
MAT327H1 F Homework Assigment 2

October 3, 2024

Question 1. Do readings.

Question 2.

Proof. Let X be a topological space, and A ⊂ X. Assume that ∀x ∈ A, ∃U ⊂ X open
s.t. x ∈ U ⊂ A. We show that A is open in X. For each x ∈ A, denote Ux as the
open set s.t. x ∈ Ux and Ux ⊂ A. Notice that ∀x ∈ A, {x} ⊂ Ux, so it must be that
A =

⋃
x∈A{x} ⊂

⋃
x∈A Ux. Conversely, we have assumed that each Ux ⊂ A, so it must

follow that
⋃

x∈A Ux ⊂ A. This implies that A =
⋃

x∈A Ux, which is the union of sets
which are open in X. Therefore, A is open in X.
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Question 3.

(a)

Proof. We show that Tc is indeed a topology on X. If X is countable, then it is clear
that Tc is the discrete topology on X, as every set must have a countable complement.
Suppose that X is nonempty and uncountable. ∅ ∈ Tc by definition, and X ∈ Tc because
X −X = ∅ is countable. Now suppose that Uα is an indexed family of open sets of X,
with index set J . So ∀α, X − Uα is countable. We show that

⋃
α∈J Uα is open in X. By

DeMorgan’s Law;

X −
⋃
α∈J

Uα =
⋂
α∈J

(X − Uα)

and so of course, for any α0 ∈ J ,
⋂

α∈J(X −Uα) ⊂ X −Uα0 meaning that
⋂

α∈J(X −Uα)
is a subset of a countable set, and is thus countable. Therefore

⋃
α∈J Uα is open in X.

Now suppose that Ui, 1 ≤ i ≤ n is a finite collection of open subsets of X. We show that⋂n
i=1 Ui is open in X. Once again, by DeMorgan’s Law;

X −
n⋂

i=1

Ui =
n⋃

i=1

(X − Ui)

where each X−Ui is countable. A finite union of countable sets is countable, so it follows
that

⋂n
i=1 Ui is indeed open in X. We have shown that the three sufficient conditions

hold for Tc to be a topology on X, so we are done.

(b) We claim that T∞ is not a topology on X.

Proof. Let X = R be equipped with the infinite-complement ”topology”, and fix x ∈ R.
Consider the sets U1, U2 ⊂ R given by U1 = (−∞, x), U2 = (x,∞). U c

1 = [x,∞) and
U c
2 = (−∞, x] are both infinite, so indeed U1, U2 ∈ T∞. However, U1 ∪ U2 is not open in

R under this topology, as the complement is finite; (U1 ∪ U2)
c = ((−∞, x) ∪ (x,∞))c =

(R − {x})c = {x}. Therefore T∞ fails (in this case) to satisfy that arbitrary unions of
open sets are open, and is thus not a topology.
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Question 4.

(a)

Proof. Suppose that {Tα} is a family of topologies on X. We show that
⋂

α Tα is also a
topology on X.

By definition of a topology we have that ∀T ∈ {Tα}, X ∈ T and ∅ ∈ T . There-
fore X ∈

⋂
α Tα and ∅ ∈

⋂
α Tα.

Next, let Uβ be a collection of subsets of X s.t. ∀β, Uβ ∈
⋂

α Tα. We show that⋃
β Uβ ∈

⋂
α Tα. Firstly, since ∀β, Uβ ∈

⋂
α Tα, it follows that ∀β, Uβ ∈ Tα for every α.

Since Uβ ∈ Tα for every α,
⋃

β Uβ ∈ Tα for every α, which follows from the fact that each
Tα is a topology. Therefore,

⋃
β Uβ ∈

⋂
α Tα.

Finally, let Ui, 1 ≤ i ≤ n be a finite collection of subsets of X s.t. Ui ∈
⋂

α Tα. Then
each Ui ∈ Tα for every α. Since each Tα is a topology, we know that

⋂
i Ui ∈ Tα for each

α. Therefore,
⋂

i Ui ∈
⋂

α Tα as needed.

This shows that indeed
⋂

α Tα is a topology on X.
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(b)

Proof. We claim that
⋂

α Tα is the unique largest topology contained in all of the Tα’s.
We have already verified in part (a) of the question that this is indeed a topology on X.
First we show that it is the largest, meaning that if T ′ is another topology on X which
is contained in all the Tα’s, we show that

⋂
α Tα ⊃ T ′. Let U ∈ T ′. Since T ′ is contained

in all the Tα’s, it must be that T ′ is also contained in their intersection,
⋂

α Tα. To show
uniqueness, suppose there are two largest topologies contained in all the Tα’s; T1 and T2.
It then follows that T1 ⊂ T2 and T2 ⊂ T1, which implies that T2 = T1 - not unique. This
shows that indeed

⋂
α Tα is the unique largest topology contained in all of the Tα’s.

Now we show that there exists a smallest topology containing all of the Tα’s. Define
the collection S =

⋃
α Tα, which is a collection of subsets of X whose union is X. Using

S, define the topology Ts to be the collection of all unions of finite intersections of ele-
ments of S. In the textbook, this is called the topology generated by the subbasis S. Let
us check that this is indeed a topology on X. It is enough to check that the collection B
of all finite intersections of elements of S is a basis, from which it will follow by a theorem
proven in class (Lemma 13.1 in the textbook) that the collection of all unions of elements
of B is a topology - which is of course the topology Ts.

Since the union of elements of S is X, we must have that for each x ∈ X, there is
at least one B ∈ B containing x. Now suppose that x ∈ B1∩B2, where B1, B2 ∈ B. Since
both B1 and B2 are finite intersections of elements of S, so is the intersection B1 ∩ B2.
This means that the set B3 = B1 ∩B2 is itself a basic set which is of course contained in
itself, showing that B is indeed a basis - and thus Ts is indeed a topology.

Now we show that Ts is the smallest topology containing all the {Tα}’s. Let T ′′ be
another topology containing all the {Tα}’s, and let U ∈ Ts. We show that U ∈ T ′′. Since
T ′′ contains all of the {Tα}’s, it must also contain all of the unions of finite intersections
of elements (open sets) in the collection

⋃
α Tα. This follows from the assumption that

T ′′ is a topology. Since U is open in Ts, it is a union of basic sets, and the basic sets are
finite intersections of elements of

⋃
α Tα, meaning that U is a union of finite intersections

of elements of
⋃

α Tα (this is also obvious from the definition of topology generated by the
subbasis S. So U ∈ T ′′.

To show uniqueness, suppose that there exists a different smallest topology containing
all of the {Tα}’s, call it T ′′′. So by this assumption, Ts ⊃ T ′′′, but from what we have
already shown, Ts ⊂ T ′′′ so it follows that Ts is unique.

(c) We use what we have shown in the previous part. The largest topology con-
tained in both T1 and T2 is T1 ∩ T2 = {∅, X, {a}}. Following the same notation as in
part (b), for the smallest topology containing both T1 and T2, we have S = T1 ∪ T2 =
{∅, X, {a}, {a, b}, {b, c}}, so B = {∅, X, {a}, {b}, {a, b}, {b, c}}. And the set of all unions
of elements in B is then Ts = {∅, X, {a}, {b}, {a, b}, {b, c}}.

4



Question 5.

(a)

Proof. Denote BQ = {(a, b) | a < b, a, b ∈ Q}. To show that BQ is a basis for the standard
topology on R, it suffices to show that BQ satisfies the assumptions on C in the following
lemma:

Let X be a topological space. Suppose that C is a collection of open sets of X such that
for each open set U of X and each x in U, there is an element C of C such that

x ∈ C ⊂ U . Then C is a basis for the topology of X.

This lemma was proven in class, and is stated as Lemma 13.2 in the textbook. So let
x ∈ R, and let U be an open set containing x, under the standard topology on R. Let
(a0, b0) ⊂ R where a0 < b0 ∈ R be a basis element (in the standard topology on R)
containing x which is contained in U . We know such a set (a0, b0) exists because the
standard topology on R is generated by basic sets of this form.

So, it follows that x > a0 ∧x < b0, so there exists p1, q1 ∈ Q s.t. p1 ∈ (a0, x)∧ q1 ∈ (x, b0)
(because the rationals are dense in the reals). So the basis element B = (p1, q1) ∈ BQ
contains x, and is contained in U , as needed.

So, the assumptions of Lemma 13.2 are satisfied, which shows that BQ is a basis for
the standard topology on R.

(b)

Proof. First we show that the collection is indeed a basis for some topology on R. For
any x ∈ R there surely exists a, b ∈ Q s.t. x ∈ [a, b). Just take any a < x < b. Next,
notice that the (non-empty) intersection of two basic sets is another basic set. Given
c < d, e < f ∈ Q, consider [c, d)∩[e, f). The intersection is simply [max{c, e},min{d, f}),
which is another basic set. So if x is contained in the intersection of two basic sets, it
is surely contained in a basic set which is a subset of the previous intersection, as the
intersection is a basic set! (and of course fits inside itself). So the collection satisfies the
definition of being a basis for some topology on R.

Now we show that the topology it generates (call it T ) is different from the lower limit
topology, which we will denote by Tℓ. Consider the open set [π, 4) ∈ Tℓ. We show that
[π, 4) /∈ T . To do this, we can show that ∃x ∈ [π, 4) where there is no basic set (in the
basis which generates T ) that contains x and is contained in [π, 4). So suppose that [p, q)
is some basic set containing x = π/4, where p < q ∈ Q. So we cannot have p = x, and
also we cannot have p < x because then [p, q) ̸⊂ [π, 4). So p > x. But then x /∈ [p, q),
so we conclude that such a basic set does not exist. Therefore, [π, 4) /∈ T , implying that
the topology generated by this basis is indeed different from the lower limit topology on
R.
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Question 6.

Proof. (⇐=) We show that if f is constant or finite-to-one, then f must be continuous.

Let U ⊂ Y open, meaning that Y − U is either finite or all of Y . If it is all of Y , then
there is not much to show in either case as this would imply U = ∅ and f−1(∅) = ∅,
which is open in X. Let U be non-empty, open in Y , then Y − U must be finite, and we
may denote it as Y − U = {y1, . . . , yn} for some n ∈ N. If f is constant, then for some
y0 ∈ Y , let f(x) = y0 ∀x ∈ X . Then if y0 /∈ U , then f−1(Y − U) = X, which is open
in X. If y0 ∈ U then f−1(Y − U) = f−1(Y )− f−1(U) = Y − Y = ∅, which is also open
in X. In either case, f is continuous. Now suppose that f is finite-to-one. Then for each
point yi ∈ Y − U there exist finitely many xi1, . . . , xin ∈ X s.t. f(xij) = yi ∈ Y − U ,
1 ≤ j ≤ n, which implies the set f−1(Y − U) is finite. But recall from HW1 that
f−1(Y − U) = f−1(Y )− f−1(U) = X − f−1(U), meaning X − f−1(U) is finite and thus
f−1(U) is open in X. So f is continuous.

(=⇒) Now we show that if f is continuous, f must be constant or finite-to-one. Here
we may assume that X is infinite. If it were not, every function g : X → Y would
be finite-to-one, so there would be nothing to show. We will proceed by showing the
contrapositive statement; suppose that f is neither constant nor finite-to-one and show
that f cannot be continuous. In other words, assume that ∃y0 ∈ Y s.t. f−1({y0})
is infinite, and ∃x1, x2 ∈ X, x1 ̸= x2 s.t. f(x1) ̸= f(x2). Now consider the open
set Y − {y0} ⊂ Y , which is open because the complement {y0} is finite. Notice that
f−1(Y − {y0}) = f−1(Y )− f−1({y0}) = X − f−1({y0}). Unless X − f−1({y0}) is empty,
it cannot be open as its complement, f−1({y0}) is assumed to be infinite. If the set
X−f−1({y0}) were empty, then f−1({y0}) = X, meaning that f must be constant, which
contradicts our assumption that f is non-constant. Therefore the set X − f−1({y0}) is
not open, implying that f cannot be continuous. This completes the proof.
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