MAT327H1 F Homework Assigment 2

October 3, 2024

Question 1. Do readings.
Question 2.

Proof. Let X be a topological space, and A C X. Assume that Vx € A, 3U C X open
st. © € U C A. We show that A is open in X. For each x € A, denote U, as the
open set s.t. x € U, and U, C A. Notice that Vo € A, {z} C U,, so it must be that
A= U ea{r} € U,ea Us. Conversely, we have assumed that each U, C A, so it must
follow that (J,., U, C A. This implies that A = J,., Uy, which is the union of sets
which are open in X. Therefore, A is open in X. n



Question 3.

(a)

Proof. We show that 7. is indeed a topology on X. If X is countable, then it is clear
that 7. is the discrete topology on X, as every set must have a countable complement.
Suppose that X is nonempty and uncountable. @ € 7. by definition, and X € 7. because
X — X = @ is countable. Now suppose that U, is an indexed family of open sets of X,
with index set J. So Va, X — U, is countable. We show that (J,.; U, is open in X. By
DeMorgan’s Law;

X-JU.=(X-U)

acJ aceJ

and so of course, for any ag € J, (), o, (X —Uy) C X — Uy, meaning that (), (X —Us)
is a subset of a countable set, and is thus countable. Therefore |J,.; U, is open in X.
Now suppose that U;, 1 < i < n is a finite collection of open subsets of X. We show that
Mi_, U; is open in X. Once again, by DeMorgan’s Law;

n n

xX-u=x-w)

i=1 i=1

where each X — U, is countable. A finite union of countable sets is countable, so it follows
that (), U; is indeed open in X. We have shown that the three sufficient conditions
hold for 7. to be a topology on X, so we are done. O

(b) We claim that 75, is not a topology on X.

Proof. Let X = R be equipped with the infinite-complement "topology”, and fix x € R.
Consider the sets Uy, Us C R given by Uy = (—o0,z), Uy = (z,00). U{ = [x,00) and
U§ = (—o0, z] are both infinite, so indeed Uy, Us € To,. However, U; U Us is not open in
R under this topology, as the complement is finite; (U; U Us)¢ = ((—o0,z) U (z,00))¢ =
(R — {z})¢ = {x}. Therefore T, fails (in this case) to satisfy that arbitrary unions of

open sets are open, and is thus not a topology. ]



Question 4.

(a)

Proof. Suppose that {7,} is a family of topologies on X. We show that (1,7, is also a
topology on X.

By definition of a topology we have that VT € {7,}, X € T and @ € T. There-
fore X € (N, 7. and @ € N, Ta-

Next, let Ug be a collection of subsets of X s.t. V3, Uz € (), Ta. We show that
UsUs € N, Ta- Firstly, since V3, Us € (), Ta, it follows that V3, Us € T, for every a.
Since Uy € T, for every a, U, Us € 7T, for every «, which follows from the fact that each
7o is a topology. Therefore, (J; Us € ), Ta-

Finally, let U;, 1 <4 < n be a finite collection of subsets of X s.t. U; € (), Ta. Then
<

each U; € 7T, for every a. Since each 7T, is a topology, we know that (), U; € 7, for each
a. Therefore, (), U; € (), Ta as needed.
This shows that indeed (1), 7, is a topology on X. O



(b)

Proof. We claim that [, 7, is the unique largest topology contained in all of the 7,’s.
We have already verified in part (a) of the question that this is indeed a topology on X.
First we show that it is the largest, meaning that if 77 is another topology on X which
is contained in all the 7,’s, we show that (), 7o D 7. Let U € T'. Since 7" is contained
in all the 7,’s, it must be that 7" is also contained in their intersection, (1, 7o. To show
uniqueness, suppose there are two largest topologies contained in all the 7,’s; 7; and 7s.
It then follows that 7; C 73 and 75 C 71, which implies that 7, = 77 - not unique. This
shows that indeed [, 7, is the unique largest topology contained in all of the 7;’s.

Now we show that there exists a smallest topology containing all of the 7,’s. Define
the collection S = |, Ta, which is a collection of subsets of X whose union is X. Using
S, define the topology 7 to be the collection of all unions of finite intersections of ele-
ments of S. In the textbook, this is called the topology generated by the subbasis S. Let
us check that this is indeed a topology on X. It is enough to check that the collection B
of all finite intersections of elements of S is a basis, from which it will follow by a theorem
proven in class (Lemma 13.1 in the textbook) that the collection of all unions of elements
of B is a topology - which is of course the topology 7.

Since the union of elements of S is X, we must have that for each x € X, there is
at least one B € B containing x. Now suppose that x € B; N By, where By, By € B. Since
both By and B, are finite intersections of elements of S, so is the intersection By N Bs.
This means that the set B3 = By N By is itself a basic set which is of course contained in
itself, showing that B is indeed a basis - and thus 7y is indeed a topology.

Now we show that 7, is the smallest topology containing all the {7,}’s. Let 7" be
another topology containing all the {7,}’s, and let U € T;. We show that U € T"”. Since
T" contains all of the {7,}’s, it must also contain all of the unions of finite intersections
of elements (open sets) in the collection |J, 7,. This follows from the assumption that
T" is a topology. Since U is open in T, it is a union of basic sets, and the basic sets are
finite intersections of elements of (J, 75, meaning that U is a union of finite intersections
of elements of | J, 7, (this is also obvious from the definition of topology generated by the

subbasis S. So U € T".

To show uniqueness, suppose that there exists a different smallest topology containing
all of the {7,}’s, call it 7. So by this assumption, 7, O 7", but from what we have
already shown, 7, C 7" so it follows that 7, is unique. O]

(c) We use what we have shown in the previous part. The largest topology con-
tained in both 7; and 73 is 71 N Ty = {@, X, {a}}. Following the same notation as in
part (b), for the smallest topology containing both 7; and 73, we have S = T U Ty =
{2, X,{a},{a,b},{b,c}}, so B={2, X, {a}, {b},{a,b},{b,c}}. And the set of all unions
of elements in B is then T, = {@, X, {a}, {b}, {a, b}, {b,c}}.



Question 5.

(a)

Proof. Denote By = {(a,b) | a < b,a,b € Q}. To show that By is a basis for the standard
topology on R, it suffices to show that By satisfies the assumptions on C in the following
lemma:

Let X be a topological space. Suppose that C is a collection of open sets of X such that
for each open set U of X and each x in U, there is an element C' of C such that
x € C CU. ThenC is a basis for the topology of X.

This lemma was proven in class, and is stated as Lemma 13.2 in the textbook. So let
r € R, and let U be an open set containing x, under the standard topology on R. Let
(ap,by) C R where ag < by € R be a basis element (in the standard topology on R)
containing x which is contained in U. We know such a set (ag,by) exists because the
standard topology on R is generated by basic sets of this form.

So, it follows that x > ag Ax < by, so there exists py,q1 € Q s.t. p1 € (ap,x) A1 € (x,bg)
(because the rationals are dense in the reals). So the basis element B = (p1,q1) € By
contains x, and is contained in U, as needed.

So, the assumptions of Lemma 13.2 are satisfied, which shows that Bg is a basis for
the standard topology on R. O]

(b)

Proof. First we show that the collection is indeed a basis for some topology on R. For
any x € R there surely exists a,b € Q s.t. x € [a,b). Just take any a < = < b. Next,
notice that the (non-empty) intersection of two basic sets is another basic set. Given
c<d,e< feQ,consider [c,d)N[e, f). The intersection is simply [max{c, e}, min{d, f}),
which is another basic set. So if x is contained in the intersection of two basic sets, it
is surely contained in a basic set which is a subset of the previous intersection, as the
intersection is a basic set! (and of course fits inside itself). So the collection satisfies the
definition of being a basis for some topology on R.

Now we show that the topology it generates (call it 7)) is different from the lower limit
topology, which we will denote by 7,. Consider the open set [r,4) € T;. We show that
[7,4) ¢ T. To do this, we can show that 3z € [r,4) where there is no basic set (in the
basis which generates 7T') that contains x and is contained in [7,4). So suppose that [p, q)
is some basic set containing x = /4, where p < ¢ € Q. So we cannot have p = z, and
also we cannot have p < x because then [p,q) ¢ [7,4). So p > z. But then x ¢ [p,q),
so we conclude that such a basic set does not exist. Therefore, [r,4) ¢ T, implying that
the topology generated by this basis is indeed different from the lower limit topology on
R. O



Question 6.

Proof. (<) We show that if f is constant or finite-to-one, then f must be continuous.

Let U C Y open, meaning that Y — U is either finite or all of Y. If it is all of Y, then
there is not much to show in either case as this would imply U = @ and f~1(@) = &,
which is open in X. Let U be non-empty, open in Y, then Y — U must be finite, and we
may denote it as Y — U = {y1,...,y,} for some n € N. If f is constant, then for some
Yo €Y, let f(z) = yo Vo € X . Then if yg ¢ U, then f~1(Y — U) = X, which is open
in X. If yg € U then f~1(Y —U) = f"1(Y)— f7Y(U) =Y — Y = &, which is also open
in X. In either case, f is continuous. Now suppose that f is finite-to-one. Then for each
point y; € Y — U there exist finitely many x;1,..., 2, € X st. f(zy) =y € Y = U,
1 < j < n, which implies the set f~'(Y — U) is finite. But recall from HW1 that
AW -0)=f4Yv)- fY(U) =X — f~Y(U), meaning X — f~1(U) is finite and thus

f~YU) is open in X. So f is continuous.

(=) Now we show that if f is continuous, f must be constant or finite-to-one. Here
we may assume that X is infinite. If it were not, every function g : X — Y would
be finite-to-one, so there would be nothing to show. We will proceed by showing the
contrapositive statement; suppose that f is neither constant nor finite-to-one and show
that f cannot be continuous. In other words, assume that 3y, € Y s.t. f~'({yo})
is infinite, and Jz1,20 € X, x1 # x9 s.t. f(z1) # f(x2). Now consider the open
set Y — {yo} C Y, which is open because the complement {y,} is finite. Notice that
Y = A{yo}) = 1Y) = [T ({wo}) = X = f7' ({yo}). Unless X — f~'({yo}) is empty,
it cannot be open as its complement, f~'({yo}) is assumed to be infinite. If the set
X — fY{yo}) were empty, then f~1({yo}) = X, meaning that f must be constant, which
contradicts our assumption that f is non-constant. Therefore the set X — f~!({yo}) is
not open, implying that f cannot be continuous. This completes the proof. O]



