of 7, (z). Then 7,1 (U) is an open neighborhood of x, so there exists
N € N such that k > N implies z;, € n*(U). Then, if k > N, we have 7 (z;) €
m,(mo 1 (U)) C U. That is, if k > n, then 7, (z;) € U. Thus, for every open neighborhood

o3

converges to z. Let a be arbitrary and U C X, be an

of 7, (x), the sequence 7, (z;) eventually resides in said neighborhood, so 7, (x})
converges to m,(x), for every a.

(<) Suppose the sequence 7, (z;) converges to m,(x) for every a. Let U be an open
neighborhood of z and let B C U be a basic set containing x. Then, for some ay, ..., ®,,,
and U, , ..., U,

o, We have
m

B = 7T_1<Ua1) n... ﬂﬂ'&}n (Uam>

g

, we have 7, (z) € U, _, for each 1 <4 < m. Since the
(z), we thus have for each 1 <i < m, some N; € N

) €U,,. Weset N =max;,,,, N;. Then, if n > N, we
have for every 1 <i <m, m, (z,) € U, , which is to say

i

In particular, since x € 7! (Ua_>
sequence 7, (z;) converges to m,
such that n > N, implies 7, (z

3 n

T Eﬂ_l(Ual) ﬂ...ﬂﬂ';}n(U m) =B

n oy a
Thus, if n > N, z,, € B C U. Therefore, for every open neighborhood of z, the sequence

(x) eventually resides in said neighborhood, so (z;,) converges to x.

Both implications demonstrate that the sequence (x) converges to z if and only if the
sequence (m,(z;)) converges to 7, (z) for every a.

No, the same fact is not true in the box topology. While convergence of the sequence (z;)
does imply the convergence of the sequence 7, (z;) to 7, (z) for every a (the same proof
works unchanged), the reverse implication no longer holds.

To see why, consider the product space HieN R and the sequence
2, =(1,1,..,1,0,0,..,)
N —— —
k times
That is, x;, is the sequence where the first k elements are 1, and the remaining are 0.

Let z € HieNR be the sequence which is constantly 1, z = (1,1,1,...). It is easy to see that
m;(z),) converges to m;(z) for every ¢ € N, for the sequence ,(x;) is constantly 1 after the
first ¢ terms.

On the other hand, it is impossible for the sequence (z;) to converge to x. Consider the
neighborhood
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which is open in the box topology and contains x. For any N € N, the sequence element
Ty, ¢ U, for it’s (N + 2)th element is zero and therefore not in (%, %) Thus, it’s impossible
for any tail of the sequence to reside in U, so (x) can not converge to x in the box topology.
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Question 3

Let R*™ be the subset of RN consisting of the sequences that are almost always 0 - meaning,
that are not zero only for finitely many indices. What is the closure of R*® in RN in the box
and in the cylinders topology?

Answer. The closure of R*® is R® in the box topology and RN in the cylinders topology.
Closure in the box topology. We show that if z € RN is not in R®, then z ¢ R°°.

Let z € RN \ R*. For each i € N, define
=0
i (:cz — @, z; + %) otherwise

and set

v=][v

€N

Then, U is an open neighborhood of z, since each U, is open and z; € U, for every ¢ by
construction. We claim that U can not intersect R*. Let y € U. Since z ¢ R*°, there is
an infinite sequence ky, k,, ... such that z;, # 0. For each such k;, we have

elU, =|=z —‘xki x +|xki
Yk, k; k; 5 Tk B

which necessitates yj, # 0. Since y is non-zero at infinitely many points, it can’t be in

R*°. Thus, U is an open neighborhood of & not intersecting R, so = ¢ R°°.
Therefore, R® = R*. ]
Closure in the cylinders topology. We show that the entirety of RN is in R,

Let z € RN and B be a basic neighborhood of . Then, for some i, ...,i, € N and open
sets U, ,...,U; C R, we have

B = W’l(Uil) n.. ﬂﬂ';kl(Ui )

il
Define y € RY by
Ty 1 E {lgy.nyt
o il

0 otherwise

It is clear that y € R*, for y, can be non-zero only if i € {4, ...,4;} which is a finite set.
Also, y € B, for m;(y) = z; € U, for each i € {iq,...,4;}.

Thus, every open neighborhood of z intersects R, so £ € R*® and hence R*® = RN, as
needed. ]
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Question 4
Show that R x R in the dictionary order topology is metrizable.

Answer. Recall the result of Question 4 in HW3, where we showed that the dictionary order
topology on R x R was in fact equal to the product topology on R; x R, where R, is R with
the discrete topology. Thus, it suffices to show that the product of metric topologies is
metrizable, which we do in the following lemma.

Lemma. Let XY be metric spaes with metrics dy, dy respectively. Then, the product
topology on X x Y is metrizable.

Proof. Define d: (X xY) x (X xY) — R by

d((z1,91), (T2, 92)) = dx (21, 32) + dy (Y1, Y2)
Then, d is always non-negative, for dy, dy are always non-negative, and
d((z1,91), (22,92)) = 0 <= dx(21,75) = 0 and dy (y;,9,) =0
=z, =29 and y; = Y,
= (z1,91) = (%2, Y2)

Similarly, since dx, dy- are symmetric,

d((z1,v1), (T9,Ys)) = dx (T, 25) + dy (Y1, Ys)
= dy (2o, 1) + dy (Yo, y;)
= d((73,92), (z1,91))

so d is symmetric. Finally, by the triangle inequality on dy, dy-, we have

d((z1, 1), (%3,93)) = dx (21, 23) + dy (y1,Y3)
< dx(zy,23) +dx(3g,23) + dy (Y1, Y2) + dy (Y2, ¥3)
= dx (@1, %3) + dy (Y1, Y2) + dx (22, T3) + dy (Y2, Y3)
=d((z1,91): (%2, 92)) + d((z2,Y2), (%3, ¥3))

so d satisfies the triangle inequality.

Finally, we show that the metric topology induced by d is equal to the product topology. Let
(pq) € X XY.

Suppose B be a basic set of the product topology containing (p, q). Then, we have r,s > 0
such that B, (p) x By(q) C B. Setting t = min(r, s), we claim that B,((p,q)) C B, (p) x B,(q).
Indeed, if (u,v) € B,((p,q)), then we have

dX(uap) + dY(U7 Q) <t

so, since both dy,dy are non-negative, we have both dy (u,p) <t <r and dy(v,q) <t <s
and hence (u,v) € B,.(p) x B,(q).

Conversely, suppose B is a basic set of the metric topology induced by d containing (p, q).
Then, we have € > 0 such that B.((p,q)) C B. We claim that B, 5(p) x B, 5(q) C B.((p,q))-
Indeed, if (u,v) € B, 5(p) x B./2(q), then dx(u,p) < 5 and dy(v,q) < 5, so

d((u,v), (p, ) = dx (u,p) + dy(v,q) < g n g —c
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Thus, the metric topology induced by d and the product topology of X,Y are each finer than
the other, so they’re equal. Therefore, the product topology of the metric spaces X,Y is
metrizable. [ |

Since we know the order topology on R x R is equal to the product topology on R; x R, and
we’ve already seen in class that the discrete topology and the standard topology are
metrizable, the lemma above gives us metrizability of R x R in the dictionary order topology.
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Question 5
Let X be a metric space with metric d.

(a) Show that d : X x X — R is continuous.
(b) Show that the metric topology on X is the weakest (coarsest, smallest) topology on X
relative to which d : X x X — R is continuous.

Answer.

(a) It suffices to show that the d-preimage of basic sets is open. Let (a,b) C R be a basic
open set and define

W ={(p,q) € X x X :d(p,q) < a}
U={(p,q) € X x X :d(p,q) <b}

Now, if b < 0, then d~1((a,b)) = 0 so we're done. Thus, we assume b > 0.

It is easy to see that d~1((a,b)) = WeNU, for if (p,q) € d*((a,b)) then a < d(p, q) so
(p,q) ¢ W and d(p,q) < b so (p,q) € U. Conversely, if (p,q) ¢ W and (p,q) € U, then
a<d(p,q) <b,so (p,q) €d((a,b)).

We claim that W is closed, so that W€ is open, and that U is open, so the equation
d71((a,b)) = WeNU writes the d-preimage of (a,b) as an intersection of open sets and
hence open.

We first show W closed. Let (p,q) € W. It suffices to show that d(p,q) < a + ¢ for every
€ > 0. Indeed, given € > 0, the set B, 5(p) X B,/5(g) is an open neighborhood of (p, q)
and hence must intersect W in some point (z,y), so that

d(p,q) <d(p,z) +d(z,q) triangle inequality
<d(p,x) + d(z,y) + d(y, q) triangle inequality
€ €
<§+CL—|—§ xeBs/?(p)7yeBs/2(Q)7and (1',:1/) ew
<a+t+e

Therefore, d(p,q) < a, so (p,q) € W. Since W contains its closure, it is closed.

Next, we show that U is open. We claim the following equality:

v= U UB@ x5,

0<r<b xzeX

If (p,q) is in the union, then there exists 0 < r < b and z € X such that p € B,(z) and
q € By_,.(x), so that

d(p,q) < d(p,x) +d(z,q) <r+(b—r)=>

and hence (p, q) € U. Conversely, suppose (p,q) € U. Now, if p = ¢, then we can take r =
% >0 and z = p = q to get (p, q) in the union. Otherwise, 0 < d(p, q) < b, so setting r =
d(p,q) and x = ¢, we get p € B,.(¢) and ¢ € B,_,.(q) and hence (p,q) in the union.

Thus, we can write U as a union of open sets, so U is open.

Since W is closed and U is open, we have d~!((a,b)) = W°NU is a finite intersection of
open sets and hence open.

Since the d-preimage of basic sets is open, d is continuous. ]
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(b) Let T be a topology on X which makes d continuous. We claim that I contains the basic
sets of the metric topology; closure of topologies under finite intersections and arbitrary
unions will then show that J contains the metric topology.

So, let x € X and € > 0. Let (z,-) : X — X x X be the “pairing” function with z, that is
(z,-)(y) = (x,y). Note that this is continuous since composing with the first projection
yields a constant function and composing with the second projection yields the identity.

Thus, the composition d o (z, ) is also continuous. We claim that
B.(z) = (do (,-)) " (—o0,¢)
This is easy to see; if y € B_(z), then
(de(z,-)(y) = d((z,)(y)) = d(z,y) <e
so B_(z) C (d o (z,-)) " (—o0,¢). Conversely, if y € (d o (z,-)) " (—o0, ), then
d(z,y) = (d(z,-)(y) <e
soy € B.(z).

Therefore, B_(x) is the preimage of a continuous function and hence open in 7. Thus, T
contains every ball, and hence must contain the entirety of the metric topology.

Since any topology making d continuous must contain the metric topology, and the
metric topology makes d continuous (by (a)), we have the result: the metric topology on
X is the coarsest one making d continuous. ]
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Question 6
With the same notation as in Q3, what is the closure of R*® in RN using the uniform
topology, defined by the metric d(z,y) = sup,(min(1, |z, — y|))

Answer.

Define the set

Coz{xeRNyhm xn:O}

n—oo

We claim that R>® = C,.

(C) Let x € R®. We show z converges to zero. Let € > 0 be given. Since 2 € R>, there
exists y € B_(x) NR*°. Since y is non-zero at only finitely many points, there exists some
N € N such that y,, = 0 if n > N. Then, if n > N, we have

|z, =0 = |z, —yn| < d(z,y) <e

Thus, lim =0 and so z € C,.

n—oo wn

(D) Let z € C,. It suffices to show that every ball centered at z intersects R*>°. So, let € > 0
and consider the ball B_(x). Since x converges to 0, there exists N € N such that |z, —
0] < £ for n > N. Define y € RN by
Y =

0 k>N

It is clear that y € R*°, for it can be non-zero only in the first N entries. We claim that
y € B_(z). Indeed,
d(x7 y) = sup(min(l, |xk - yk’))
keN

= sup (min(1, |z, —y|)) since x;, =y, for k < N
k>N

= sup (min(1, |z;|)) Yy, =0for k>N
k>N

< sup (min(l, E)) |z,| < Sfork>N
k>N 2 2

€
< -
2

<eg

Thus, every ball centered at = intersects R>, so every open neighborhood of x intersects
R*°, and hence x € R>°.

Both inclusions show that the closure of R* in the uniform topology is the set of sequences
converging to zero. [ |
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Question 7

With the same “uniform metric” as in the previous question, with some fixed x =

(71, Zy,...) € RN, and with some 0 < r < 1, let U(x,r) = Oy (x), —r, 7, +7) (a product of
intervals). Show that

(a) U(z,r) is not equal to the ball B, (x).

(b) U(z,r) is not even open in the uniform topology.

(¢) B.(x) =U,_, Ulz,s).

Answer.

(a) We'll exhibit an element of U(x,r) missing from B,.(z). Consider y € RN defined by

1
= 1—=
Yk wk—i—r( k)

Note, then, that y € U(x, ), since for every k € N, we have

1
xk—r<xk+r(1—%) <zp+rT

On the other hand, y ¢ B, (), since

d(z,y) = sgp(min(l, |z, — Yk )

=11 5))
“w((og))  reerliog) e

=r
So U(z,r) # B(z,T).
(b) Take y € RN to be as in (a), that is

1
— 1- =
Yk mk‘H“( k)

We saw in (a) that y € U(z,r). If U were open, then there must exist some ¢ > 0 such
that Bs(y) C U. We will show that no such § can exist.

Let 6 > 0 and define z € RN by 2z, =y, + §/2. Then, z € B;(y) since
d(y, 2) = sup(min(1, [y, — 2[))

= sup(min(1,4/2))

k
0
S —
2
<6
. 1 k—o0 .
But, z ¢ U(z, ), as we now show. Since 7"(1 — E) —— 7, we have some k, sufficiently

large such that ]r(l — %) —rl < g, but then

) 1 0
zkozyk0+§:xko+r 1_k_0 +§>:vk0+'r
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so that 2, ¢ U, and hence z ¢ U(z,r).
Since every open ball centered at y € U(z,r) leaves U(z,r), U can not be open. [ |

(c) Let y € B,(x). Then, d(z,y) < r so there exists some s such that d(z,y) < s < r. Now,
for every k € N, we have

lyp — 2| < d(z,y) < s

which implies y;, € (z), — s, 5, + s) so that y € U(z, s) and hence, since s <, y €
U,., Ulz,s). So, B.(z) cU,_, Ulz,s).

In the other direction, suppose y € UKT U(z,s) so that y € U(z, s) for some s < r. Then,
|y, — x| < s for every k € N, so

d(w,y) = sup(min(L, |z = yy[))
< sup(min(1, s))
k
<s
<r

and hence y € B,.(z). So, J_ U(z,s) C B,.(z).

Both inclusions show the desired equality: B,.(z) = _ Uz, s). [

10



MAT327 - HW5

Disclaimers (added October 16th)

e In Q3, when showing R* is closed, setting

“7 IR\ {0} otherwise

makes for a much cleaner proof. Not much changes, but it’s easier to argue why y € U =
I1._. U; can not be in R*.
1eN 77

11
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