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Question 2
Let 𝑥1, 𝑥2, … be a sequence of points in a product space ∏ 𝑋𝛼. Show that this sequence
converges to the point 𝑥 iff 𝜋𝛼(𝑥𝑘) → 𝜋𝛼(𝑥) for every 𝛼. Is the same fact true in the box
topology?

Answer.

(⟹) Suppose the sequence (𝑥𝑘)∞
𝑘=1 converges to 𝑥. Let 𝛼 be arbitrary and 𝑈 ⊂ 𝑋𝛼 be an

open neighborhood of 𝜋𝛼(𝑥). Then 𝜋−1
𝛼 (𝑈) is an open neighborhood of 𝑥, so there exists 

𝑁 ∈ ℕ such that 𝑘 > 𝑁  implies 𝑥𝑘 ∈ 𝜋−1
𝛼 (𝑈). Then, if 𝑘 > 𝑁 , we have 𝜋𝛼(𝑥𝑘) ∈

𝜋𝛼(𝜋−1
𝛼 (𝑈)) ⊂ 𝑈 . That is, if 𝑘 > 𝑛, then 𝜋𝛼(𝑥𝑘) ∈ 𝑈 . Thus, for every open neighborhood

of 𝜋𝛼(𝑥), the sequence 𝜋𝛼(𝑥𝑘) eventually resides in said neighborhood, so 𝜋𝛼(𝑥𝑘)
converges to 𝜋𝛼(𝑥), for every 𝛼.

(⟸) Suppose the sequence 𝜋𝛼(𝑥𝑘) converges to 𝜋𝛼(𝑥) for every 𝛼. Let 𝑈  be an open
neighborhood of 𝑥 and let 𝐵 ⊂ 𝑈  be a basic set containing 𝑥. Then, for some 𝛼1, …, 𝛼𝑚,
and 𝑈𝛼1

, …, 𝑈𝛼𝑚
, we have

𝐵 = 𝜋−1
𝛼1

(𝑈𝛼1
) ∩ … ∩ 𝜋−1

𝛼𝑚
(𝑈𝛼𝑚

)

In particular, since 𝑥 ∈ 𝜋−1
𝛼𝑖

(𝑈𝛼𝑖
), we have 𝜋𝛼𝑖

(𝑥) ∈ 𝑈𝛼𝑖
, for each 1 ≤ 𝑖 ≤ 𝑚. Since the

sequence 𝜋𝛼𝑖
(𝑥𝑘) converges to 𝜋𝛼𝑖

(𝑥), we thus have for each 1 ≤ 𝑖 ≤ 𝑚, some 𝑁𝑖 ∈ ℕ
such that 𝑛 > 𝑁𝑖 implies 𝜋𝛼𝑖

(𝑥𝑛) ∈ 𝑈𝛼𝑖
. We set 𝑁 = max1≤𝑖≤𝑚 𝑁𝑖. Then, if 𝑛 > 𝑁 , we

have for every 1 ≤ 𝑖 ≤ 𝑚, 𝜋𝛼𝑖
(𝑥𝑛) ∈ 𝑈𝛼𝑖

, which is to say

𝑥𝑛 ∈ 𝜋−1
𝛼1

(𝑈𝛼1
) ∩ … ∩ 𝜋−1

𝛼𝑚
(𝑈𝛼𝑚

) = 𝐵

Thus, if 𝑛 > 𝑁 , 𝑥𝑛 ∈ 𝐵 ⊂ 𝑈 . Therefore, for every open neighborhood of 𝑥, the sequence 
(𝑥𝑘) eventually resides in said neighborhood, so (𝑥𝑘) converges to 𝑥.

Both implications demonstrate that the sequence (𝑥𝑘) converges to 𝑥 if and only if the
sequence (𝜋𝛼(𝑥𝑘)) converges to 𝜋𝛼(𝑥) for every 𝛼. ∎

No, the same fact is not true in the box topology. While convergence of the sequence (𝑥𝑘)
does imply the convergence of the sequence 𝜋𝛼(𝑥𝑘) to 𝜋𝛼(𝑥) for every 𝛼 (the same proof
works unchanged), the reverse implication no longer holds.

To see why, consider the product space ∏𝑖∈ℕ ℝ and the sequence

𝑥𝑘 = (1, 1, ..., 1⏟⏟⏟⏟⏟
𝑘 times

, 0, 0, …, )

That is, 𝑥𝑘 is the sequence where the first 𝑘 elements are 1, and the remaining are 0.

Let 𝑥 ∈ ∏𝑖∈ℕ ℝ be the sequence which is constantly 1, 𝑥 = (1, 1, 1, …). It is easy to see that 
𝜋𝑖(𝑥𝑘) converges to 𝜋𝑖(𝑥) for every 𝑖 ∈ ℕ, for the sequence 𝜋𝑖(𝑥𝑘) is constantly 1 after the
first 𝑖 terms.

On the other hand, it is impossible for the sequence (𝑥𝑘) to converge to 𝑥. Consider the
neighborhood
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𝑈 = ∏
𝑖∈ℕ

(
1
2
,
3
2
)

which is open in the box topology and contains 𝑥. For any 𝑁 ∈ ℕ, the sequence element 
𝑥𝑁+1 ∉ 𝑈 , for it’s (𝑁 + 2)th element is zero and therefore not in (1

2 , 3
2). Thus, it’s impossible

for any tail of the sequence to reside in 𝑈 , so (𝑥𝑘) can not converge to 𝑥 in the box topology.
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Question 3
Let ℝ∞ be the subset of ℝℕ consisting of the sequences that are almost always 0 - meaning,
that are not zero only for finitely many indices. What is the closure of ℝ∞ in ℝℕ in the box
and in the cylinders topology?

Answer. The closure of ℝ∞ is ℝ∞ in the box topology and ℝℕ in the cylinders topology.

Closure in the box topology. We show that if 𝑥 ∈ ℝℕ is not in ℝ∞, then 𝑥 ∉ ℝ∞.

Let 𝑥 ∈ ℝℕ \ ℝ∞. For each 𝑖 ∈ ℕ, define

𝑈𝑖 =
⎩{
⎨
{⎧(−1, 1) 𝑥𝑖 = 0

(𝑥𝑖 − |𝑥𝑖|
2 , 𝑥𝑖 + |𝑥𝑖|

2 ) otherwise

and set

𝑈 = ∏
𝑖∈ℕ

𝑈𝑖

Then, 𝑈  is an open neighborhood of 𝑥, since each 𝑈𝑖 is open and 𝑥𝑖 ∈ 𝑈𝑖 for every 𝑖 by
construction. We claim that 𝑈  can not intersect ℝ∞. Let 𝑦 ∈ 𝑈 . Since 𝑥 ∉ ℝ∞, there is
an infinite sequence 𝑘1, 𝑘2, … such that 𝑥𝑘𝑖

≠ 0. For each such 𝑘𝑖, we have

𝑦𝑘𝑖
∈ 𝑈𝑘𝑖

= (𝑥𝑘𝑖
−

|𝑥𝑘𝑖
|

2
, 𝑥𝑘𝑖

+
|𝑥𝑘𝑖

|
2

)

which necessitates 𝑦𝑘𝑖
≠ 0. Since 𝑦 is non-zero at infinitely many points, it can’t be in 

ℝ∞. Thus, 𝑈  is an open neighborhood of 𝑥 not intersecting ℝ∞, so 𝑥 ∉ 𝑅∞.

Therefore, 𝑅∞ = ℝ∞. ∎

Closure in the cylinders topology. We show that the entirety of ℝℕ is in ℝ∞.

Let 𝑥 ∈ ℝℕ and 𝐵 be a basic neighborhood of 𝑥. Then, for some 𝑖1, …, 𝑖𝑘 ∈ ℕ and open
sets 𝑈𝑖1

, …, 𝑈𝑖𝑘
⊂ ℝ, we have

𝐵 = 𝜋−1
𝑖1

(𝑈𝑖1
) ∩ … ∩ 𝜋−1

𝑖𝑘
(𝑈𝑖𝑘

)

Define 𝑦 ∈ ℝℕ by

𝑦𝑖 = {𝑥𝑖 𝑖 ∈ {𝑖1, …, 𝑖𝑘}
0 otherwise

It is clear that 𝑦 ∈ ℝ∞, for 𝑦𝑖 can be non-zero only if 𝑖 ∈ {𝑖1, …, 𝑖𝑘} which is a finite set.
Also, 𝑦 ∈ 𝐵, for 𝜋𝑖(𝑦) = 𝑥𝑖 ∈ 𝑈𝑖 for each 𝑖 ∈ {𝑖1, …, 𝑖𝑘}.

Thus, every open neighborhood of 𝑥 intersects ℝ∞, so 𝑥 ∈ ℝ∞ and hence ℝ∞ = ℝℕ, as
needed. ∎
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Question 4
Show that ℝ × ℝ in the dictionary order topology is metrizable.

Answer. Recall the result of Question 4 in HW3, where we showed that the dictionary order
topology on ℝ × ℝ was in fact equal to the product topology on ℝ𝑑 × ℝ, where ℝ𝑑 is ℝ with
the discrete topology. Thus, it suffices to show that the product of metric topologies is
metrizable, which we do in the following lemma.

Lemma. Let 𝑋, 𝑌  be metric spaes with metrics 𝑑𝑋, 𝑑𝑌  respectively. Then, the product
topology on 𝑋 × 𝑌  is metrizable.

Proof. Define 𝑑 : (𝑋 × 𝑌 ) × (𝑋 × 𝑌 ) → ℝ by

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = 𝑑𝑋(𝑥1, 𝑥2) + 𝑑𝑌 (𝑦1, 𝑦2)

Then, 𝑑 is always non-negative, for 𝑑𝑋, 𝑑𝑌  are always non-negative, and

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = 0 ⟺ 𝑑𝑋(𝑥1, 𝑥2) = 0 and 𝑑𝑌 (𝑦1, 𝑦2) = 0
⟺ 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2

⟺ (𝑥1, 𝑦1) = (𝑥2, 𝑦2)

Similarly, since 𝑑𝑋, 𝑑𝑌  are symmetric,

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = 𝑑𝑋(𝑥1, 𝑥2) + 𝑑𝑌 (𝑦1, 𝑦2)
= 𝑑𝑋(𝑥2, 𝑥1) + 𝑑𝑌 (𝑦2, 𝑦1)
= 𝑑((𝑥2, 𝑦2), (𝑥1, 𝑦1))

so 𝑑 is symmetric. Finally, by the triangle inequality on 𝑑𝑋, 𝑑𝑌 , we have

𝑑((𝑥1, 𝑦1), (𝑥3, 𝑦3)) = 𝑑𝑋(𝑥1, 𝑥3) + 𝑑𝑌 (𝑦1, 𝑦3)
≤ 𝑑𝑋(𝑥1, 𝑥2) + 𝑑𝑋(𝑥2, 𝑥3) + 𝑑𝑌 (𝑦1, 𝑦2) + 𝑑𝑌 (𝑦2, 𝑦3)
= 𝑑𝑋(𝑥1, 𝑥2) + 𝑑𝑌 (𝑦1, 𝑦2) + 𝑑𝑋(𝑥2, 𝑥3) + 𝑑𝑌 (𝑦2, 𝑦3)
= 𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) + 𝑑((𝑥2, 𝑦2), (𝑥3, 𝑦3))

so 𝑑 satisfies the triangle inequality.

Finally, we show that the metric topology induced by 𝑑 is equal to the product topology. Let 
(𝑝, 𝑞) ∈ 𝑋 × 𝑌 .

Suppose 𝐵 be a basic set of the product topology containing (𝑝, 𝑞). Then, we have 𝑟, 𝑠 > 0
such that 𝐵𝑟(𝑝) × 𝐵𝑠(𝑞) ⊂ 𝐵. Setting 𝑡 = min(𝑟, 𝑠), we claim that 𝐵𝑡((𝑝, 𝑞)) ⊂ 𝐵𝑟(𝑝) × 𝐵𝑠(𝑞).
Indeed, if (𝑢, 𝑣) ∈ 𝐵𝑡((𝑝, 𝑞)), then we have

𝑑𝑋(𝑢, 𝑝) + 𝑑𝑌 (𝑣, 𝑞) < 𝑡

so, since both 𝑑𝑋, 𝑑𝑌  are non-negative, we have both 𝑑𝑋(𝑢, 𝑝) < 𝑡 ≤ 𝑟 and 𝑑𝑌 (𝑣, 𝑞) < 𝑡 ≤ 𝑠
and hence (𝑢, 𝑣) ∈ 𝐵𝑟(𝑝) × 𝐵𝑠(𝑞).

Conversely, suppose 𝐵 is a basic set of the metric topology induced by 𝑑 containing (𝑝, 𝑞).
Then, we have 𝜀 > 0 such that 𝐵𝜀((𝑝, 𝑞)) ⊂ 𝐵. We claim that 𝐵𝜀/2(𝑝) × 𝐵𝜀/2(𝑞) ⊂ 𝐵𝜀((𝑝, 𝑞)).
Indeed, if (𝑢, 𝑣) ∈ 𝐵𝜀/2(𝑝) × 𝐵𝜀/2(𝑞), then 𝑑𝑋(𝑢, 𝑝) < 𝜀

2  and 𝑑𝑌 (𝑣, 𝑞) < 𝜀
2 , so

𝑑((𝑢, 𝑣), (𝑝, 𝑞)) = 𝑑𝑋(𝑢, 𝑝) + 𝑑𝑌 (𝑣, 𝑞) <
𝜀
2

+
𝜀
2

= 𝜀
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Thus, the metric topology induced by 𝑑 and the product topology of 𝑋, 𝑌  are each finer than
the other, so they’re equal. Therefore, the product topology of the metric spaces 𝑋, 𝑌  is
metrizable. ∎

Since we know the order topology on ℝ × ℝ is equal to the product topology on ℝ𝑑 × ℝ, and
we’ve already seen in class that the discrete topology and the standard topology are
metrizable, the lemma above gives us metrizability of ℝ × ℝ in the dictionary order topology.

∎
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Question 5
Let 𝑋 be a metric space with metric 𝑑.

(a) Show that 𝑑 : 𝑋 × 𝑋 → ℝ is continuous.
(b) Show that the metric topology on 𝑋 is the weakest (coarsest, smallest) topology on 𝑋

relative to which 𝑑 : 𝑋 × 𝑋 → ℝ is continuous.

Answer.

(a) It suffices to show that the 𝑑-preimage of basic sets is open. Let (𝑎, 𝑏) ⊂ ℝ be a basic
open set and define

𝑊 = {(𝑝, 𝑞) ∈ 𝑋 × 𝑋 : 𝑑(𝑝, 𝑞) ≤ 𝑎}
𝑈 = {(𝑝, 𝑞) ∈ 𝑋 × 𝑋 : 𝑑(𝑝, 𝑞) < 𝑏}

Now, if 𝑏 ≤ 0, then 𝑑−1((𝑎, 𝑏)) = ∅ so we’re done. Thus, we assume 𝑏 > 0.

It is easy to see that 𝑑−1((𝑎, 𝑏)) = 𝑊 𝑐 ∩ 𝑈 , for if (𝑝, 𝑞) ∈ 𝑑−1((𝑎, 𝑏)) then 𝑎 < 𝑑(𝑝, 𝑞) so 
(𝑝, 𝑞) ∉ 𝑊  and 𝑑(𝑝, 𝑞) < 𝑏 so (𝑝, 𝑞) ∈ 𝑈 . Conversely, if (𝑝, 𝑞) ∉ 𝑊  and (𝑝, 𝑞) ∈ 𝑈 , then 
𝑎 < 𝑑(𝑝, 𝑞) < 𝑏, so (𝑝, 𝑞) ∈ 𝑑−1((𝑎, 𝑏)).

We claim that 𝑊  is closed, so that 𝑊 𝑐 is open, and that 𝑈  is open, so the equation 
𝑑−1((𝑎, 𝑏)) = 𝑊 𝑐 ∩ 𝑈  writes the 𝑑-preimage of (𝑎, 𝑏) as an intersection of open sets and
hence open.

We first show 𝑊  closed. Let (𝑝, 𝑞) ∈ 𝑊 . It suffices to show that 𝑑(𝑝, 𝑞) < 𝑎 + 𝜀 for every 
𝜀 > 0. Indeed, given 𝜀 > 0, the set 𝐵𝜀/2(𝑝) × 𝐵𝜀/2(𝑞) is an open neighborhood of (𝑝, 𝑞)
and hence must intersect 𝑊  in some point (𝑥, 𝑦), so that

𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝, 𝑥) + 𝑑(𝑥, 𝑞) triangle inequality
≤ 𝑑(𝑝, 𝑥) + 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑞) triangle inequality

<
𝜀
2

+ 𝑎 +
𝜀
2

𝑥 ∈ 𝐵𝜀/2(𝑝), 𝑦 ∈ 𝐵𝜀/2(𝑞), and (𝑥, 𝑦) ∈ 𝑊

< 𝑎 + 𝜀

Therefore, 𝑑(𝑝, 𝑞) ≤ 𝑎, so (𝑝, 𝑞) ∈ 𝑊 . Since 𝑊  contains its closure, it is closed.

Next, we show that 𝑈  is open. We claim the following equality:

𝑈 = ⋃
0<𝑟<𝑏

⋃
𝑥∈𝑋

𝐵𝑟(𝑥) × 𝐵𝑏−𝑟(𝑥)

If (𝑝, 𝑞) is in the union, then there exists 0 < 𝑟 < 𝑏 and 𝑥 ∈ 𝑋 such that 𝑝 ∈ 𝐵𝑟(𝑥) and 
𝑞 ∈ 𝐵𝑏−𝑟(𝑥), so that

𝑑(𝑝, 𝑞) ≤ 𝑑(𝑝, 𝑥) + 𝑑(𝑥, 𝑞) < 𝑟 + (𝑏 − 𝑟) = 𝑏

and hence (𝑝, 𝑞) ∈ 𝑈 . Conversely, suppose (𝑝, 𝑞) ∈ 𝑈 . Now, if 𝑝 = 𝑞, then we can take 𝑟 =
𝑏
2 > 0 and 𝑥 = 𝑝 = 𝑞 to get (𝑝, 𝑞) in the union. Otherwise, 0 < 𝑑(𝑝, 𝑞) < 𝑏, so setting 𝑟 =
𝑑(𝑝, 𝑞) and 𝑥 = 𝑞, we get 𝑝 ∈ 𝐵𝑟(𝑞) and 𝑞 ∈ 𝐵𝑏−𝑟(𝑞) and hence (𝑝, 𝑞) in the union.

Thus, we can write 𝑈  as a union of open sets, so 𝑈  is open.

Since 𝑊  is closed and 𝑈  is open, we have 𝑑−1((𝑎, 𝑏)) = 𝑊 𝑐 ∩ 𝑈  is a finite intersection of
open sets and hence open.

Since the 𝑑-preimage of basic sets is open, 𝑑 is continuous. ∎
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(b) Let 𝒯 be a topology on 𝑋 which makes 𝑑 continuous. We claim that 𝒯 contains the basic
sets of the metric topology; closure of topologies under finite intersections and arbitrary
unions will then show that 𝒯 contains the metric topology.

So, let 𝑥 ∈ 𝑋 and 𝜀 > 0. Let (𝑥, ⋅) : 𝑋 → 𝑋 × 𝑋 be the “pairing” function with 𝑥, that is 
(𝑥, ⋅)(𝑦) = (𝑥, 𝑦). Note that this is continuous since composing with the first projection
yields a constant function and composing with the second projection yields the identity.

Thus, the composition 𝑑 ∘ (𝑥, ⋅) is also continuous. We claim that

𝐵𝜀(𝑥) = (𝑑 ∘ (𝑥, ⋅))−1(−∞, 𝜀)

This is easy to see; if 𝑦 ∈ 𝐵𝜀(𝑥), then

(𝑑 ∘ (𝑥, ⋅))(𝑦) = 𝑑((𝑥, ⋅)(𝑦)) = 𝑑(𝑥, 𝑦) < 𝜀

so 𝐵𝜀(𝑥) ⊂ (𝑑 ∘ (𝑥, ⋅))−1(−∞, 𝜀). Conversely, if 𝑦 ∈ (𝑑 ∘ (𝑥, ⋅))−1(−∞, 𝜀), then

𝑑(𝑥, 𝑦) = (𝑑 ∘ (𝑥, ⋅))(𝑦) < 𝜀

so 𝑦 ∈ 𝐵𝜀(𝑥).

Therefore, 𝐵𝜀(𝑥) is the preimage of a continuous function and hence open in 𝒯. Thus, 𝒯
contains every ball, and hence must contain the entirety of the metric topology.

Since any topology making 𝑑 continuous must contain the metric topology, and the
metric topology makes 𝑑 continuous (by (a)), we have the result: the metric topology on 
𝑋 is the coarsest one making 𝑑 continuous. ∎

7
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Question 6
With the same notation as in Q3, what is the closure of ℝ∞ in ℝℕ using the uniform
topology, defined by the metric 𝑑(𝑥, 𝑦) = sup𝑘(min(1, |𝑥𝑘 − 𝑦𝑘|))

Answer.

Define the set

𝐶0 = {𝑥 ∈ ℝℕ | lim
𝑛→∞

𝑥𝑛 = 0}

We claim that ℝ∞ = 𝐶0.

(⊂) Let 𝑥 ∈ ℝ∞. We show 𝑥 converges to zero. Let 𝜀 > 0 be given. Since 𝑥 ∈ ℝ∞, there
exists 𝑦 ∈ 𝐵𝜀(𝑥) ∩ ℝ∞. Since 𝑦 is non-zero at only finitely many points, there exists some
𝑁 ∈ ℕ such that 𝑦𝑛 = 0 if 𝑛 > 𝑁 . Then, if 𝑛 > 𝑁 , we have

|𝑥𝑛 − 0| = |𝑥𝑛 − 𝑦𝑛| ≤ 𝑑(𝑥, 𝑦) < 𝜀

Thus, lim𝑛→∞ 𝑥𝑛 = 0 and so 𝑥 ∈ 𝐶0.

(⊃) Let 𝑥 ∈ 𝐶0. It suffices to show that every ball centered at 𝑥 intersects ℝ∞. So, let 𝜀 > 0
and consider the ball 𝐵𝜀(𝑥). Since 𝑥 converges to 0, there exists 𝑁 ∈ ℕ such that |𝑥𝑛 −
0| < 𝜀

2  for 𝑛 > 𝑁 . Define 𝑦 ∈ ℝℕ by

𝑦𝑘 = {𝑥𝑘 𝑘 ≤ 𝑁
0 𝑘 > 𝑁

It is clear that 𝑦 ∈ ℝ∞, for it can be non-zero only in the first 𝑁  entries. We claim that 
𝑦 ∈ 𝐵𝜀(𝑥). Indeed,

𝑑(𝑥, 𝑦) = sup
𝑘∈ℕ

(min(1, |𝑥𝑘 − 𝑦𝑘|))

= sup
𝑘>𝑁

(min(1, |𝑥𝑘 − 𝑦𝑘|)) since 𝑥𝑘 = 𝑦𝑘 for 𝑘 ≤ 𝑁

= sup
𝑘>𝑁

(min(1, |𝑥𝑘|)) 𝑦𝑘 = 0 for 𝑘 > 𝑁

≤ sup
𝑘>𝑁

(min(1,
𝜀
2
)) |𝑥𝑘| <

𝜀
2

for 𝑘 > 𝑁

≤
𝜀
2

< 𝜀

Thus, every ball centered at 𝑥 intersects ℝ∞, so every open neighborhood of 𝑥 intersects 
ℝ∞, and hence 𝑥 ∈ ℝ∞.

Both inclusions show that the closure of ℝ∞ in the uniform topology is the set of sequences
converging to zero. ∎
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Question 7
With the same “uniform metric” as in the previous question, with some fixed 𝑥 =
(𝑥1, 𝑥2, …) ∈ ℝℕ, and with some 0 < 𝑟 < 1, let 𝑈(𝑥, 𝑟) = Π𝑘(𝑥𝑘 − 𝑟, 𝑥𝑘 + 𝑟) (a product of
intervals). Show that
(a) 𝑈(𝑥, 𝑟) is not equal to the ball 𝐵𝑟(𝑥).
(b) 𝑈(𝑥, 𝑟) is not even open in the uniform topology.
(c) 𝐵𝑟(𝑥) = ⋃𝑠<𝑟 𝑈(𝑥, 𝑠).

Answer.

(a) We’ll exhibit an element of 𝑈(𝑥, 𝑟) missing from 𝐵𝑟(𝑥). Consider 𝑦 ∈ ℝℕ defined by

𝑦𝑘 = 𝑥𝑘 + 𝑟(1 −
1
𝑘
)

Note, then, that 𝑦 ∈ 𝑈(𝑥, 𝑟), since for every 𝑘 ∈ ℕ, we have

𝑥𝑘 − 𝑟 < 𝑥𝑘 + 𝑟(1 −
1
𝑘
) < 𝑥𝑘 + 𝑟

On the other hand, 𝑦 ∉ 𝐵𝑟(𝑥), since

𝑑(𝑥, 𝑦) = sup
𝑘

(min(1, |𝑥𝑘 − 𝑦𝑘|))

= sup
𝑘

(min(1, 𝑟(1 −
1
𝑘
)))

= sup
𝑘

(𝑟(1 −
1
𝑘
)) 𝑟 < 1 so 𝑟(1 −

1
𝑘
) < 1

= 𝑟

So 𝑈(𝑥, 𝑟) ≠ 𝐵(𝑥, 𝑟). ∎

(b) Take 𝑦 ∈ ℝℕ to be as in (a), that is

𝑦𝑘 = 𝑥𝑘 + 𝑟(1 −
1
𝑘
)

We saw in (a) that 𝑦 ∈ 𝑈(𝑥, 𝑟). If 𝑈  were open, then there must exist some 𝛿 > 0 such
that 𝐵𝛿(𝑦) ⊂ 𝑈 . We will show that no such 𝛿 can exist.

Let 𝛿 > 0 and define 𝑧 ∈ ℝℕ by 𝑧𝑘 = 𝑦𝑘 + 𝛿/2. Then, 𝑧 ∈ 𝐵𝛿(𝑦) since

𝑑(𝑦, 𝑧) = sup
𝑘

(min(1, |𝑦𝑘 − 𝑧𝑘|))

= sup
𝑘

(min(1, 𝛿/2))

≤
𝛿
2

< 𝛿

But, 𝑧 ∉ 𝑈(𝑥, 𝑟), as we now show. Since 𝑟(1 − 1
𝑘) →→→→→→→→→→

𝑘→∞
𝑟, we have some 𝑘0 sufficiently

large such that |𝑟(1 − 1
𝑘0

) − 𝑟| < 𝛿
2 , but then

𝑧𝑘0
= 𝑦𝑘0

+
𝛿
2

= 𝑥𝑘0
+ 𝑟(1 −

1
𝑘0

) +
𝛿
2

> 𝑥𝑘0
+ 𝑟

9
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so that 𝑧𝑘0
∉ 𝑈𝑘0

 and hence 𝑧 ∉ 𝑈(𝑥, 𝑟).

Since every open ball centered at 𝑦 ∈ 𝑈(𝑥, 𝑟) leaves 𝑈(𝑥, 𝑟), 𝑈  can not be open. ∎

(c) Let 𝑦 ∈ 𝐵𝑟(𝑥). Then, 𝑑(𝑥, 𝑦) < 𝑟 so there exists some 𝑠 such that 𝑑(𝑥, 𝑦) < 𝑠 < 𝑟. Now,
for every 𝑘 ∈ ℕ, we have

|𝑦𝑘 − 𝑥𝑘| ≤ 𝑑(𝑥, 𝑦) < 𝑠

which implies 𝑦𝑘 ∈ (𝑥𝑘 − 𝑠, 𝑥𝑘 + 𝑠) so that 𝑦 ∈ 𝑈(𝑥, 𝑠) and hence, since 𝑠 < 𝑟, 𝑦 ∈
⋃𝑠<𝑟 𝑈(𝑥, 𝑠). So, 𝐵𝑟(𝑥) ⊂ ⋃𝑠<𝑟 𝑈(𝑥, 𝑠).

In the other direction, suppose 𝑦 ∈ ⋃𝑠<𝑟 𝑈(𝑥, 𝑠) so that 𝑦 ∈ 𝑈(𝑥, 𝑠) for some 𝑠 < 𝑟. Then,
|𝑦𝑘 − 𝑥𝑘| < 𝑠 for every 𝑘 ∈ ℕ, so

𝑑(𝑥, 𝑦) = sup
𝑘

(min(1, |𝑥𝑘 − 𝑦𝑘|))

≤ sup
𝑘

(min(1, 𝑠))

≤ 𝑠
< 𝑟

and hence 𝑦 ∈ 𝐵𝑟(𝑥). So, ⋃𝑠<𝑟 𝑈(𝑥, 𝑠) ⊂ 𝐵𝑟(𝑥).

Both inclusions show the desired equality: 𝐵𝑟(𝑥) = ⋃𝑠<𝑟 𝑈(𝑥, 𝑠). ∎
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Disclaimers (added October 16th)
• In Q3, when showing ℝ∞ is closed, setting

𝑈𝑖 = {
ℝ 𝑥𝑖 = 0
ℝ \ {0} otherwise

makes for a much cleaner proof. Not much changes, but it’s easier to argue why 𝑦 ∈ 𝑈 =
∏𝑖∈ℕ 𝑈𝑖 can not be in ℝ∞.
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