14-1100 Sep 8, hours 1-2: Non Commutative Gaussian Elimination

September-11-11 6:11 PM

MAT 1100 Core Algebra. To do. 1. print "About"

DROR BAR-NATAN

on Goal: Within your lifetime, understand G=(9, 9m)Ch:

book

1. 1G1=2, 2. \(\sigma \in G^2\) 3. \(\sigma = W(9, ... \)m) 4 random

Two pre-requisities 1. Groups, Sn, silly uniquenesses,

Cancellation, (ab) = b | a |, subgroups, the

Subgroup generated by \(\sigma \in \frac{1}{2}\).

2. Row reduction for real.

\[
\begin{align*}
\text{F.9} = Fog
\end{align*}

\]

Example \(\sigma = (123) \) \(\sigma = (0)(34) \) is \((0)(34) \) is \((0)(34) \).

Example $\sigma_{1} = (123)$ $\sigma_{2} = (12)(34)$, in Sy 2314 2143 $\sigma_{1} = 2314$ $\sigma_{2} = 3124$ $\sigma_{12} = 312$ $\sigma_{12} = 312$ $\sigma_{13} = 312$

Feed $\sigma_1 = 2314 \dots$ Fed σ_{12} Feed $\sigma_{12}^2 = 3124 \dots$ Feed σ_{13} Feed $\sigma_2 = 2143 \dots$ Feed $\sigma_{12}^{-1}\sigma_2 = 1342 \dots$ Feed σ_{23} Feed $\sigma_{12}\sigma_{23} = 2143 \dots$ Feed $\sigma_{12}^{-1}\sigma_{12}\sigma_{23} = \sigma_{33} \dots$ No point feeling σ_{ij} of if ix fFeel $\sigma_{23}\sigma_{12} = 34|2...$ feel $\sigma_{i3}^{-1}\sigma_{23}\sigma_{12} = 1423...$ to σ_{24} feel $\sigma_{23}\sigma_{i3} = 4132...$ to σ_{i4} feel $\sigma_{24}\sigma_{i2} = 4213...$ feel $\sigma_{i4}^{-1}\sigma_{i4}\sigma_{i2} = 1423...$ drop. = 16 = 43.1.1 = 12. Is $9123 \in 62$ Write 2431 in terms of $\sigma_{i,2}$.

* Go over the "about" handout.

14-1100 Sep 11, hour 3: Kernels, normal subgroups,

September-08-14 3:53 PM

 $\sigma_{8,j}(\sigma_{4,j_4}M_5) \stackrel{1}{=} (\sigma_{8,j}\sigma_{4,j_4})M_5 \stackrel{2}{\subset} M_4M_5$ $\stackrel{3}{=} \sigma_{4,j_4'}(M_5M_5) \stackrel{4}{\subset} \sigma_{4,j_4'}M_5 \subset M_4$

on board.

Read Along: Selick's notes 1.1, 1.2.1, 1.4; Lang's book II-3.

Very quickly: groups, uniquness of 1, -1, (a5)-1=5-6-1 orle of an element.

Group homomorphisms, "The category of groups" The grap Aut(a)

Conjugation: $g^h = h^-(gh = C_h(g))$ $(g,g_z)^h = g_z^h g_z^h g^{h_1h_2} = (gh_1)^{g_2}$ htach is an anti-homomorphism G-Aut(a)

Imagos, kornals, subgroups.

Example: So is an image of Sy, but not a kernel. Normal sysgroups, kernels are normal.

Oustion Is every normal subgroup the kind of a homomorphism's Given NJG, can we Find a surjective homomorphism 6:6-)H, with $k\alpha \neq N$ Set Theoretic aside: Surriections are the same as equivalence relations.

(def'n, explanation...) done.

Soln Sunnose 1.10. had &, consider the resulting early:

Sol'n Suppose we had ϕ , consider the resulting equiv: $J_1 \sim J_1 n$ or $J_1 \sim J_2$ iff $J_1^{-1}J_2 \in N$.

Let $H = G/N = \{[9]\}$ where [9] = gNwith $\emptyset: G \to H$ being $\emptyset(9) = [9]$ define $[9,7][9_2] = [9,9_2]$ (well defined [9])

Claim H = G/N is a group [9] is a morphism whose kernel is N --- we write H = G/N.

Theorem [The First Bornorphism Theorem] Given any morphism $\emptyset: G \to H$, $G/K_{B} \approx im \emptyset$.

14-1100 Sep 15, hours 4-5: quotients, isomorphism

Riddle Along. Can you draw 4 linked bops, so that if you drop any one of them, The remaining of are not linked? Rend Along. Selick 1.1-1.4 board Today's Minu. Quotients and the isomorphism This Reminder: Given NAG (49EG N9=9-N9=N), We seek N on G s.t. $p:G \rightarrow G/N = :H$ will be a group homomorphism with $k \subset P = N$. $9, \sim 9_2 \iff \phi(9_1) = \phi(9_2) \iff \phi(9_1 9_2^{-1}) = e \iff$ Let H = G/N = S[9] where L9] = 9Nwith Ø: 6 -> H being Ø(9) = 67 Jofine [9,][9a] = [9,92] (well defined). Claim H= G/N is a group & p is a morphism whose kernel is N - ... We write H = G/N, Theorem (The First Bomorphism Theorem) Given any morphism Ø: G >> H, G/karp = IMB. pF construct $R: \rightarrow by [9] \rightarrow (9)$ $L: \leftarrow Ly \quad h \mapsto [g] \quad \lambda_1 + \lambda_2 = h$ Aside G/H when H<6 & Lagranges Thm.

14-1100 Page 1

Claim. For H,K<G, HK<G IFF HK=KH.

 $p \in (h_1 k_1)(h_2 k_2) = h_1 h_2 k_2 k_2$ D.Finition. $C_{G}(X) := gge_{G}: \forall x \in X \quad g^{-1}xg = xg$ all $Z(G) := C_{G}(G)$ are $N_{G}(X) := gge_{G}: g^{-1}Xg = Xg$ Subgraps Clain. If HCNG(K) then HK=KH, KAHK, & HMK&H. The 2nd isomorphism theorem. IF $H < N_G(K)$, then H = K H = K H = K H = K H = K H = K H = K $p\in \mathbb{R}$: $[h]_{K} \longrightarrow [h]_{H^{n}K}$ L: \in : Obvious. The 3rd Isomorphism Thm. IF K, HAG& K<H, then $\frac{G/K}{H/K}$ = $\frac{G/K}{H}$ $\underline{PF.} \quad R: \longrightarrow : [[9]_{k}]_{H/k} \longrightarrow [9]_{H}$ well defined? [[]pk]H/K = [[]r]k]H/K =) = 0,0,0,0 = 0,0,0 = 0,0The 4th Isomorphism Thm. IF NOG then T: 6->6/N induces a "Faithful" bijection between subgroups of G/N and {H: N<H<GG: * A < B @> T(A) < T(B) (& Non, [B:A] = [T(B):T(A)] * AOB @ TT(A) OTT(B) $\times T(A \cap B) = T(A) \cap T(B).$ Also did: signor):= sign(TT(oi-oi))

Red Along. Pavel Etingof's "Groups Around Us", Lang's page 57. Riddle Along. Your turns Today's Menu, Jordan-Holder. Remindors. $\emptyset: G \to H: H < N_G(K):$ Gkord = im# HK = Hnk Jim V - nullity L = rank L GK ~ G/H & SSULgraps & SH: NKHKG & Définition A simple group. "A primé", (in fact, Un is single it n is a prime) $4t + S_3 - A_3 = \langle (123) \rangle = Z_3 + S_3 / A_3 = Z_2 / Z_3$ 46 D 246 = 40,2, 49=4/3 5 46/241 = 4/2 The Jordan-Hölder Theorem. Let G be a Finite group. Thin there exist a sequence $G = G_0 \supset G_1 \supset G_2 \supset \dots \supset G_n = \{e\}$ s.t. $H_i = G_i / G_{i-1}$ is simple. Furthermore, Re suprence (Hi), the "Composition series" OF G, is unique up to a permutation. 4-) Ay -> A3 Example SyDAy > (12)(34) > (12)(34) D {ey Proof by induction on 161. Existance: Let G, be a maximal normal

proper subgroup. Uniqueness: Use the "Siamond Pinciple": $G \qquad G \supset G_1 \supset G_2 - \cdots$ $H_1 \qquad G \supset G_1 \supset G_2 - \cdots$ $G_1 \qquad G_1 \qquad G = G_1G_1'$ H, /H, PF G,G, is normal in G yet Graf bigger that Gr, Gr. done $sign: Sn \rightarrow \{\pm 1\}$ by $sign(\sigma) = (-1)^{\sigma} = sign(T, T, (\sigma'_1 - \sigma'_1))$ $= \prod_{\substack{j,j \\ j \in \{1,\dots,n\}}} S_{i,j}(\sigma) = S_{i,j}(\sigma) = S_{i,j}(\sigma) = S_{i,j}(\sigma)$ $(-1)^{-\frac{1}{2}} = Sign \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = (-1)^{-\frac{1}{2}} - \frac{1}{2} - \frac{1}{2}$ Every permutation is a product of transpositions, The party is the party of the number of transpositions. Theorem. An is simple for n ≠ 4. [Proof as in Lang's] Cycle Decomposition, (12)(345) =[21453] = 21453 Claim If $\sigma = (a_1...a_k)$ and $\tau = [\tau_1 \tau_2...\tau_n]$, Then $T = T^{-1}T = (T^{-1}a_1, T^{-1}a_2, \dots)$ Corollary T is conjugate to Tiff they have The same cycle lengths Corollary # (Conjugacy classes of Sn) = P(n) Lemma 1. Every element of An is a product of 3-cycle.

PF (12)(23) = (123), (123)(234) = (12)(34) - ...

Lemma 2. IF NOAn contains a 3-cycle, then N=An

PF WLOG, (123) EN. Claim For TESn, (123) EN (F=(n) N)

So N contains all 3-cycles...

Now take NOAn W/N# 21}

Case 1. N contains an element $\frac{1}{2}$ (cycle of length $\frac{1}{2}$) Case 1. N contains an element $\frac{1}{2}$ (123) $C(123)^{-1} = (136)$ Case 2. N contains an element C = (123)(126) or consider C = (124) C(124) C(1

(nse Y. Every element OF N is a product of disjoint 2-cyclo $T = (12)(34)T = T^{-1}(123)T(13)^{-1} = (13)(24) = TEN$ $\Rightarrow T^{-1}(125)T(125)^{-1} = (13452)EN$

	14-1100 Sep 22, hours 7-8: Simplicity of \$A_n\$, group actions
	September-17-14 2:07 PM
	LIWI is out of
	Riddle Along. 1. Can you find uncountably many nearly-dissiont [VXIB [Ax nAB < 00] sinssets of IN?
	2. Can you find an uncountable chain [YX, \(\beta\) (A_2CA) V(A_BCA_2)] of subsets of INZ.
•	Today's Menu. Simplicity of An, Group actions.
	Remindor, $sign: Sn \rightarrow \{\pm 1\}$ by $sign(\sigma) = (-1)^{\sigma} = sign(\frac{1}{15}(\sigma)^{2} - \sigma)$
	$= T S_{i,j}(\sigma) S_{i,j}(\sigma) = S_{i,j}(\sigma) - S_{i,j}(\sigma) = S_{i,j}(\sigma) - S_{i,j}(\sigma)$
	$(-1)^{-\frac{1}{2}} = Sign \left[\frac{c_{i} - c_{i}}{c_{i} - c_{i}} - \frac{c_{i} - c_{i}}{c_{i} - c_{i}} \right] = (-1)^{-\frac{1}{2}}$
	Every parmytation is a product of transpositions,
	The parity of the number of transpositions.
	Theorem. An is simple for n ≠ 4.
	Cycle Decomposition, (12)(345) = [21453] = 21453
	Claim If $\sigma = (a_1a_k)$ and $\tau - [\tau_1 \tau_2\tau_n]$,
	then $T = T' = (T(a), T(a_2, \dots))$
	Corollary T is conjugate to T'iff they have
	The same cycle lengths
	Corollary # (Conjugacy classes of Sn) = P(n)
	Now Follow hondayt
	Jordan-Hölder For Sn: SnDAnDfet (n25)
	Definition A G-set (lest-6-set) GxX->X
	S.t. (9,9) > (= 9, (9, >), l) (= x. Same as x:G->S(x).

6-sets are a category of Examples. O. Gitself, under mult. on the left. 1. G itself, under conjugation. 2. Subgroups (G), under conjugation. Examples: 1. 6/H When It is not-necessarily normal Sub-example: Sn/Sn-1 - Sn-1 iff ~(n)=~(n). Let T;(n)=i, then TTi Sn-1 = Toi Sn-1. So Sy/Sn-1 15 g/... n/ ... 2. If X, , X2 are G-sets, hen so is X, LIX2. 3. $S^2 = SO(3)/SO(2)$ done line Theorem. 1. Every G-sot is a disjoint union of "transitiva G-5075 2. If X is a transitive & set and XFX, Then $X \cong G/stab_X(x)$. (So |X| | |G|) Theorem. If X is a 6 set and X; are representatives of the orbits, then $|\chi| = \frac{|G|}{|Stab_{x}(x_{i})|}$

Example. IF G is a p-group, the centre of G is more than sel.

The Simplicity of the Alternating Groups

This handout is to be read twice: first verd vid only, to ascertain that everything in red is easy and boring, then read black and ved, to actually understand the proof.

Theorem. The alternating group And Sn is simple

Remark. Easy for NS3, False for N=4 as There is \$\phi: Ay \rightarrow A_3, so assume N\rightarrow S.

Lemma1. Every element of An is a product of 3-cycles. AF. Every $\sigma \in A_n$ is a product of an even Number of 2-cycles, and (12)(23)=(123) & (123)(234)=(12)(34).

Lemma 2. If $N \subset A_n$ contains a 3-cycle, then $N=A_n$. PF. WLOG, (123) $\in N$. Then for all $\sigma \in S_n$, (123) $\in N$! $i \in \sigma \in A_n$, this is clear. Otherwise $\sigma = (12)\sigma'$ w/ $\sigma' \in A_n$, and then as $(23)^{(12)} = (123)^2$, $(123)^{\sigma} = ((123)^2)^{\sigma} \in N$. So N contains all 3-cycles.

Case 1. N contains an element w/ cycle of lingth = 74.

Resolution. $\sigma = (123456)\sigma' \in N \Rightarrow \sigma^{-1}(123)\sigma'(123)^{-1} = (136) \in N$

(asi 2. N contains an element 41/2 cycles of length 3. **Ru**. $T = (123)(456) \ \sigma' \in N \implies \sigma^{-1}(124) \ \sigma(124)^{-1} = (14263) \in N$.

Case 3. N contains $T = (123) \cdot (a \text{ product of disjoint } 2 - cycles)$. Res. $T^2 = (132) \in N$

Case 4. Every element of N is product of Jisjoint 2-cycles. Res. $\sigma = (12)(34)\sigma' \Rightarrow \sigma^{-1}(123)\sigma(n3)^{-1} = (13)(24) = T \in N$ $\Rightarrow T^{-1}(ns) \tau(ns)^{-1} = (13452) \in N$

14-1100 Sep 25, hour 9: Group actions September-17-14 2:07 PM	
class photo at end	
FIWI is out of	
Riddle Along.	
	4 /s (s) /s = /
Today's Meny Group actions.	
Remindor. GGX, X	G, Loth are categories) G/H start line
Theorem. 1. Every G-sot is a	disjoint union of "transitiva
G-5075"	
2. If X is a transition	e G set and XFX, Then
	(So X 161)
	t and X; ove representatives
of the orbits, then	
	16/_
$ X = \frac{1}{\sqrt{S}}$	$t_{n}b_{x}(x_{i})$
The class equation:	· contra l'70
¥ 1 1/2	e contralitor f y, in G
1(1-12(1)+ > (6	
16/= 12(0/+ 2 (G	(G(1),))
Where Syif are representatives	From the non-certal
Conjugacy classes of G.	
Example. If G is a p-g/a	pup, the centre of G
is more than let.	
13 11- 3 110011 67.	done

THE SYLOW THEOREMS. Lovely notation: PX | 161 |G|= f x m, p prime, p + m; sylp(G):= gP<G: |P|=px6 are "Sylow p-subgroups of G". A "p-subgroup" in general, is any subgroup of G of order a power

Sylow 1 Sylp(G) + Ø.

Proof. By induction on 161, if 6 has a normal subgroup of order P (or PB) or if G has a subgroup of arder divisible by px, we are done. The existance of one of the soil types follows from

The class equation: $|G| = |Z(G)| + \sum_{i} (G:G_{G}(y_{i}))$ or neithor.

Do 2nd Case

First.

Where Syi) are representatives from the non-codal Conjugacy classes of G.

Theorem. If G is a finite Abelian group of order divisible by a prime p, then a contains an climent OF order p. "Cauchy's Thm" DIF pp 102

Prof. Enough to Find an almost of order divisible by p' if Z is of order p.n, 2h would be of older p Pick XEG, X = 1. If P/IX/, We're Jone. Otherwise p/G/<x>1, so by induction, fyeb s.t.

|J|=P in G/(x). Now use the following claim. \square duim. if $\phi:G\to H$ is a marphism k $y\in G$, \mathbb{R} and $|\phi(y)|||y||$.

Proof. If $|\phi(y)|=n$, |y|=m, m=nq+r, $T_{k}=n$ $e=\phi(y^m)=\phi(y^{nq})\phi(y^r)=(\phi(y))^n)^q\phi(y)^r=\phi(y)^r$

Stronger Sylow 1. If $p^{\beta}|161$, then G

has a subgroup of order p^{β} .

Proof. Let $X = \{S \subseteq G : |S| = p^{\beta}\}$, and write

subset

So 1=0.

 $|G| = p^{\times HB} m$ W/ maximal x. By counting b binonial nonsense, $p^{\times}|X|$ yet $p^{\times H}|X|$. C acts on X by translations, so there must be $S_0 \in X$ s.t. $p^{\times H}|G:S_0|$, hence $p^{\mathcal{B}}|H=stab_{\mathcal{G}}(S_0)|$. Yet if $X \in S_0$ then $g \mapsto g \times is$ an injection $H \to S_0$, so $|H| \leq |S_0| = p^{\mathcal{B}}$, $|S_0| = p^{\mathcal{B}}$.

14-1100 Sep 29, hours 10-11: The Sylow theorems

dass photo on webl

Today's Menu. Sylow 123, some classification. Remindors.

$$GG(X =) |X| = \frac{|G|}{|Stab_{x}(x_{i})|}$$

$$|G| = |Z(G)| + \sum_{i} (G:G_{G}(y_{i}))$$

$$G = P-group =) Z(G) Non-frivial$$

THE SYLOW THEOREMS. Lovely notation: PX | 161 $|G| = f^{\times}m$, P prime, $P \nmid m'$ sylp $(G) := gP \langle G : |P| = p^{\times}G$ are "Sylow p-subgroups of G". A "p-subgroup" in general, is any subgroup of G of order a power

Sylow 1 Sylp(G) + Ø.

Proof. By induction on 16/1, if 6 has a normal subgroup of order P (or PB) or if G has a subgroup of arder divisible by pt, we are done. The existance of one of the soil types follows from The class equation: $|G| = |Z(G)| + \sum_{i} (G:G(y_{i}))$ $|G| = |Z(G)| + \sum_{i} (G:G(y_{i}))$ |G| = |G| |G| =

|6|= |Z(G)| + / (G. (G(Y;)) | or rivino.

| Do 2nd Case

| Cirst. Where Syif are representatives From the non-codal Conjugacy chrisis of G. Theorem. If G is a finite Abelian group of order divisible by a prime p, then a contains an climent OF order p. "Cauchy's Thm" DAF pp 102 Prac. Enough to Find an almost of order divisible by p' if Z is of order p.n, 2h would be of older p Pick XEG, X = 1. If P(IX), We're Jone. Otherwise p//G/<x>1, so by induction, fyeo s.f. (J/=P in G/<X7. Now use the following claim. [] duim. if \$:6-> H is a morphism & y EG, Ren / Ø (y) / / / / /. Proof. If |p(y)|=n, |y|=m, m=nq+1, Then $e = \emptyset(y^{m}) = \emptyset(y^{nq})\phi(y^{r}) = ((\emptyset(y))^{n})^{q}\phi(y)^{r} = \emptyset(y)^{r}$ So r=0. Stronger Sylow 1. If pp/161, then 6 his a subgroup of order pp. proof. Let $X = \{S \subseteq G : |S| = p^{\beta}\}$, and write 16/= px+Bm W/ maxinal x. By counting & binomial nonsense, px//x/ yet px+1/1x/.

Gacts on X by translations, so there must be $S_0 \in X$ s.t. $P^{X+1} \nmid |G:S_0|$, hence $P^{\beta} \mid |H = stab_{G}(S_0)|$. Yet if $X \in S_0$ then $g \mapsto g \times is$ an injection $H \to S_0$, so $|H| = P^{\beta}$.

Theorem. 1. Sylow p-groups always exist; Syl,(G) #\$. 2. Every p-group is contained in a Sylav-P group. 3. All Sylow-P subgroups of G are conjugate, and $N_{\rho}(G):=|Syl_{\rho}(G)|=|mod \rho| \langle N_{\rho}(G)||G|$ So G= x'y=y'xi for generators XEPs, YEP3. Aside. If G=6,62, 6,062=Ley, [6,,62]=(1), they G=6, XG2 AsiJe. $\mathbb{Z}/p \times \mathbb{Z}/q = \mathbb{Z}pq$ So $G_{15} = \mathbb{Z}/15$.

For fact, if (a,b)=1, Acn $Aa \times Ab \cong Aac$ Proof. Find S,f S.f. as + bf = 1, and write

2/ab X 7 2/ab

This also works for order PA, p.q. Prines, p. 4-1.

Groups of order 21. Pz is normal, P3 might not be able to be any $5 \times 2/$, P3 may act on Pz. If Pz=(x), P3=(y), We (not yearn) p.q.)

have $x^3 = x$, or x^2 , or x^3 . As: Je. Aut(\mathbb{Z}/p) is (y) is (y).

Delt. What Joss this must

Aut $(\mathbb{Z}/z) = (x \mapsto x^3)$ This also works for order PA, p.q. Prines, p. (4-1).

The sides of all

other oda's are divisible by p.

Proposition. If H is a p-subgroup & Resyll(G), Then

H is contained is a conjugate of I. [sylov-P subgroups]

Proof. H acts on the set of conjugates of

I by conjugation. There must be a singleton orbit—

a P' s.t. H < Na(P').

September-27-14 1:18 PN

HWI due &

Riddle Along.

VXER Ja; ER

S, t. a; >X

RIGHT SO WMTZ

Today's Menu. Finch Sylan, seni-direct products

Remindors. Theorem. 1. Sylow p-groups always exist; Syly(G) #\$.

- 2. Every p-group is contained in a Sylav-P group.
- 3. All Sylow-P subgroups of G are conjugate, and $N_p(G):=|Syl_p(G)|=|modP|&N_p(G)||G|$ The extension trick: Cart extend a Sylow by sometime of order P.

Proposition. If $l \in Sylp(G)$, then | conjugates of l = l m d p.

(and $n_p \mid l \in l$, of course)

Proposition. If H is a p-subgroup & Resyle(G), Then
It is contained is a conjugate of P. [In particular, all sylow-P subgroups]

Proof. H acts on the set of aningates of

I by conjugation. There must be a singleton orbit—

a P' s.t. H < Na(P').

Semi-Direct Products. If N<G, H<G, conpare NxH with NH.

There's always M: NXH->NH by (n,h) H>nh

In general, nothing to say.

IF Noft=fely, injective let image might not be a group.

Example: <(123)7, <8451> = S

IF NoH= Lef & NJG & HDG, Am [N, H] = Leg &

NH=N×H.

The interesting case is when $N \cap H = deg$, $N \cap G$, $H \cap G$.

Get H = Aut(N) by $h \mapsto (n \mapsto n^{h'} = h \cdot nh^{-1})$ or $\emptyset_h(n) = h \cdot nh^{-1}$

 $n_1h_1n_2h_2 = n_1h_1n_2h_1^{-1}h_1h_2 = n_1\emptyset_{h_1}(n_2)h_1h_2$ $(Nh)^{-1} = h^{-1}n^{-1} = h^{-1}n^{-1}hh^{-1} = \emptyset_{h^{-1}}(n^{-1}) \cdot h^{-1}$ Difinition. Given abstract N, H & Ø: H > Aut(N), The Simi-direct product NXH. Prop. 1. In the above Case, M: NXH -> NH is an isomorphism. 2. H<NAH, NO(NAH) and NAH/N=H. Small Examples. 1. Das Z/n × (±1) 2 dax+bb= Rtx1Rx 3. $\{Ax+b: A\in GL(V), b\in V\} = V_b \times GL(V)_A$ 4 "The Poincare/Relativity Group" = 1R4×150(3,1) Big Example. Br=TT((C2-flings)/Sn) = 19 I Should have the tel the discussion of PBN what intro to free groups the tell the discussion of the groups the tell the groups the gro 1 an aside on (Fre groups, $T \cdot B_n \rightarrow S_n \qquad PB_n = k \cdot r \cdot T$ I relations. Two reasons vly
I like this one: PBn JBn yet not Bn = PBn XSn 1. knotted \$20's p:PB, ->PBn-, Kerp=Fn-, and 2. Borromen, PBn = Fny X PBn-1 = Fn-1 X (Fn-2 X (... (EXZ).) Groups of order 21. 2/21, 2/4×2/3=(x>×(y) Aut $(7/7) = 21/6 = (\phi_3)', \phi_3(x) = x^3', \quad x^3 = x \text{ or } x^2 \text{ or } x^4$ (iso: if $x^y=x^2$ & $y=y^2$ her $x^y=x^y$) Groups of order 12. It 16/=12, Py= 1/4 or (1/2)2, P3=2/3, and at last one of Rose is normal, for Thrès not enough room for 4 B & 3 Py's. So G is a sen'i-sirect Product: 2/4 ×2/3 : must be 2/4 ×2/3 = 21/12 (Ant(2/4)=2/2) (Z/2 × Z/2) × Z/3: Either Sirut; Z/2 × Z/6 or the fun action of Z3 on (Z/2)2, giving Ay

(234)> e (13)(34) (14)(13) 2/3 × (1/2 × 1/2): Either livet of D6×4/2= 02 2/3×2/4: Either direct or 4/3×4/4

8.10 PM

9/120

6/24

I should have added to HWZ: GXG=6x6 HWZ, discussion. conj. action Aside, Two reasons vly

I like this on:

1. knotted \$20's Q. Can you find a 4-component Brannian link 2 2. Borromen, 3. It is a commutator. Today's Menn, seni-direct products, groups of order 12/ Remindors. Given N, H, O. H > Aut(N), $NXH:=gnhg; N,h,h_2h_2=N,Ø_h(n_2)h_1h_2$ Tho. NXH is a goup, HTNXH, NJNXH, $N \cap H = \{e\}$ (NXH/N = H)2. In general, if G=NH, NAG, H<G, NMH= Lep, Then G=NX,H W/ Oh(n)=hnh-1 PBn:= TT, (C' dings) = "Pure bonds on 1 strands" P:PBn-PBn-, Kerp=Fn-, and PBn=Fn/XPBn-1 = Fn-1X (Fn-2X(--- (FXZ).) Aside. By = $\langle T_1, ..., T_{n-1} \rangle$ of $\sigma_{i+1} \sigma_{i+1} \sigma_{i+1} \sigma_{i+1} \rangle$ an aside on fine graps, given by $\sigma_{i+1} \sigma_{i+1} \sigma_{i+1} \rangle$ of $\sigma_{i+1} \sigma_{i+1} \sigma_{i+1} \sigma_{i+1} \rangle$ Groups of order 21. 2/21, 2/4×1/3=(x>×<y> Aut (7/7)= 1/6= (\$); \$(x)=x3; YD \$000 \$200 \$4 $yxy' = x or x^2 or xcy$ $\frac{2}{2}$ isomorphic iso: if yxy=x2 & hen yxy=x4, so $G_{2}=\langle X \rangle \times_{\phi^{2}} \langle J \rangle \longrightarrow \langle \overline{X} \rangle \times_{\phi^{4}} \langle \overline{J} \rangle = G_{4}$ $\begin{pmatrix} x \\ yz \end{pmatrix} \qquad \qquad \begin{pmatrix} z \\ \overline{y} \end{pmatrix} \qquad is iso,$ Groups of order 12. It 16/=12, Py= 2/4 or (1/2) P3=2/3,

and at less one of Rose is normal, for Thrès not enough voon for 4 B & 3 Py's. So G is a seni-sirect Product: 2/4 ×2/3 : must be 2/4 ×2/3 = 2/12 (Ant(2/4)=2/2) (Z/2 × Z/2) x Z/2: Either Siret; Z/2 × Z/6 done or the fun action of Z3 on (Z/2)², giving Ay skips <(234)> e (13)(24) (14)(13) 2/3 × (4/2 × 4/2): Either livet of D1×4/2= 1/2 deal 2/3×2/4: Either direct or 2/3×2/4 Low Solvable Groups. Def G is solvable if all quotients in its Jordan-Holler Series are Abelian. ThmI. IF NAG, G is soluble iff N&G/N are. 2. If IKG and G is solvable, so is H. ADB HADHOBZ V HOB - BALY [6] HA - Eb] A Ly [6] HOB - I'S injective. Cor. It a group contains An 174, it is not solvable.

Then $N \times_{\phi} H \cong N \times_{\phi} H \cong N \times_{\phi} H$.

In our case $\phi_{Y} = \phi_{2} \circ \eta$ where $\eta: \mathbb{Z}/3 \to \mathbb{Z}/3$ $\vdots : 14\cdot100 \operatorname{Page} 1$

 $\mathcal{O} \in Hom(H, Aut(N))$

 $\varnothing \eta: H \to Aut(N) \qquad (\varnothing^{\nu})_{h} = \nu^{-\nu} \otimes_{h} \circ \nu$

Solvable Groups. Def G is solvable if all quotients

in its Jordan-Höller series are Abelian.

Thm I. If NAG, G is solvable iff N & G/N are.

2. If HG and G is solvable, So is H.

ADB HATHOB 2 V HAB -> BA by [b] HA is injective.

Cor. If a group contains An 174, it is not solvable.

Turn tost line.

Rings.

 $\textbf{Definition 2.1.1.} \ \textit{A ring consists of a set R together with binary operations} + \textit{and} \cdot \textit{satisfying:}$

1. (R,+) forms an abelian group,

2. $(a \cdot b) \cdot c = a \cdot (b \cdot c) \ \forall a, b, c \in R$,

3. $\exists 1 \neq 0 \in R \text{ such that } a \cdot 1 = 1 \cdot a = a \ \forall a \in R, \text{ and}$

4. $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c \ \forall a,b,c \in R$.

Also Jefino. Computativo ving.

Examples. Z, R[x], $M_{nxn}(R)$ M_{orp} is M_{ox} , $M_{nxn}(R)$ as dig M_{ox} , $M_{nxn}(R[x]) = M_{nxn}(R)[x]$ $M_{nxn}(R[x]) \cong M_{nxn}(R)[x]$

im, subring, ker, ideal. Q. Is every ideal a quotient. Ans. Define R/I.

Good luck w/ term test !

Return TT, etc. HW3 on Web, more may be added next week. Ridde Along how many bungs? Solvable Groups. Def & is solvable if all quotients in its Jordan-Holler Series are Abelian. Thm! IF NOG, a is solvable iff N & 6/N ave. 2. If HG and G is solvable, so is H. ADB HAJHOBZV HOB -> B/ by [b] HOA -> [b] I'S injective. Cor. If a group contains An 17,5, it is not solvable. Rings. **Definition 2.1.1.** A ring consists of a set R together with binary operations + and \cdot satisfying: (R,+) forms an abelian group, Also Jefino 2. $(a \cdot b) \cdot c = a \cdot (b \cdot c) \ \forall a, b, c \in R$, Computativo Ving. 3. $\exists 1 \neq 0 \in R \text{ such that } a \cdot 1 = 1 \cdot a = a \ \forall a \in R, \text{ and}$ 4. $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c \ \forall a,b,c \in R$. \mathbb{Z} , $\mathbb{R}[x]$, $\mathbb{M}_{nxy}(\mathbb{R})$, \mathbb{R} G Examples. (if R is commutative) Jonl $\langle S, M_{nxn}(R[x]) \simeq M_{nxn}(R)[x]$ 6. IF V:G >H, Y:RG >RH cayley - Hamilton A metrix annihilates its characteristic poly: 2rt A E Maxn (R), R commytative. Set

14-1100 Oct 23, hour 19: Solvable groups, rings

 $X_A(t) = At(tI-A)$, $X_A(A) = 0$ Wrong proof. $\chi_A(A) = det(AI - A) = det(0) = 0$ Nonesensel Would have worked for track just as well $\int x_A^{tr} = +r(+I-A) = nt - +r(A)$ So A = traI Maxa (R)[t] - det > R[t] The 1354 l: $\int \ell V_A$ $M_{n\times n}(R) \longrightarrow M_{n\times n}(R)$ Right Proof. in Mnn(R[t]) in Mnn(R)[t] $J(t+I-A)\cdot I = \alpha J(t+I-A)(t+I-A) = (\sum B_i t^i)(t+I-A) \quad i \cap I$ now substitute t=A. The Bis commute with A be cause (+I-A) adj(+I-A)= adj(+I-A)(+I-A). im, subring, ker, ideal.

Q. Is every Idul a quotient.

Ans. Octine R/I.

HW3 2 questions added
Riddle Along [12345]
Two players alternate drawing cards from the above deck. The first player to have 3 cards that add up to 15, wins. Would you like to be the first to move or the second?
Reminders 1. Rings: $(R, +, \times, 0 \neq 1)$ 2. $R[xy]$, $M_{n\times n}(R)$, RG 3. $Morphisms$ $(M< le rings a `category')$ $[f(i)=1]$
Further examples.
1. If $\forall : G \rightarrow H$, $\forall_{k} : RG \rightarrow RH$ 2. $M_{n\times n}(R[x]) \simeq M_{n\times n}(R)[x]$
cayley - Hamilton A metrix annihilates its characteristic poly: Let A E Moxn (R), R commytative. Set
$X_A(t) = Jit(tI-A)$, $\mathcal{X}_A(A) = 0$
Wrong proof. $X_A(A) = Jet(AI-A) = Jet(0) = 0$
None sense of Would have worked for track just as well of $\chi_A^{tr} = tr(tI-A) = nt - tr(A)$ So $A = trAI$
The issue: $M_{n \times n}(R)[t] \xrightarrow{det} R[t]$ not lev_A lev_A lev_A lev_A lev_A lev_A lev_A
$Right proof M_{n\times n}(R) \xrightarrow{2} M_{n\times n}(R)$
$in M_{nxy}(R[t])$ $in M_{nxy}(R)[t]$
$J(t(tI-A)\cdot I = \alpha J(tI-A)(tI-A) = (ZB;t')(tI-A) i \cap$
now substitute t=A. The Bis commute with A 2015-12
be cause (+I-A) adj (+I-A) = adj (+I-A) (+I-A).

14-1100 Oct 27, hours 20-21: Rings, Cayley-Hamilton,

quotients and isomorphism theorems

October-10-14 1:09 PM

im, subring, ker Ideal. (ideals are subrings but never
m, subring, ker Ideal. (ideals are subrings but never Q. Is every ridul a Kornel? subrings)
Ans. Dufine R/I.
Example. IR[x]/(x2+1) = R,
The Isomorphism Theorems. 1. 4:R > S => R/ker 4 = in 4. (Example: QV;: (R[x] > 0 => R, \(\) \(
2. A+I = A ACR Sulving, ICR propor ideal.
3. IcJCR ideas => R/I ~ R/J
4. Given an ideal I of K, there's a Lijection between
ideals ICJCR & ideals of R/I. From the point, our goal
Field [Commutative, Flog a group] high-school &
("division ving", if not commutative (arries Through)
Field [Commutative, Flog a group] falmost all of high-school & freshman algebra ("division ving", if not commutative carries Through (Example: H = fatbl+ci+dkg/ij=k) use Fal For 3D rotations, etc
2. (Integral) Lomains: Commutative, has no o-divisors.
How make ? For ideals which, R/I is a field or a domain?
From now on, R is commutative.
Maxinal Ideals. 1. Definition.
2. IcR is maximal €> R/I is a field.
Fishy proof: Use the 4th isomorphism theorem.
Honest proof: =>: x&I => Rx+I=R => fyer yx+I=HI
$(= J_{\mathbb{P}}I, x \in J \setminus I \Rightarrow [x]_{+} =) \exists y \times y - 1 \in I =) \mid \in J$
Examples. 1. PZ is a maximal ideal in Z.
2. $S = \begin{cases} - \begin{cases} bn/d seg's \\ in k \end{cases} $ $A_n = \begin{cases} (a_i) : \alpha_n = 0 \end{cases}$
Theorem. Every ideal is contained in a maximal ideal.
Proof using Zorn's Lemma.
Theorem There exists a function

Lin: fondd sogs} -> 18 s.t. 1. If (a) is convergent, lima, = Liman. 2. $Lim(a_n+b_n)=Lim(a)+Lim(b_n)$ 3. $Lim(a_nb_n)=Lim(a_n)\cdot Lim(b_n)$ Proof. S= {bndd sig's in/Ry I= {(an): Finity neg n's? J-a maximal ideal containing I. $Lin: S \rightarrow S/J = \mathbb{R}$ Prime Ideals. 1. Definition PCR is prime if abEP =) a & P or 6 & P. 2. Theorem. R/P is a domain iff P is prime. Proof => abf => [ab] =0 => [a][b] =0 => er [i]=0 => 6p. < [A][b]=0 => [A]=0=) A[F]=0 => (A)=0 Theoren. A maximal ideal is prime. target line
From this point on, R is a commutative integral domain "a, 6 ave associates" Primes. 1. a/b [a = 0,] 9 s.t. aq=b] (a/b 1 b/a =) a=ub) 2. g(d(a, b) = 9 ; g(d = 4) = 9(d = 4) = 9 = 43. Primes: P=0 non-unit Pab => Pla or P/6 P is prime iff <P> is prime iseal. 4. Irreducible DC=ab=) RFR* V bFR* Claim. prime => inducible | counterexample: in Z[V-5], p=ab= p|A= a=pc | a=pc | bnt not prime, as 2(1-1-5)(1+1-5)=6=) P= PCb => Cb=1 =7 b E R* UFDs. Def. Evry non-zero element can be factored into pines. Thm. Uniqueness up to units & a permutation. Thn. In a UFD, Prime Dirreducible. pf If an imd. is decomposed, the decomposition must

have length 1.

Thm. UFO => ever x +0 y has a unique decomposition

PE new into irreducibles.

PE new irred prime. If x is irred x x lab, then

into irreducibles.

Ex=a_...a_b_...b_n => xva; or x vb; => x lavx16

Thm. In a UFO gcd's always exist.

14-1100 Oct 30, hour 22: The isomorphism theorems for rings, "better rings" Reminders Ideal: OEI, I+ICI, -ICI, RICI, IRCR R/I, Iso 1: Given Yil >5, R/cy = im 4 2. A+I = A/I ACR Subing, ICR propor ideal. 3. IcJCR ideals => RI = R/J 4. Given an ideal I of R, there's a bijection between ideals ICJCR & ideals of R/I. From this point, our goal Better Kings. 1. The ultimate: Field [Commutative, Flog a group] falmost all of high-school & freshman algebra ("division ving", if not commutative (arries Through)

Example: H = fatbititititity / i= k

use Fal For 3D rotations, etc... 2. (Integral) domains: commutative, has no o-divisors. How make ? For ideals which, B/I is a field or a domin? -... From now on, R is commutative. Maxinal Ideals. 1. Definition. 2. ICR is maximal > R/I is a field. Fishy proof: Use the 4th isomorphism theorem. Honest proof: >: x&I > Rx+I=R > FyER yx+I=HI J≠I, x€J \I ⇒ [x], ≠0 =>] xy-1€ I => 1€ J Examples. 1. PZ is a maximal ideal in Z 2. $S = \begin{cases} - \begin{cases} bn/d seg's \end{cases}$ $A_n = f(a_i): \alpha_n = 0 \end{cases}$ Theorem. Every ideal is contained in a maximal ideal. Proof wing Zorn's Lemma. Example. $S = \{bndd Sig's in | R \} I = \{(a_n): A_n \to o\}$ [a_n = o a.e.] J-a maximal ideal containing I.

Linis -> S/J - R [R-) st is obving;

Lin: S -> S/J = R [R-) S/J is obvins;
Theorem Lin satisfils: Lucoher direction is not] 1. If (an) is convagant, liman = Liman. 2. Lim (an+bn) = Lim (a) + Lim (bn) + More.... 3. Lim (anbn) = Lim(an). Lim (bn) Prime Ideals. 1. Definition PCR is prime if abep =) a EP or b EP. 2. Theorem. R/P is a domain iff P is prime. Proof => abf => [ab] =0 => [a][b] =0 => afp == [a][b] =0 => [ab] =0 => [ab] =0 => [ab] =0 => afp == [ab][b] =0 => [ab] =0 => [ab] =0 => afp == [ab][b] =0 => [ab] =0 => [ab] =0 => afp == [ab][b] =0 => [ab] =0 => [ab] =0 => afp == [ab][b] =0 => [ab] =0 => [ab] =0 => afp == [ab][b] =0 => [ab] =0 => [ab] =0 => [ab] =0 => afp == [ab][b] =0 => [ab] Theoren. A maximal ideal is prime. From this point on, R is a commutative integral domain.

target line

"a, 6 are associates"

Primes. 1. alb [a≠0,] 9 s.t. aq=b] (alb 1 bla =) a=ub) 2. g(d(a, b) = 9 ; g(d = 4) = 9(d = 4) = 9 = 43. Primes: P=0 non-unit Pab => Pla or P/6 P is prime iff <P> is prime isual. 4. Irreducible DC=ab=) RFR* V bFR* Claim. prime => inducible | counterexample: in Z[V-5], p=ab =) P|A =) a=PC | 2 is irrd (for norm resons) but not prime, as =) P=PCb=) Cb=1 =7 b E R* 2 (1-15)(1+V-5) = 6 UFDs. Def. Evry non-zero element can be factored into pines. Thm. Uniqueness up to units & a permutation. Thm. In a UFD, Prime Sirreducible. PF IF an imd. is decomposed, the decomposition must have length 1. Thm. UFD => ever x +0 y has a unique decomposition

or new irrel => prime. If x is irrel x lab, hen

Thm.	into	V V	educ/	'LAS.	11	- // - 22 =	a ₁ 0	ân bi-	- br	=)	χ_{λ}	- · · · · · · · · · · · · · · · · · · ·	~ ~ X ^	~b;=) X/a	12/6		
Thm.	In	~	UF.	\bigcirc	96/	5	alu	my	CXI.	st.								
- ,, ,			0 ,	0 (0.00			٠, ١,								

UFD October-10-14 1:09 PM	
(141102) Assaf's riddle: k kids share a loot of h in-wrapping hal-	
loween candies. The first kid proposes a way to split the loot; if	
it is not accepted by a strict majority (her included), she's left out you home	
and the second proposes a split, etc. How is the loot split?	
Global goal: M F.g. modall over a PID $R = $ Uniquely $M \cong \mathbb{R}^k \oplus \mathbb{R} / \mathbb{P}_i^{S_i})$ $S_i \ge 1$	
173CSW Modall Over a PID R =) Wall guely	
$\mathcal{M} \cong \mathcal{R}^{k} \oplus (\mathcal{T}) \mathcal{R} / (p_{i} S_{i}) $	
Corl. A f.g Abelian => A = Zk & & Z/p;si	
Corz. A & Maxa (C) has a "Jordan Form"	
No Joy Agenda. Euc => PID =>UFD.	
Reminders R/I a field () I is maximal.	
$R(T) = \left(\frac{1}{2} \right) \right) \right) \right)}{1} \right) \right)}{1} \right) \right)} \right)} \right)} \right)} \right)} \right)} \right)} \right)} \right)}$	
B/I a domain $(ab=0 \Rightarrow)(a=0)\vee(b=0))$ start	
(=> I is prime.	<u> </u>
Prime Ideals. 1. Definition PCR is prime if abEP	
=) a f P or b f P.	
2. Theorem. R/P is a domain iff P is prime.	
Proof => abf => [ab] =0 => [a][b] =0 => afp	
[17-0 = 6] = 1	
(a)[b]=0 => [a]=0=) al FP => (a)=0	
Theoren. A maximal ideal is prime.	
From this point on, R is a commutative integral don	ain
"a Lave associates"	
Divisibility & "a, 6 are associates" Primes. 1. alb [a≠0,]9 s.t. aq=b] (a/b 1 b/a =) a=ub)	
2. $g(d(a, b) = 9$ j $g(d = 4)$ $g(d = 4' = 7)$ $9' = u9$.	
3. Irreducible DC=ab=) AFR* V bFR*	
y. Primes: P=0 non-unit Pab => Pla or P/6	

14-1100 Nov 3, hours 23-24: "better rings", Euc -> PID ->

P is prime iff <P> is prime islad.

Claim. prime => ir/lducible | counterexample: in $\mathbb{Z}[V-5]$, p=ab=) p|A=) a=pc | but not prime, as => p=pcb=> cb=| => $b\in\mathbb{R}^*$ | 2|(1-V-5)(1+V-5)=6

UFDs. Def. Evry non-zero element can be factored into pines.

Thm. Uniqueness up to units & a permutation.

Thn. In a UFD, Prime Sirreducible.

pf If an irrid. is decomposed, the decomposition must have longth 1.

Thm. UFO => every x+0 has a unique decomposition

PE new invel => prime. If x is incl & x/ab, then

into irreducibles. =x=a,...anb,...bm => xva, or x vb; => x/avx/b

irreds

Thm. In a UFO god's always exist.

HOW show UFD? Nom > "PIO" > UFD.

Def. Euclidean domain: has a "norm" e: R-lof > 1 s.t.

1. e(ab) >/ e(a) 2. Ya,6 39, r s.t. a=46+r & r=0 or e(r)< e(b)

Example. 1. 2 $= xample \frac{\alpha = x^3 - 2x^2 - 5x + 12}{b = x^2 + 1}$

2. F[DC] ... r = -6x + 14 $\int_{C} w dy dx$

theoren. A Euclidean Jonain is a "PID" (Jef).
(Thm: a PID is a UFD, leter)

Proposition. In a PIO, every prime ideal is maximal.

PF. I=<P> prime, ICJ=(x)CR => p=ax=>

 $(\alpha \in \mathbb{R}^* \Rightarrow J=J) \vee (\chi \in \mathbb{R}^* \Rightarrow J=\mathbb{R})$

done

theren. PID=>UFD.

What Take $x=x_1$; unless $x_1 \in \mathbb{R}^2$, $x_2 \in \mathbb{R}^2$, $x_3 \in \mathbb{R}^2$.

Maximal ideal containing $x=x_2 \in \mathbb{R}^2$, $x_3 \in \mathbb{R}^2$, $x_4 \in$

M=<P27, D(2=P2)(3,... if process was infinite, $\langle x_n \rangle C \langle x_{n+1} \rangle$ as $x_n = P_n x_{n+1}$ $i \in x_{n+1} \in \langle x_n \rangle$, $x_{n+1} = a x_n > 6$ < X1> 4 < X2 > 4 < X3 7 4 ... But a PID is "Noetherian", xn = Pnaxn & p's not prime. So the process must terminate. So X=X1=P,X2=P,1/2 = -- = P, B... Pn h

thrown. In a PID (a, 67 = 59cd h, 6)>. (so gcd (a, 6) = sa+tb)

torget

The Euclidean Algar, Am. In a Euc. Domain, a practical algorithm for Finding s(a, b) & t(a, b) as above: WLOG, $\ell(a) > \ell(b)$ If $\langle a,b \rangle = \langle b \rangle$, take (s,t)=(o,1). Oherwise a=69+1, e(1)<e(b), $\langle a,b7 = \langle b,v \rangle$ So if g = s'b + t'v, Lun 9 = 5'5 + f'(a-b9) = f'(a+(5'-t'9), b

theorem. R is a PID iff it has a "Dedekind-Hasse" norm: J: R-90) -> N20 for add S(0)=0] St. if a, b to cither ac < b> or foxxe < a, b> W/J(x) < J(b)

pr. = rs before. => Replace every prime by 2, get evon a "multiplicative" D-H nom.

November-06-14 9:10 AM

HW. HV3 due, HWY on wel

Riddle along: A game: Player A writes the numbers 1-18 on the faces of three blank dice, to her liking. Player B takes one of the 3 dice. Player B takes one of the remaining two, and throws away the third. Player A and B then play 1,000 rounds of "dice war" with the dice they hold. Whom would you rather be, player A or player B?

Floral goal: M F.g. modale over a PID R => Uniquely

M = R*DPR/Pisi) P; prime

Corl. A F.g. Abelian => A = Zk D DZ/Pisi

Corz. A & Man (C) has a "Jordan Form"

Today. Finish rings, start modules.

Reminders. Euc => PID => UFD

theren. PID=>UFD.

What Take $x=x_1$; where $x=x_1$; where $x=x_2$ and $x=x_1$ is a maximal ideal containing $x=x_2$. M, $x=x_1$, $x=x_2$ in less $x=x_2$ and $x=x_2$ in $x=x_2$ in $x=x_2$ in $x=x_1$ if process was infinite,

 $\langle x_1 \rangle \not\in \langle x_2 \rangle \not\in \langle x_3 \rangle \not\in \dots$ $\langle x_n \rangle c \langle x_{n+1} \rangle as <math>x_n = h_n x_{n+1}$ But a PID is "Noetherian", $x_n = h_n a x_n k p$'s not prime. So the process must terminate.

So X=X1=P1X2=P1BZ3= --- =P1B...Pnh

thoren. In a PID (a, b7 = 59c/h,b). (so gc/4,6)=sa+fb)

The Euclidean Algorithm. In a Euc. Donain, a practical algorithm for finding s(a,b) & t(a,b) as above: WLO6, $\ell(a) \ge \ell(b)$ If (a,b) = (b), take (s,t) = (0,1). Otherwise $\alpha = bq + r$, $\ell(r) < \ell(b)$,

(a, b, 7) = (b, v) = (a, b, 7) = (a, b,
theorem. R is a PID iff it has a "Dedekind-Hasse" norm: J:R-do] > No [or add slo)=0] skipped. St. if a,6 to cither ac St. if
$pc. \in rs$ before. \Rightarrow Replace every prime by 2, get even a "multiplicative" D-H norm. $target$ line
Definition. An R-module: "A vector space over a ving".
Examplis. 1. V.S. OVER a Gield. 2. Abelian groups over Z.
3. Given T: V > V, V over F[x]. 4. Given ideal TCR, R/T over R. 5. Column vetors R ⁿ over Maxa (Lift module R-ned) row vectors (R ⁿ) over Maxa (right module mod-R)
 Oce/Claim. R-mod & mod-R are categories.
Oct/claim. Submodules, Ker Ø, IM Ø, M/N
Boring Theorems. 1. Ø:M -> N => M/kerp = im \$
2. $A,BCM \Rightarrow A+B/B \cong A/AB$
3 A ⊂ B ⊂ M => M/A/B/A ≅ M/B 4. Also Jull.
Direct sums. M, N => M DN M MON-30 P MON-30

. . In an I lan and

The indusions

UFO & PID & Enc

are strict.

- 1. Many examples; especially polynomial vings in Several Variables and Z[x]. (In general, $RVFD \Rightarrow R[x]VFD$).
- 2. Examples are hard. The casyest seems to be $2[1+\sqrt{-19}]$.

A sequence at exercises leading to a proof is in eprints/Bergman:

Math 250A, G. Bergman, 2002

A principal ideal domain that is not Euclidean developed as a series of exercises 14-1100 Nov 10, hours 26-27: Modules, Main Theorem -Existence Office How this week wed 136-230 (not at 230) Global goal: M F.g. module over a PID $R \Rightarrow Un', quely$ $M \cong \mathbb{R}^k \oplus \oplus \mathbb{R}/(p_i^s) \quad p_i \quad prime$ $M \cong \mathbb{R}^k \oplus \mathbb{R}/(p_i^s) \quad s_i \geqslant 1$ Corl. A Fig Abelian => A = ZK D DZ/psi Cor2. A & Maxa (C) has a "Jordan form" Today. Further dull technicalities, they proof of existence side of Thm. Euc => PID => UFD. Many UFD's are not PID's. Z[1+V=19] is a PIO but is not Euclidean. theorem. R is a PID iff it has a "Didekind-Hasse" norm: J: R-90) > N20 for add 5(0)=0] St. if a,6 to cither ac<6> or 70 + x e < a,6> W/J(x)<J(b)pc. = is before => Replace every prime by 2, get evor a "multiplicative" D-H norm. Reminder. Modules Dce/Claim. R-mod & mod-R are categories. Dof/claim. Submodules, Ker Ø, IM Ø, M/N Boring Theorems. 1. Ø:M -> N => M/Ker & = im & 2. A,BCM => A+B/ = A/AB 3 ACBCM => M/A/B/A &M/B 4 Also Jull Direct sums. M, N => M DN M

ABNOTO P

Notation of Many of Man $+lom(\widehat{\mathcal{D}}_{\mathcal{N}_{0}^{i}},\widehat{\mathbb{D}}_{\mathcal{N}_{0}^{i}})=d(\widehat{\mathcal{A}_{\mathcal{N}_{0}^{i}}},\widehat{\mathcal{A}_{\mathcal{N}_{0}^{i}}}):\widehat{\mathcal{A}_{\mathcal{N}_{0}^{i}}}\in\mathcal{H}om(\mathcal{N}_{1}^{i},\mathcal{N}_{0}^{i})$

Example: if 9cd(a,b)=1 1= sa+th [e.g., if R is a PID] PM. I should have done l=lcm

ROFF = ROFF SON

Example: It 908(a,b)=1 = sa+tb (e.g., it K is a PID) / PM. I should have done 1=10m Ray O By = Ry D Ry D=god (the sa) in a way compatible w/ $\frac{R}{\langle a_7} \oplus \frac{R}{\langle b_7} \cong \frac{R}{\langle a_{b7}} \quad \forall i a \qquad R/\langle a_7 \downarrow b \rangle \quad R/\langle a_5 \rangle \qquad R/\langle a_5$ $\frac{k}{\infty h} \rightarrow \frac{R}{\infty h} \otimes \frac{R}{\langle h_7 \rangle} h_7 (1)$ 7/ 0 1/10 1/13 = 1/47 0 1/3 = 1/1,001 "the chinge remainder in the case of gcd = 1. Let R bi a PID ---PM. I should have gone Sketch {mntrices }/row onto findales} 1. Maxm modules w/n genes & m rels. Finto by infink, kmore but the infinity is that a nusance. So we've back to Gaussin climption & 2. MnxX - F.J. modules DCF M is Finitely generated if Jg, .. g, & M S.t. M={Zxi3;: a; FR}. 3. The above is surjective. $R^{\times} \xrightarrow{A} R^{9} \xrightarrow{TT} M \qquad \text{Ker } T = \langle r_{\chi} : x \in X \rangle$ $A = \left(\frac{1}{2} \right) \frac{1}{2} g \quad A \in \mathcal{M}_{gX}(R)$ --- In general, every gxX matrix determined a F.g. modulo, and every f.g. models arises in this way. Examples. (1), (a), (0) Exercico. If C = (A | O), An $M = M_A \oplus M_R$ Comment. May add/remove a columns. line Clam if P,Q are invotable $R^{X} \xrightarrow{A} R^{9}$ on the lost, hen 1Q 2 Jp M = R9/im A and M = R9/im A $R^{X} \xrightarrow{A} R^{9}$ me isomorphil. PE \$: M -> M by [x] in A -> [Px] in A' P can be interpreted as gry matrix Q can be interpreted as an XXX column-Finite matrix; A = PAQ Can do arbitrary, vou oporations on A, and arbitrary invotible column ops, provided each column is touched finitely many times.

each column is touched finitely many times.

Of all the matrices rendable from A, let A' be the one having an entry with the smallest D-H norn; who, That entry is a... Clain an divides all other entries in its row & column. PF) for a Euclidem domain PFZ In a PID, if 9=gcJ(a,b)=sa+tb, then $(a \ b)\begin{pmatrix} s & -b/a \\ t & a/q \end{pmatrix} = (q \ 0), \text{ while } \begin{pmatrix} s & -b/a \\ t & a/4 \end{pmatrix}^{-1} = \begin{pmatrix} a/a & b/q \\ -t & s \end{pmatrix}$ => W.l.o.g, he row & column of an are O (except for a,1) => all entries of A are Jivisille by a,. A = (a, otiss)

A = (ivisible

i ya, Continue to get $A \sim \begin{pmatrix} a_{11} \\ \hline 6 \end{pmatrix} \begin{pmatrix} w.l.og., A \\ is square \end{pmatrix}$ So $M \cong \bigoplus_{i=1}^{g} \mathbb{R}/\langle a_{ii} \rangle \cong \mathbb{R}^{k} \oplus \bigoplus \mathbb{R}/\langle a_{i} \rangle \rangle$ $a_{i} | a_{2} | \dots | a_{n} \rangle$

November-12-14 12:53 PM

God: $M f.g. / PIDR \Rightarrow$ $M = R^{k} \oplus \bigoplus_{i=1}^{n} R / (P_{i}^{S_{i}}) \qquad P_{i} \quad Prime$ $S_{i} \in \mathbb{Z}_{>0}$

There is a map from nxm matrices to f.g. modules.

A \mapsto $R^n \xrightarrow{A} R^n \xrightarrow{R}'_{imA} = :M_A$ Equally well, $N \times X$ matrices to f.g. modules:

A \mapsto $R^X \xrightarrow{A} R^n \xrightarrow{R}'_{imA} = :M_A$ $M_{n \times X}(R) \xrightarrow{R} F.g.$ modules is surjetime.

Examples. (1), (a), (0) Exercise. If C = (A | C), then $M = M_A \oplus M_B$ Comment. May add/remove o columns.

P can be interpreted as gry matrix

O can be interpreted as gry matrix

Can be interpreted as gry matrix

Finite matrix; A'= PAQ

---- Can do arbitrary row operations on A,

involite

and arbitrary invortible column ops, provided

each column is touched finitely many times.

Of all the matrices rendable from A, let A'

be the one having an entry with the smallest D-H norn; who, that entry is an. Clain an divides all other entries in its row & column. PF) for a Euclidem domain. PF2 In a PID, if 9=gcd(a,b)=sa+tb, then $(a b)\begin{pmatrix} s - b/q \\ t a/q \end{pmatrix} = (q 0), \text{ while } \begin{pmatrix} s - b/q \\ t a/q \end{pmatrix}^{-1} = \begin{pmatrix} a/q b/q \\ -t s \end{pmatrix}$ => W.l.o.g, he row & column of a, are O (except for a,1) => all entries of A are Jivisille by a,. A = (a, al entries)

A divisible

2 yau Continue to get AN ("TZZ O) (w.l.og., A) is square) SO M= & P/aii> = R* + P R/ai> a,/a2/ -.. an

Man. JCF abstractly & in practice

HWY due, HWS on Web.

Rille. 1. A spherical boaf of bread goes into a bread culting machine which slice has the most crust?

2. Can you cover (100 with 99 x / 1/100 2

Corollary 2. Over an algebraically closed field F, every square matrix

A is conjugate to a block diagonal matrix B =

where each B_i is either a 1×1 matrix (λ_1) for some $\lambda_i \in \mathbb{F}$, or an $s_i \times s_i$ matrix with λ_i 's on the diagonals, 1's right below the diagonal, and 0's elsewhere,

for some $\lambda_i \in \mathbb{F}$ and for some $s_i \geq 2$. Furthermore, B is unique up to a permutation of its blocks B_i .

(Corollary: good old diagonalization.)

JCF. V a F.J. V.S, A: V -> V linew, makes V a mobile over R:= F[x] via xu=Au. Then V=(7)F(x) $(x-\lambda i)^{Si}$. What's F(x)

Buss: 1, x-2, (x-2)2, ..., (x-2)5-1

A-x acts by "shift to the right (00). so A acts by (?)

Now lets do that in practice

step1. Find a presentation matrix for VER-med.

W.lo.g V=F) and A FMnxn (F). Kc/TT= ?

claim < ri> = keTI PF Consider

r;=xl;-Ae; EKerTI | Rn =xI-A) Rn TI>Fn $\chi^{\kappa_{\ell_j}} \longrightarrow A^{\kappa_{\ell_j}}$

We want to know if & is I-1; it is enough to show that p is onto; i.e., that any $x^k e_i$; can be written, modulo $< r_i >$, as a combination of $e_i < s$. Indeed,

 $x^k \ell_i = x^{k-1}(x\ell_i) = x^{k-1} A \ell_i = \dots = A^k \ell_i$

Go over handout along with "run 1"

Dror Bar-Natan: Classes: 2014-15: Math 1100 Algebra I:

JCF Tricks and Programs

Row and Column Operations

Row operations are performed by left-multiplying N by some properly-positioned 2×2 matrix and at the same time left-multiplying the "tracking matrix" P by the same 2×2 matrix. Column operations are similar, with left replaced by right and P by Q.

RowOp[i_, j_, mat_] := Module[{TT = II},
 TT[{i, j}, {i, j}] = mat;
 NN = Simplify[TT.NN]; PP = Simplify[TT.PP];
];
ColOp[i_, j_, mat_] := Module[{TT = II},
 TT[{i, j}, {i, j}] = mat;
 NN = Simplify[NN.TT]; QQ = Simplify[QQ.TT];
];

Swapping Rows and Columns

$$\begin{split} & \text{SwapRows}[\underline{i}_-,\,\underline{j}_-] \; := \; \text{RowOp}\Big[\underline{i},\,\underline{j},\,\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\Big]; \\ & \text{SwapColumns}[\underline{i}_-,\,\underline{j}_-] \; := \; \text{ColOp}\Big[\underline{i}_-,\,\underline{j}_-,\,\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\Big]; \\ & \text{SwapBoth}[\underline{i}_-,\,\underline{j}_-] \; := \; \text{(SwapRows}[\underline{i}_-,\,\underline{j}]: \; \text{SwapColumns}[\underline{i}_+,\,\underline{j}];) \end{split}$$

The "GCD" Trick

If $q = \gcd(a, b) = sa + tb$, the equality $\begin{pmatrix} s & t \\ -b/q & a/q \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q \\ 0 \end{pmatrix}$ allows us to replace pairs of entries in the same column by their greatest common divisor (and a zerot), using invertible row operations. A similar trick works for rows.

? PolynomialExtendedGCD

PolynomialExtendedGCD[$poly_1$, $poly_2$, x] gives the extended GCD of $poly_1$ and $poly_2$ treated as univariate polynomials in x. PolynomialExtendedGCD[$poly_1$, $poly_2$, x, Modulus $\rightarrow p$] gives the extended GCD over the integers mod prime p.

Mong with:

Factoring Diagonal Entries

$$\begin{split} & \text{If 1} = \gcd(a,b) = sa + tb, \text{ the equality} \\ & \begin{pmatrix} s & 1 \\ -t b & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & a b \end{pmatrix} \begin{pmatrix} a & -b \\ t & s \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \text{ is an invertible row-column-operations proof of the isomorphism } \frac{R}{(a)} \oplus \frac{R}{(b)} \simeq \frac{R}{(ab)}. \\ & \text{SplitToSum}[i_-, j_-, a_-, b_-] := \text{Module} \Big[\\ & \{q, s, t, T1, T2\}, \\ & \{q, \{s, t\}\} = \text{PolynomialExtendedGCD}[a, b, x]; \\ & \text{If} \Big[q = 1, \\ & \text{RowOp} \Big[i, j, \begin{pmatrix} s & a & 1 \\ -t & b & 1 \end{pmatrix} \Big]; \text{ColOp} \Big[i, j, \begin{pmatrix} a & -b \\ t & s \end{pmatrix} \Big]; \end{split}$$

The Jordan Trick

A repeated application of the identity

 $\begin{pmatrix} p^{k-1} & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & p^k \end{pmatrix} \cdot \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} p^{-1+k} & 0 \\ 1 & p \end{pmatrix} \ \text{will bring a matrix like} \ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & p^4 \end{pmatrix}$ to the "Jordan" form of $\begin{pmatrix} p & 0 & 0 & 0 \\ 1 & p & 0 & 0 \\ 0 & 1 & p & 0 \\ \end{pmatrix} \text{, using invertible row and column operations.}$

$$\begin{split} & \operatorname{JordanTrick}[i_-,\ j_-,\ p_-,\ s_-] \ := \\ & \left(\operatorname{RowOp}\left[i_-,j_-, \left(\begin{smallmatrix} p^{s-1} & -1 \\ 1 & 0 \end{smallmatrix} \right) \right]; \ \operatorname{ColOp}\left[i_-,j_-, \left(\begin{smallmatrix} 1 & p \\ 0 & 1 \end{smallmatrix} \right) \right] \right); \end{aligned}$$

Running the JCF Programs

In[2]:= SetDirectory["C:\\drorbn\\AcademicPensieve\\Classes\\14-1100"];
 << JCF-Program.m</pre>

Matrix I - 3x3, 3 eigenvalues.

Jone to (./.)

Recovering
$$C$$
 from P^{2}

$$\begin{array}{cccc}
Ce_{i} = T_{\mathcal{B}}(Pe_{i}) \\
&= T_{\mathcal{B}}(\sum x^{k}P_{k}e_{i}) \\
&= \sum x^{k}T_{\mathcal{B}}(P_{k}e_{i}) \\
&= \sum x^{k}T_{\mathcal{B}}(P_{k}e_{i})$$

Go through run 2 until stuck, then

The "Jordan Trick":
$$\mathbb{R}/\mathbb{P}^{S} = \langle X \rangle / \mathbb{P}^{S} \chi = 0$$

 $\chi_{0} = \chi$
 $\chi_{1} = -p\chi$
 $\chi_{2} = p^{2}\chi$
 $\chi_{3} = p^{2}\chi$

A repeated application of the identity $\begin{pmatrix} p^{k-1} & -1 \\ 1 & 0 \end{pmatrix}$. $\begin{pmatrix} 1 & 0 \\ 0 & p^k \end{pmatrix}$. $\begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} p^{-1+k} & 0 \\ 1 & p \end{pmatrix}$ will bring a matrix like

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & p^4 \end{pmatrix} \text{ to the "Jordan" form of } \begin{pmatrix} p & 0 & 0 & 0 \\ 1 & p & 0 & 0 \\ 0 & 1 & p & 0 \\ 0 & 0 & 1 & p \end{pmatrix}, \text{ using invertible row and column operations.}$$

Then go through the vist of runz & through run 3 ---

The Jordan Trick

November-20-14 10:04 AM

$$PX = \langle X \rangle / PS \chi = 0 \qquad X_0 = \chi$$

$$= \langle X_0 - X_{S-1} \rangle / PX_1 + X_{1+1} = 0 \qquad X_1 = -PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_1 = -PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_1 = -PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_1 = -PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_1 = -PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_1 = -PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_1 = -PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_1 = -PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_1 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_3 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_1 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_3 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad X_3 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad Y_1 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad Y_2 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad Y_1 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad Y_1 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad Y_1 = PX$$

$$= \langle X_0 - X_{S-1} \rangle / PX_{1+1} = 0 \qquad Y_1 = PX_2 = PX$$

$$= \langle X_0 - X_1 \rangle / PX_1 = PX_1 = PX_1 = PX_1 = PX_1 = PX_2 = PX_2 = PX_2 = PX_2 = PX_1 = PX_2 =$$

Cowse evol: 2/17

Riddles as in Nov24Riddles.nb

Finish Ost week's material: Go over handout along with "run 1"

Dror Bar-Natan: Classes: 2014-15: Math 1100 Algebra I:

ICF Tricks and Programs

Row and Column Operations

Row operations are performed by left-multiplying N by some properly-positioned 2×2 matrix and at the same time left-multiplying the "tracking matrix" P by the same 2×2 matrix. Column operations are similar, with left replaced by right and P by Q.

```
RowOp[i_, j_, mat_] := Module[{TT = II},
   TT[[{i, j}, {i, j}]] = mat;
   NN = Simplify[TT.NN]; PP = Simplify[TT.PP];
ColOp[i , j , mat ] := Module[{TT = II},
   TT[[{i, j}, {i, j}]] = mat;
   NN = Simplify[NN.TT]; QQ = Simplify[QQ.TT];
```

Swapping Rows and Columns

```
SwapRows[i_, j_] := RowOp[i, j, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}];
SwapColumns[i_{-}, j_{-}] := ColOp[i_{-}, j_{-}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}];
SwapBoth[i_, j_] := (SwapRows[i, j]; SwapColumns[i, j];)
```

If $q = \gcd(a, b) = sa + tb$, the equality $\begin{pmatrix} s & t \\ -b/q & a/q \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q \\ 0 \end{pmatrix}$ allows us to replace pairs of entries in the same column by their greatest common divisor (and a zero!), using invertible row operations. A similar trick works for rows.

? PolynomialExtendedGCD

PolynomialExtendedGCD[$poly_1, poly_2, x$] gives the extended GCD of $poly_1$ and $poly_2$ treated as univariate polynomials in xPolynomialExtendedGCD[$poly_1$, $poly_2$, x, Modulus $\rightarrow p$] gives the extended GCD over the integers mod prime p. \Rightarrow

Nong with:

```
\label{eq:gcdtrick} \mbox{GCDTrick}[\{\emph{i}\_,\ \emph{j}\_\},\ \emph{k}\_] \ := \ \mbox{Module} \Big[\{\emph{a},\ \emph{b},\ \emph{q},\ \emph{s},\ \emph{t}\},
      {q, {s, t}} = PolynomialExtendedGCD[a = NN[i, k]],
          b = NN[j, k], x];
     \texttt{RowOp}\big[\texttt{i},\texttt{j},\left(\begin{smallmatrix}s&t\\-\texttt{b}/\texttt{q}&\texttt{a}/\texttt{q}\end{smallmatrix}\right)\big]
GCDTrick[k_, {i_, j_}] := Module[{a, b, q, s, t},
       \{q, \{s, t\}\} = PolynomialExtendedGCD[a = NN[k, i]], 
         b = NN[[k, j]], x];
      ColOp[i, j, (s - b/q)]
    ];
```

Factoring Diagonal Entries

If $1 = \gcd(a, b) = sa + tb$, the equality $\begin{pmatrix} sa & 1 \\ -tb & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & ab \end{pmatrix} \begin{pmatrix} a & -b \\ t & s \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ is an invertible row-columnoperations proof of the isomorphism $\frac{R}{(a)} \oplus \frac{R}{(b)} \simeq \frac{R}{(ab)}$

$$\begin{split} & \text{SplitToSum}\{i_, \ j_, \ a_, \ b_\} \ := \ \text{Module} \Big[\\ & \{q, \ s, \ t, \ T1, \ T2\}, \\ & \{q, \ \{s, \ t\}\} \ = \ \text{PolynomialExtendedGCD}[a, \ b, \ x]; \\ & \text{If} \Big[q = 1, \\ & \text{RowOp}\Big[i, \ j, \left(\begin{smallmatrix} s & a & 1 \\ -t & b & 1 \end{smallmatrix} \right) \Big]; \ \text{ColOp}\Big[i, \ j, \left(\begin{smallmatrix} a & -b \\ t & s \end{smallmatrix} \right) \Big]; \\ & \Big] \\ & \Big]; \end{aligned}$$

The Jordan Trick

A repeated application of the identity

$$\begin{pmatrix} p^{k-1} & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & p^k \end{pmatrix} \cdot \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} p^{-1-k} & 0 \\ 1 & p \end{pmatrix} \text{ will bring a matrix like } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & p^4 \end{pmatrix}$$

to the "Jordan" form of $\begin{pmatrix} p & 0 & 0 & 0 \\ 1 & p & 0 & 0 \\ 0 & 1 & p & 0 \\ \end{pmatrix}, \text{ using invertible row and column operations}$

$$\begin{split} & \operatorname{JordanTrick}[i_, \ j_, \ p_, \ s_] \ := \\ & \left(\operatorname{RowOp}\left[i, \ j, \ \left(\begin{array}{cc} p^{s-1} & -1 \\ 1 & 0 \end{array} \right) \right]; \ \operatorname{ColOp}\left[i, \ j, \ \left(\begin{array}{cc} 1 & p \\ 0 & 1 \end{array} \right) \right] \right); \end{split}$$

Running the JCF Programs

Matrix I - 3x3, 3 eigenvalues.

$$\begin{array}{l} & & \\ & |_{n[4]:=} \ n=3; \ AA = \left(\begin{array}{ccc} 3 & 0 & 0 \\ 4 & -2 & -6 \\ -2 & 0 & 1 \end{array} \right); \\ & & \\ & PP = QQ = II = IdentityMatrix[n]; \\ & & \\ & MM = x II - AA; \\ & NN = PP \cdot MM \cdot QQ; \end{array}$$

a 0 0 0

Ricovering
$$C$$
 from P ?

 $R_{1} = T_{1} = T_$

Go through run 2 until stuck, then

The "Jordan Trick":
$$R \times P^{S} = \langle X \rangle / P^{S} \chi = 0$$

 $\chi_{0} = \chi$
 $\chi_{1} = -P \chi$
 $\chi_{2} = P \chi$
 $\chi_{3} = P \chi$

A repeated application of the identity $\begin{pmatrix} p^{k-1} & -1 \\ 1 & 0 \end{pmatrix}$. $\begin{pmatrix} 1 & 0 \\ 0 & p^k \end{pmatrix}$. $\begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} p^{-1+k} & 0 \\ 1 & p \end{pmatrix}$ will bring a matrix like

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & p^4 \end{pmatrix} \text{ to the "Jordan" form of } \begin{pmatrix} p & 0 & 0 & 0 \\ 1 & p & 0 & 0 \\ 0 & 1 & p & 0 \\ 0 & 0 & 1 & p \end{pmatrix}, \text{ using invertible row and column operations.}$$

Then go through the vest of runz & through run 3

Goal: The "hy" of modules.
Ricall that (R-mod, D) is an "Abelian gray" (really, an Abian Seni-gray, and even) Tensor Products. Given M, N
Definition A "tensor product" Mon is a module Mon along with a bilinear
$T: \mathcal{M} \times \mathcal{N} \longrightarrow \mathcal{M} \otimes \mathcal{N} \longrightarrow \mathcal{A}.$
MXN Liliner MON Siliner - Fl liner
The MON exists & is unique up to isomorphism.
PF First unique ness, Then
$\mathcal{N} \otimes_{\mathcal{R}} \mathcal{N} := \begin{cases} \sum_{i=1}^{n} a_{i}(m_{i} \otimes n_{i}) : N \in \mathcal{W}, a_{i} \in \mathcal{R} \end{cases} / \begin{cases} (a_{m}) \otimes n = \alpha(m \otimes n) = m \otimes (a_{n}) \\ (m_{i} + m_{i}) \otimes n = -1 \end{cases}$ $m \otimes (n_{i} + n_{i}) = -1$
M×N bilinur
Example dim VOW = (dim V) (dim W)
Example. If $9 \in 9 \in 2(a,b)$, $\frac{R}{\langle a_{2} \rangle} \otimes \frac{R}{\langle b_{2} \rangle} \simeq \frac{R}{\langle v_{2} \rangle}$
PF. [r,] @ [r_] = [r, r_] [9] @[1] = (34 + tb) @[1] = 0
$[r]_{q} \longrightarrow [r]_{\infty} \otimes [r]_{q} \qquad (r, r)_{\infty} (r, r)_{\infty} = (r, r)_{\alpha} (r, r)_{\alpha}$
$example$. $l: F(x) \otimes F(y) \rightarrow F(x \sim y)$
1. Always injective D [not so]
2. Isomorphism if X or Y are finite.
3. Not swjettive if R=I, X, Y are infinite. That all abvious ?]
throrem. (R-nod, D, X) is a "ving".
Nearon. (M, N) I-> MON is a "bifunctor".

	14-1100 Nov 27, hour 32: The "ring" of modules November-26-14 3:39 PM
	Return HWY 1
	Course chals: 2/17. Vote and whom offices?
	Definition A "tensor product" MON 15
	a module MON along with a bilinear
	$J: M \times N \longrightarrow M \otimes N \qquad \text{3.4.}$
	MXN Lilinear MON Silinear - Fl linear
	Then MON exists/k is unique up to isomorphism.
	Example. Jim VOW = (Jim V) (Jim W)
-	Proof of Uniqueness.
	Example. If 9E9cd(a,5), R R R R
	PF. [r,] @ [r_], → [r, r_], [9]@[7=[3++t5] 0[1]=0
	$[r]_{q} \longrightarrow [r]_{\infty} \otimes [r]_{b} \qquad (r, r) \otimes [r] = [r, r)(r_{2})$
	example. $l: F(x) \otimes F(y) \rightarrow F(x \sim y)$
	1. Always injective D [not 50]
	2. Isomorphism if X or Y are finite.
	3. Not swjective if R=Z, X, Y are infinte. [not at all obvious]]
	throrem. (R-nod, D, X, O, R) is a "ving".
	Mearch. (M,N) I-> MON 13 a "bifunctor". dong
	Example. $Q \otimes_{\mathbb{Z}} \mathbb{Z}^n \cong \mathbb{Q}^n$ "Extension of scalars".

Example. $Q \otimes_{\mathbb{Z}} \mathbb{Z}^n \cong \mathbb{Q}^n$ "Extension of scalars". In general, given $\phi: R \to S$ a ving morphism, S is an Rmodule & set Ms: = SORM. Then Ms is on 5-module and Rs = 5n.

Prop. For any Jomain R Here is a unique Field Q(R)

S.t. R 1-1>Q(R)

ij38

Froof later.

Claim If M is torsion [VMEM Frek'ds] Then Mair) = 0. asm=r(2 sm)= 2 sm=0

Prop IF M= RK + PR/<P;51>, then

1. $\dim_{Q(R)} M_{Q(R)} = K$ 2. $\dim_{R/P} M_{R/P} = K + |\{i: p; np\}|$ $K/P = K + |\{i: p; np\}|$

3. $\lim_{R \neq P} |M(M \mapsto P^s M)_{R \neq P} = K + |\mathcal{L}_i : P_i \sim P \left\{ S < S_i \mathcal{L}_i \right\}$

in $(M \mapsto P^{S}) \simeq \begin{cases} P^{S}R \cong R & \text{on } R \\ R/\sqrt{9^{t}} > & \text{on } R/\sqrt{9^{t}} > & \text{gap} \\ 0 & \text{on } R/\sqrt{p^{t}} > & \text{soft} \\ R/\sqrt{p^{t}} > & \text{on } R/\sqrt{p^{t}} > & \text{soft} \end{cases}$

 $\begin{array}{c}
\text{anl} & \text{on } R \\
\text{on } R \neq P \\
\text{ker}(m \mapsto P^{s}n) \stackrel{\sim}{=} & \text{Rept}, \text{ on } R \neq P \\
\text{Rept}, \text{ on } R \neq P \\
\text{Rept}, \text{ on } R \neq P
\end{array}$ K/ps, on R/pt, Sct K/ps, 1-2 kor by [1] pt [pt-sr]pt

So such a decomposition is unique of

Localization & Fields of Fractions. Let R be a commutative domain

Def A multiplicative subset S of Rigog. (contains 1, closed under x) Examples Rigob, RIP (P prime), Powers of ato. Definition $C^{-1}R = \frac{1}{5} \frac{1}{6} \frac{1}{6}$

- 1 ~ 2 if 1 1 = 12 !	5
$\left[\frac{r_{1}}{s_{1}} \sim \frac{r_{2}}{s_{1}} + \frac{r_{3}}{s_{2}} \sim \frac{r_{3}}{s_{3}} = \right] \sim (s_{2} = r_{2}s_{1}, r_{2}s_{3} = r_{3}s_{2} =)$	5, + 5 =
1,5253=125,53= 5,1352 =) 1,53=135,	S. Ez
Ridoly - "Field of Fractions O(R)"	R-75-1/K
R'P - "localization at 1"	is injective
(27) - "Lyndic vationals".	

	theorem November-29-14 7:29 PM
	Next class: Wed 1-3 OH 3-4.
	Coursi evals: 4/17 Vote and worn offers?
	God. Uniqueness in the structure thm.
	throrem. (R-nod, D, X), O, R) is a "ring".
	Mearch. (M,N) 1-> MON is a "bitcoctor". start
	Example. $Q \otimes_{\mathbb{Z}} \mathbb{Z}^n \cong \mathbb{Q}^n$ "Extension of scalars". In general, given $\phi: \mathbb{R} \to S$ a ving morphism, S is an \mathbb{R}
	module & set $M_s:=S\otimes_R M$. Thun M_s is $M_s:=S^n$.
	VVI STOOME WY RS-J.
	Prop. For any domain R there is a unique Field Q(R)
	S.t. R (-1) Q(R) "The Field of Fractions" j38 proof: later.
	Claim If M is torsion [VMEM Frekied] Then Mark) = 0.
	$\alpha \otimes m = r(\alpha \otimes m) = \alpha \otimes rm = 0$
	Prop IF $M \cong \mathbb{R}^k \oplus \widehat{+} \mathbb{R}/\langle p_i^{s_i} \rangle$, then
	$1 \lim M_{av} = K \qquad \qquad R/\langle P \rangle 13 q \text{Fight}$
	2. $\dim_{R/P} M_{R/P} = K + \{i: p; \sim p\} $ Secrete in a property is maximal
	3. $\lim_{R \neq P} M(M \mapsto P^s M)_{R \neq P} = K + \mathcal{L}_i: P_i \sim P \& S < S_i \mathcal{L}_i$
	$\begin{cases} p^{S}R \stackrel{\text{def}}{=} R \text{ on } R \end{cases} \qquad \begin{cases} 0 \text{ on } R \end{cases}$
(,	as R/q^{+} on R/q^{+} on R/q^{+} on R/q^{+} and R/q^{+} on R/q^{+} on R/q^{+} sat R/q^{+} on R/q^{+} sat
	R/pts, on R/cpt, sct R/cps, on R/cpt, sct

on R/2pt sat R/2pts on R/2pt sct R/CPS) on R/CPt) Sol R/CPS) on R/CPt) Sol R/CPS) Ho ker by [1] pt

So such a decomposition is unique of

Localization & Fields of Fractions. Let R be a commutative domain

Def A multiplicative subset S of Rigog. (contains 1, closed under x)

Examples Rigog, Rip (prime), Powers of a 70.

Definition 5-1R = (5)/ri~ if rih=r251

 $\begin{bmatrix} \frac{r_1}{5_1} & \frac{r_2}{5_1} & \frac{r_3}{5_2} & \frac{r_3}{5_2} & \frac{r_3}{5_2} & \frac{r_4}{5_2} & \frac{r_5}{5_2} & \frac{r_5}{5_2}$

Ridoly - "Field of Fractions O(K)"

R-75-K

RiP - "localization at 1"

Is injective

(2ⁿ) - "dyndic vationals". all done

14-1100 Dec 1, hours 35-36: Topological insolubility of the quintic, more on the JCF

September-03-14 12:34 PM

Pan needs volunteers to mark olympiad questions?

Course chals: 5/17

The Final: All is included, same style as term test

The Key: Understand EVERYTHING,

Today: Not solving the quintic, more on JCF.

Tomorrow: Riddles Session 1 Bahon 6183, 10 AM.

Following http://drorbn.net/dbnvp/AKT-140314.php:

Some JCF tricks

If $q = \gcd(a, b) = sa + tb$, the equality $\begin{pmatrix} s & t \\ -b/q & a/q \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} q \\ 0 \end{pmatrix}$ allows us to replace pairs of entries in the same column by their greatest common divisor (and a zero!), using invertible row operations. A similar trick works for rows.

If 1 = gcd (a, b) = sa + tb, the equality $\begin{pmatrix} sa & 1 \\ -tb & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & ab \end{pmatrix} \begin{pmatrix} a & -b \\ t & s \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ is an invertible row-column-operations proof of the isomorphism $\frac{R}{\langle a \rangle} \oplus \frac{R}{\langle ab \rangle} \simeq \frac{R}{\langle ab \rangle}$.

A repeated application of the identity $\begin{pmatrix} \mathbf{p^{k-1}} & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & \mathbf{p^k} \end{pmatrix} \cdot \begin{pmatrix} 1 & \mathbf{p} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{p^{-1+k}} & 0 \\ 1 & \mathbf{p} \end{pmatrix}$ will bring a matrix like $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \mathbf{p^4} \end{pmatrix}$ to the "Jordan" form of $\begin{pmatrix} \mathbf{p} & 0 & 0 & 0 \\ 1 & \mathbf{p} & 0 & 0 \\ 0 & 1 & \mathbf{p} & 0 \\ 0 & 0 & 1 & \mathbf{p} \end{pmatrix}$, using invertible row and column operations.

$$\frac{\langle x, y \rangle}{p^{k}x = 0} \stackrel{\sim}{=} \frac{\langle x, z \rangle}{p^{k-1}x + z = 0}$$

$$\frac{y}{p^{k-1}x + z}$$

$$\frac{x}{y + p^{k-1}x} \stackrel{\sim}{=} \frac{1}{z}$$