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KHOVANOV HOMOLOGY FOR ALTERNATING TANGLES
DROR BAR-NATAN & HERNANDO BURGOS-SOTO

ABSTRACT. We describe a “concentration on the diagonal” condition on the Khovanov com-
plex of tangles, show that this condition is satisfied by the Khovanov complex of the single
crossing tangles (X) and (X), and prove that it is preserved by alternating planar algebra
compositions. Hence, this condition is satisfied by the Khovanov complex of all alternating
tangles. Finally, in the casc of 0-tangles, mcaning links, our condition is cquivalent to a well
known result [Leel] which states that the Khovanov homology of a non-split alternating link
is supported in two lines. Thus our condition is a generalization of Lee’s Theorem to the
case of tangles
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1. INTRODUCTION

Khovanov [Kh] constructed an invariant of links which opened new prospects in knot the-
ory and which is now known as thec Khovanov homology. Bar-Natan in [BN1] computed this
invariant and found that it is a stronger invariant than the Jones polynomial. Khovanov,
Bar-Natan and Garoufalidis [Ga] formulated several conjectures related to the Khovanov
homology. One of these refers to the fact that the Khovanov homology of a non-split alter-
nating link is supported in two lines. To see this, in Table 1, we present the dimension of
the groups in the Khovanov homology for the Borromean link and illustrate that the no-zero
dimension groups are located in two consecutive diagonals. The fact that every alternating
link satisfies this property was proved by Lee in [Leel].
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W3] [-1[0]1]2][3]
7 1
5 2
3 1
1 412
-1 24
-3 1
-5 2
ST 1

Table 1. The Khovanov homology for the Borromean link
rx,’/-vf;r'l Yon oF /C‘lu.',c,m /{Jm oy 7{) J&) V {

In [BN2] Bar-Natan presented a new—way—of-seeing-theKhovanoev-hemelegy: In his
approach, a formal chain complex is assigned to every tangle. This formal chain complex,
regarded within a special category, is an (up to homotopy) invariant of the tangle. For the
particular case in which the tangle is a link, this chain complex coincides with the cube of
smoothings presented in [ICh].

This local Khovanov thcory was used in [BN3] to make an algorithm which provides a
faster computation of the Khovanov homology of a link. The technique used in that last
paper was also important for theoretical reasons. We can apply it to prove the invariance
of the Khovanov homology, see [BN3]. It was also used in [BN-Mor] to give a simple proof
of Lee’s result stated in [Lee2], about the dimension of the Lee variant of the Khovanov
homology. Here, we will show how it can be used to state a generalization to tangles of
the fore-mentioned Lee’s theorem [Leel] about the Khovanov homology of alternating links.
Most of the success attained by this algorithm is due to the simplification of the Khovanov
complex associated to a tangle. This simplification consists in the elimination, of the loops in
the smoothing of the complex (delooping), and the isomorphism in the differentials (Gauss-
ian elimination). Indeed, given a chain complex  is possible apply iteratively delooping

i y mﬂ,gg‘md gaussian elimination and obtain a homotopy equivalent complex with no loops and no.
Fa/m Jor, #isomorphisms, In this paper, we say that the resulting complex is a reduced form of {2, and
(e Jvufl}/” the algorithm that allows to find it will be named the DG algorithm.

b In section 7.1 we observe that the Khovanov complex of an alternat-

ing tangle can be endowed with consistent “orientations”!, namely, every
strand in every smoothing appearing in the complex can be oriented in
a natural way, and likewise every cobordism, in a mannex, so-that these
oricntations arc consistent. (A quick glance at figures 4 ont’16 and 5 on

page 17 should suffice to convince the experts). Associated with each U

oriented smoothing ¢ is an integer called the rotation number of o which

can be determined in the following way. If o has only closed components (loops), then R(o)

is the sum of the number of positively oriented (oriented counterclockwise) loops minus the

sum of the number of negatively oriented (oriented clockwise) loops. The rotation number »
of an oriented smoothing with boundary is the rotation number of its pesitive-closure, which 9(“* ik i
is obtained by embedding the smoothing is a diagram as the one at the right. Figure 1

(ot
J

INote that these are orientations of the smoothings, and they have nothing to do with the orientations of
the components of the tangle itself,

P
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The s
(A) Smoothing with rotation (B) Smoothing with rotation (¢) X pesitive closure of the
number 1 number 2 smoothing in b

Figure 1. Several smoothings and their rotation numbers. For calculating the rotation
number of the smoothing in (B) we count the loops in its positive closure which appears in

(©)

displays several smoothing with their corresponding rotation number. This orientation in
the smoothings and the rotation number associated to it were previously utilized in [Bur] to
generalize a Thistlethwaite’s result for the Jones polynomial stated in [Th].

In a manner similar to [BN2|, we define a certain graded category Cobz of oriented cobor-
disms. The objects of Cob® are oriented smoothing, and the morphisms are oriented cobor-
disms. This category is used to define the category Kom(Mat(Cob?)) (abbreviated Kob,) of
complexes over Mat(Cob?).

Specifically, for degree-shifted smoothings o{g}, we define R(c{q}) := R(c) + q¢. We fur-
ther use this degree-shifted rotation number to define a special class of chain complexes in
Kob, whose reduce form can be written

Q: "'H[Ug]j_)[UJT'JAL_—)”"

which satisfies that for all degree-shifted smoothings 0%, 2r — R(O';) is a constant that we
call rotation constant C(§2) of the complex . In other words, twice the homological degrees
and the degree-shifted rotation numbers of the smoothings always lie along a single diago-
nal. Chain complexes that have a reduced form satisfying this property are called diagonal

complezes.

An important tool for stating our main results is the concept N / Tl :
of alternating planar algebra. An alternating planar algebra is an oN R / K the /’Om’@
oriented planar algebra as in [BN2, Section 5], where the d-input - . -\
planar arc diagrams D satisfy the following conditions: i) The e
number k of strings ending on the external boundary of D is greater ‘* R
than 0. ii) There is complete connection among input discs of the . . padl \\ .
diagram and its arcs, namely, the union of the diagram arcs and the - / Y '
boundary of the internal holes is a connected set. iii) The in- and RO S

. Ths f/m,(’d be Made Mo re /;fo/nmwf, I Aad b# 7‘”*76
Findig (+.

=



A (uj’flﬂﬂ(c l}
o 99’“3
(et 66/'

4 DROR BAR-NATAN & HERNANDO BURGOS-SOTO

out-strings alternate in every boundary component of the diagram. A planar arc diagram as
this is called a type-A planar diagram. If @ is an element in the planar algebra and D is a
l-input type-A planar diagram then D(®) is called a partial closure of ®.

Using the above terminology, our main result is stated as follows:

Theorem 1. If T is an alternating non-split tangle then its Khovanov homology K WT) is
diagonal.

Roughly speaking, we say that a complex 2 is coherently diagonalif it is a diagonal complex
whose partial closurcs arc also diagonal. Indeed, Theorem 1 can be restated as saying that

the Khovanov homology Kh(T) of a non-split alternating tangle is coherently diagonal. To g/-}'of
fm‘t

prove this theorem we use the fact that non-split alternating tangles form an alte - A
planar algebra generated for the one-crossing tangles (3X) and (X). Thus Theorem 1 follows
from the observation that K h(X) and Kh(X) are coherently diagonal and from Theorem 2
below:

Theorem 2. IfQy, ..., Q, are coherently diagonal complexes and D is an alternating planar
diagram then D(Qy, ..., Q) is coherently diagonal

In the case of alternating tangles with no boundary, i.e., in the case of alternating links,
Theorem 1 reduces to Lee’s theorem on the Khovanov homology of alternating links.

The work is organized as follows. Section 2 reviews Bar-Natan’s local Khovanov theory.
Scction 3 is devoted to introduce the category Cobg and gives a quick review of some con-
cepts related to alternating planar algebras. In particular we review the concepts of rotation
numbers, alternating planar diagrams, associated rotation numbers, and basic operators.

Section 4 introduces the concepts of diagonal complexes, coherently diagonal complexes,
and their partial closures. We state here some results about the complexes obtained when a
basic operator is applied to alternating elements. The Khovanov homology is formed from
a double complex. However, when applying the DG algorithm the wopfiguration of double
complex is lost. Attempting to fix this problem in Section 5 we introduced the concept of
perturbed double complex which is the object in which the DG algorithm lives. Indeed,

we shall sce that double complexes arc special casc%)f(p\crturbe omplexes and that after doab

Amdar

(4

applying any step of the DG algorithm in a perturbed €omplex, the complex continues being don /¢

of the same class. The application of the DG algorithm leads to the proof in section 6 of
Theorem 2. Finally section 7 is dedicated to the study of non-split alternating tangles. Here,
we prove Theorem 1 and derive from it the Lee theorem formulated in [Leel].

2. THE LOCAL KHOVANOV THEORY: NOTATION AND SOME DETAILS

The notation and some results appearing here are treated in more details in [BN2, BN3,
Naot]. Given a set B of 2k marked points on a circle C, a smoothing with boundary B is
a union of strings ai, ..., a, embedded in the planar disk for which C is the boundary, such
that U™, 0a; = B. These strings are either closed curves, loops, or strings whose boundaries
are points on B, strands. If B = (), the smoothing is a union of circles.

Behw: V\/k\j K Thy AL Sthmerr” o6 Thn /2 /4§ Ly /%/7//
(/09% o en i’/ﬁ/”‘%f’@ '7[”‘/73%3 /J ’\j"/ﬂ s y~/7lcrrw7‘\) 714,,?/



KHOVANOV HOMOLOGY FOR ALTERNATING TANGLES 5

We denote Cob®(B), the category whose objects are smooth-
ings with boundary B, and whose morphisms are cobor-
disms between such smoothings, regarded up to boundary
preserving isotopy. The composition of morphisms is given
by placing one cobordism atop the other.

Our ground ring is one in which 27! exists. The dotted figure is used as an

abbreviation of % and Cob® /l(B ) represents the category with the same objects and

morphisms as C'ob*(B), whose morphisms arc mod out by the local relations:

O @ S
(1)
w Z0-B 0-D €

We will use the notation Cob® and Cob? /1 s a generic reference, namely, Cob® = | J, Cob®(B)
and Cobf/l = |z Cobf/l(B). If B has 2k elements, we usually write Cobf/l(k) instead of
Cob? #(B). If C is any category, Mat(C) will be the additive category whose objects are

column vectors (formal direct sums) whose entries are objects of C. Given two objects in
this category,

0, 0!
= ©; ol = ©;
o, oL

the morphisms between these objects will be matrices whose entries are formal sums of
morphisms between them. The morphisms in this additive category are added using the
usual matrix addition and the morphism composition is modelled by matrix multiplication,
i.e, given two appropriate morphisms F' = (Fj;) and G = (GYy;) between objects of this
category, then F' o (G is given by

FoG=> FyGy.
k

Kom(C) will be the category of formal complexes over an additive category C. Kom/,(C) is
Kom(C) modulo homotopy. We also use the abbreviations Kob(k) and Kob (k) for denoting
Kom(Mat(Cob; ,(k))) and Kom,(Mat(Cob ,(k))).

Objects and morphisms of the categories Cob®, Cob? /o Mat(Cob? /1), Kob(k), and Kob (k)
can be scen as cxamples of planar algebras, i.c., if D is a n-input planar diagram, it defincs
an operation among elements of the previously mentioned collections. See [BN2] for specifics
of how D defines operations in each of these collections. In particular, if (€, d;) € Kob(k;)
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are complexes, the complex (€2, d) = D(€, ..., {2,) is defined by
o= € DbEOF,....9n)

r=rit-+rn
(2) n
d|D(S2;1,...,Slfﬁ) = Z(—1)2j<'iTjD<IS271‘1, wwr dﬁ <ewy IQ;n),
=1
D(Qy,...,Q,) is used here as an abbreviation of D((Q1,d1), ..., (Qn,dn)).
In [BN2] the following very desirable property is also proven. The Khovanov homology is a
planar algebra morphism between the planar algebras 7 (s) of oriented tangles and Kob (k).

That is to say, for an n-input planar diagram D, and suitable tangles T, ..., T,,, we have
(3) Kh(D(Ty,...,T,)) = D(KWMT1), ..., Kh(T},)).

This last property is used in [BN3] to show a local algorithm for computing the Khovanov
homology of a link. In that paper, Bar-Natan explained how it is possible to remove the
loops in the smoothings, and some terms in the Khovanov complex Kh(T;) associated to
the local tangles 71, ..., 7). and then combine them together in an n-input planar diagram
D obtaining D(Kh(T1), ..., Kh(T,)), and the Khovanov homology of the original tangle.

The elimination of loops and terms can be done thanks to the following: Lemma 4.1 and
Lemma 4.2 in [BN3]. We copy these lemmas verbatim:

Lemma 2.1. (Delooping) If an object S in Cobf/l contains a closed loop ¢, then it is isomor-
phic (in Mat(Cobf/l)) to the direct sum of two copies S'{+1} and S'{—1} of S in which £ is
removed, one taken with a degree shift of +1 and one with a degree shift of —1. Symbolically,
this reads O = 0{+1} & 0{—1}.

The isomorphisms for the proof can be seen in:

D .|
o O

(D1
using all the relations in (1).

d
—=0

Lemma 2.2. (Gaussian elimination, made abstract) If ¢ : by — by is an isomorphism (in
some additive category C), then the four term complex segment in Mat(C)

o
B
is 1somorphic to the (direct sum) complex segment

g

(5) (] F] -

m (3 i) [bz] (u v)

D E

6) - [ [F] -

D E

m (%5 6—“?¢‘1<5> [bz} (0 v)
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Both these complexes are homotopy equivalent to the (simpler) compler segment

o5 Y
() D] ( ) 7] )
Here C, D, E and F are arbitrary columns of objects in C and all Greek letters (other
than ¢) represent arbitrary matrices of morphisms in C (having the appropriate dimensions,
domains and ranges); all matrices appearing in these complexes are block-matrices with blocks
as specified. by and by are billed here as individual objects of C, but they can equally well be
taken to be columns of objects provided (the morphism matriz) ¢ remains invertible.

M fc]

7] -

From the previous lemmas we infer that the Khovanov complex of a tangle is homotopy
equivalent to a chain complex without loops in the smoothings, and in which every differen-
tial is a non-invertible cobordism. In other words, if (2, d) is a complex in Cob? /1» We can use
lemmas 2.1, 2.2, and obtain a homotopy equivalent chain complex (€, d’) with no loop in
its smoothings and no invertible cobordism in its differentials. We say that a complex that
has these two properties is reduced. Moreover, we call (@', d’) a reduced form of (Q,d) .

3. THE CATEGORY Kob, AND ALTERNATING PLANAR ALGEBRAS

In this section we introduce an alternating orientation in the objects of Cob? s1(k). This ori-
entation induces an orientation in the cobordisms of this category. These oriented k-strand
smoothings and cobordisms form the objects and morphisms in a new category. The com-
position between cobordisms in this oriented category is defined in the standard way, and it
is regarded as a graded category, in the sense of [BN2, Section 6]. We subject out the cobor-
disms in this oriented category to the relations in (1) and denote it as Cob® (k). Now we can
follow [BN2] and define sequentially the categories, Mat(Cob?(k)), Kom(Mat(Cob3(k))) and
Kom /h(l\flat(Cobg(k))). These last two categories are what we denote Kob,(k), and Kob, /.
As usual, we usc Kob,, and Kob,, to denote [ J, Kob,(k) and |J, Kob,/s(k) respectively.

The orientation in the smoothings is done in such a way that the orientation in the strands
is alternating in the boundary of the disc where they are embedded. After removing loops,
the resulting collection of alternating oriented objects obtained will be denoted with the
symbol §,. A d-input planar diagram with an alternating orientation of its arcs, provides
a good tool for the horizontal composition of objects in S,. Given smoothings oy, ..., 74, 2
suitable alternating d-input planar diagram D to compose them has the property that the
i-th input disc has as many boundary arc points as o;. Moreover placing o; in the i-th input
disc, the orientation of o; and D match. An alternatively oriented d-input planar diagram

as this, provides a good tool for the horizontal composition of objects not only in S,, but
also in Cob}, Mat(Cob’(k)), Kob,, and Kob,.

We are going to use these alternating diagrams to compute non-split alternating tangles,
and we want to preserve the non-split property of the tangle. Hence, it will be better if
we use d-input type A diagrams. A d-input type-A diagram has an even number of strings
ending in each of its boundary components, and every string that begins in the external
boundary cnds in a boundary of an internal disk. We can classify the strings as: curls, if
they have its ends in the same input disc; interconnecting arcs. if its ends are in different
input discs, and boundary arcs, if they have one end in an input disc and the other in the
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external boundary of the output disc. The arcs and the boundaries of the discs divide the
surface of the diagram into disjoint regions. Diagrams with only one or two input discs
deserves special attention. Operators defined from diagrams like these are very important
for our purposes since some of them are considered as the generators of the entire collection
of operators in a connected alternating planar algebra.

@)

Figure 2. Examples of basic planar diagrams

Definition 3.1. A basic planar diagram (Sce Figurc 2) is a 1-input altcrnating planar dia-
gram with a curl in it, or a 2-input alternating planar diagram with only one interconnecting
arc. A basic operator is one defined from a basic planar diagram. A negative unary basic
operator is one defined from a basic l-input diagram where the curl completes a negative
loop. A positive unary basic operator is one defined from a basic 1-input diagram where the
curl completes a positive loop. A binary operator is one defined from a basic 2-input planar
diagram.

Proposition 3.2. Any operator D in an alternatively oriented planar algebra is the finite

omposition of basic operators.

Proposition 3.3. Given the smoothings o1, ...,04 and a sustable d-input planar diagram D,
where every smoothing can be placed, then there exists an integer (the associated rotation,
number) Rp such as the rotation number of D(oy, ...,04) is:

d
(8) R(D((Tl,()'d)) :RD+ZR(UZ)
i=1
Proof. By proposition 3.2, it is sufficient to prove that the statement holds for basic

operators. Indeed, if U is a positive unary basic operator, and o € S, can be embedded in
U, then R(U(0)) = R(0). If instead U is a negative unary basic operator, then R(U(0)) =
R(o) —1; and finally if B is a binary basic operator, and 01,05 € S, can be embedded in its
espective input discs, then R(B(oy,09)) = R(01) + R(oy) — 1.

4. DIAGONAL COMPLEXES

Once we have applied lemma 2.1 to an element of Kob,, we obtain a complex (2, d) which
preserves some properties of the former one, but with a change in the rotation number of
the element o{q, }, in which we have applied the delooping. Indeed, the smoothing has been
replaced in the complex by a couple whose rotation number has changed cither by -1 or by
+1. This shift in the rotation number could be even greater if we continue removing loops in
the same smoothing. We know, from Lemma 2.1, that there is also a change in the grading

L fecfeps 0 éc'ﬁa/ "fo /ZJW f7op. 3.3 W/ /m’f/ L gus”
M Wit You do  “Ewan p/ts” '
2. £ Wk some o2 No Ro's wla wish S Jpurd o0 base i,

o~ ofF
’ﬁﬂw}eerxg
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shift of the smoothings. Thus, it would be prudent to define a concept that states a relation
between the rotation number of o and its grading shift q,.

Definition 4.1. Let (©2,d) be a class-representative of Kob,,, and let o;{¢;} be a shifted
degree object in Q7 then its degree-shifted rotation number is R(o:{¢:}) = R(0;) + ¢;

Definition 4.2. A dcgree-preserving differential chain complex in Kob,y, is called a diagonal
complex if it has a reduced form (€2, d)

L Yt

in Kob,, satisfying that for each homological degree r, and each shifted degree object 0;{¢;}
in O, 2r — R(0:{¢:}) = Cq, where Cq is a constant that we call rotation constant of (€, d).

Example 4.3. As in [BN3], a dotted line represent a dotted curtain, and X represents the
saddle ) ( — X

(1)
X
0= X{z}u=)({1}

This is the Khovanov homology of the negative crossing X, now with orientation in
the smoothings. Remember that the first term has homological degree -1. In this
example the rotation number in the first term is 1 and in the second term it is 2.
Taking into account the shift in each of these smoothings, the rotation numbers are
respectively -1 and 1. Obscrve that in cach case, the difference between 2 times the
homological degree r and the shifted rotation number is —1.

(2) The complex

s — )( (—o) 2, )( gk .

is not diagonal. Observe that in this case 2r — R(0y{¢;}) is not a constant.

4.1. Applying unary operators. The reduced complexes in Kom(Mat(Cob?)) can be in-
scrted in appropriate unary planar diagrams, and then apply the DG algorithm to obtain
again a reduced complex in Kob,. The whole process can be summarized in the following
steps:
(1) placing of the complex in the input disc of the unary planar arc diagram by using
equations (2) with n =1,
(2) removing the loops obtained by applying lemma 2.1, i.e, replacing each of them by a
copy of §{+1} @ §{—1}, and
(3) applying gaussian elimination (lemma 2.2), and removing in this way each invertible
differential in the complex.

Definition 4.4. Let (€2, d) be a chain complex in Kom(Mat(Cob?(k))), then a partial closure
of (Q2,d) is a chain complex of the form D; o --- o D{(Q) where 0 < | < k and every Dj
(1 <i <) is a unary basic operator.

We have diagonal complexes whose partial closures are again diagonal complexes.
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Definition 4.5. Let (€, d) be a diagonal complex in Kob, with rotation constant C. We say
that (9, d) is coherently diagonal, if for any appropriated unary operator U with associated
rotation number Ry, the closure U(S, d) has a reduced form which is a diagonal complex
with rotation constant Cg — Ry.

We denote as D(k) the collection of all coherently diagonal complexes in Kom(Mat(Cobj,(k))),
and as usual, we write D to denote | J, D(k). It is easy to prove that any coherently diagonal
complex satisfies that:

(1) after delooping any of the positive loops obtained in any of its partial closure, by
using lemma 2.2, the negative shifted-degree term can be eliminated.

(2) after delooping any of the negative loops obtained in any of its partial closure, by
using lemma 2.2, the positive shifted-degree term can be eliminated.

Example 4.6. Since the computation of any other of its partial closures produces other
diagonal complex, the Khovanov homology of the negative crossing is an element of D(2).

Indeed, by embedding Q; of the example 4.3 in a unary basic planar di- \ T

agram U; as the one on the right which has an associated rotation number .= .
Ry, = 0, produces the chain complex. ¢ D ,

Ui(fh) = {;O {—2}} [—E’ )O {—1}}
o

s {X) {—2}} [_}.

T
o

The last complex is the result of applying lemma 2.1. Now applying lemma 2.2, we obtain
a homotopy equivalent complex

B =~ 9 {) {0}}

which is also a diagonal complex with the same rotation constant -1. Obviously a complete
proof that this complex is coherently diagonal involves checking that the same happens when
embedding the complex in each of its partial closures

Example 4.7. The complex

13 = U {—2} S )< =1}
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is diagonal but it is not coherently diagonal. Indeed, if we embedded in U; the result is
e
o

o =[]

which is not diagonal
4.2. Applying binary operators. qunSlzo

Proposition 4.8. If D is an appropriate binary basic operator and (¥, ¢), (®, f) are diagonal
complexes in Kob, with rotation constants Cy and Cg respectively, then D(W, @) is a diagonal
complex with rotation constant Cy + Cs.

Proof.  Inserting (V,e) and (@, f) in the disc D produces the complex (Q,d) = D(V, ®),
which by equation (2) satisfies

(9) O = P D, o

r=s+t

and
(10) d'D(\I,/s:cpt) — D(G, Lpt) -+ (—l)sD(I\ps, f)

If ¥{qy} and ¢{q,} are respectively elements in the vectors ¥* and ®*, so by equation (9)
the elements in the vector 2" are of the form D(¢, ¢){qy + q}. As ¢ and @ are smoothings
with no loops, the same we have for D(v), ¢) and by using propositions 3.2 and 3.4, we obtain

R(D(%, 8)) + gy + g5 = R(Y) + R($) + ay + g4-

Therefore, the homological degree r satisfies

— R(D($,8)) = s — (R(W) + gp) +t — (R($) + 45) = Co + Co
|

Proposition 4.9. Let (U, e) and (D, f) be complezes in D, and let D be a binary basic planar
operator for which D(W, ®) is well defined. For each partial closure C(D(W,®)), there exists
an operator D' defined using a diagram without curls and reduced chain complexes W', ®' in
D such that

C(D(T,®)) = D'(V, ')

Proof. We have a binary basic planar diagram D as the one at the right. /
A closure of D(W, ®) can be regarded as the composition of ¥ and @ in an \ /
operator C(D) defined from this closure. We can also regard the disc C(D)

as a composition of two closure disc F, E' embedded in a binary planar / \ \\
diagram D’ with no curl such that C(D) = D(E, E’). See Figure 3. Hence,

C(D(¥,®)) = D(F(¥), '(®)). Since I/(¥) and I7'(P) are respectively closures of ¥ and @
which are elements of D, the proposition has been proved. O
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Figure 3. The closure of a binary operator can be considered as the binary composition of
two unary operator closures

Proposition 4.10. Let o and 7 be smoothings in S,, and let D be a suitable binary planar
operator defined from a mo-curl planar arc diagram with output disc Dy, input discs D1, Do,
associated rotation constant Rp and with at least one boundary arc ending in Dy. Then there
exists a closure operator C' and a unary operator U such that D(o,7) = U(C(0)). Moreover,
if (Q,d) € D has rotation constant Cq, then D(Q,7) is a diagonal complex with rotation
constant Co — R(T) — Rp.

Proof. To prove that the rotation constant of D(Q, 7) is C — R(7) — Rp, we observe that
for each smoothing o{¢,} in Q the shifted rotation number satisfies R(D(c{¢,}, 7)) = Rp +
R(0{qs})+R(7) = Rp+2r—Cq+R(7). Therefore, 2r— R(D(0{¢s}, 7)) = Co—R(17)—Rp O

5. PERTURBED DOUBLE COMPLEXES

Given an additive category C, an (upward) perturbed double complex in C is a family Q of
objects {Q,,} of C indexed in Z x Z, together with morphisms

d Qg — Qp_it1,4+: for each i >0,

such that if d = 5 d* then d? = 0; or alternatively,

k
(11) Zdi od** =0 for each k>0

=0

It will be convenient to illustrate the perturbed double complex as a lattice in which any
node (), , is the domain of arrows d°, d', ..., which
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prZ,q prZ,qH prZ,qH Q:D*Z,q%

Q}H—Lq Qp-f-l,q-ﬁ-l Qp+1,q-f-2 Qp+1,q+3

satisfies the following infinite number of conditions

For k = 0: Equation (11) reduces to d” o d® = 0. This condition is equivalent to saying
that for each fixed ¢ € Z, the objects €,, and the morphisms d° : Q,, = Qi1
form a complex. We call these complexes the vertical complezes €2, 4 of the reticular
complex

For k = 1: Equation (11) reduces to d° o d' + d* o d° = 0 This condition is equivalent
to say that all the squares in the diagram anticommute

d° do
d! d* d?
[ ] [
d° d°
d! d! d?
® @
d° do

For k = 2: Equation (11) reduces to d° o d? + d' o d' + d° o @*> = 0. This states that
for each p, g the sum of d' o d' plus the compositions along consecutive sides of the
parallelogram with vertices on €2, 4, 142, Qpi1,4 and €2, 449 is zero.

® ®
d2

e<— o
)

1
d
0
dl/
@ @ @

For any k > 0: Equation (11) states that the sum of the compositions along con-
secutive sides of all possible parallelograms with diagonal on €, , and €, j j4k+2 is
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Zero.

We must include in the sum, a composition d** o d*” along the common diagonal of the
parallelograms, for cases where k is an even integer.

In the same way as in the case of double complexes, a perturbed double complex is
associated to a chain complex that we denominate its total complez, abbreviated Tot((2),
and defined as follows:

Definition 5.1. Given a perturbed double complex €, its total complex Tot(€2) is defined

by
Tot(Q)" = @ D
prg=n
d‘sz,,,q - Z d
>0

Note that the condition stated by equation (11) makes certain that Tot(2) is indeed a
chain complex. We observe also that double complexes are just the special cases of perturbed
double complexes in which df = 0 for each i > 2.

If no confusion arises, from now on we omit specific mention of the adjective total and we
will write just € when we refer to Tot(£2). We shall simply say “perturbed double complex”
to mean the total complex associated to it.

One desired feature of perturbed double complex €2 is that the DG algorithm works well
when applied to one of its vertical complexes {2, ;. What we mean with this last sentence is
that the homotopy cquivalent complex obtained after applying the DG algorithm in objects
and morphisms located in the same vertical complex of a perturbed double complex is itself
a perturbed double complex. We see this inmmediately.

First of all. by applying Lemma 2.1 in §,, ,, we do not change the configuration of perturbed
double complex. Indeed, if f : €, , — €1, , is an isomorphism, then it is possible to obtain a
perturbed double complex €' homotopy equivalent to 2 by substituting €2,,, by Q2 ,, and by
replacing any morphism d* with image in 2, , by the morphism f o d*, and any morphism &’
with domain in €, by & o f1.

Secondly, if ¢ : b; — by is an isomorphism in C, and if Dy, Ey are column vectors of object
in C. Given a perturbed double complex €2 with

b b
Qpg = {Dlo} and Qpy1,4 = {EZJ )

then eliminating ¢ by applying Lemma 2.2 does not bring any change in a vertical chain
Q,, with r # q. Moreover, since the application of this lemma does not bring any new type
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of arrow in €2, we have that the homotopy equivalent complex obtained is also a perturbed
double complex. Indeed, after applying Lemma 2.2, the arrows

v = <gj> Qprjrg-5 = Uoge A= (% €i0) 1 Qg = Dpiviguiy

‘ 5. A
@ = (cé ijas = Qprrg A= (:“i Vi) 1,0 = Qpmita,gtis
j
and
d iy = Qpmivigh

have been change to
= (5;’) : Q) p+i—l,g—5 7 Q;q, d= (610 - 71'@71(50) : Q;,,q — Qp—'i-l—l,q-i-i:

& = (EOJ Yd; ) N Qp+1 o &= (VZ> : ;+1,q = pivaqtis
and
& — 05 Qg > Dpirigts
where &g and 7y are the morphisms 3y : Dy — by and o : by — Ey.
A consequence of all of this is that the DG algorithm can be applied to a vertical complex
in {2 in such a way that the others vertical complexes remain unchanged.

6. PROOF OF THEOREM 2
Before proving the first main theorem, let us state the following result.

Proposition 6.1. Let (2,d) be a coherently diagonal complex with rotation constants Caq.
Let [o}] i be a vector of degree-shifted smoothings in S,, all of them with the same rotation
number R. Suppose that D is an appropriate binary operator defined from a no-curl planar
arc diagram with associated rotation constant Rp and at least one boundary arc coming from
the first input disc. Then D(Q, [aj}j) has a reduced diagonal complex with rotation constant
Co— R— Rp.

Proof. The complex D((, [0;];) is the direct sum &; [D (2,0;)]. Thus, the proposition
follows from the observation that by proposition 4.10, each of its direct summands D (2, 7;)
is a coherently diagonal complex with rotation constant Co — R — Rp. [l

Lemma 6.2. Let (Q,dy) be a coherently diagonal complex: with rotation constants Cy. Let

nﬂﬂ,(&j/ (s, dy) @ complexr with rotation constant Cy. Suppose that D is an appropriate
‘J’;\ﬁ’ fy/ binary operator defined from a no-curl planar arc diagram with associated rotation constant
Rp and at least one boundary arc coming from the first input disc. Then D(Qy, Ql)k}fisj a

reduced diagonal complex with rotation constant C1+ Cy — Rp. Sy

Proof.  Observe that Q = D(£24,€2,) is a double complex. Indeed, if {2, is the cham com
e s Qf Qi

/ %1 o @, 710

then €, , is the planar composition D(2;,3). Since {2y is a diagonal complex, any of the
smoothings in 2§ has the same rotation number, 2¢ — Cy. Thus, by proposition 6.1, Q,,
is homotopy equivalent to a reduced diagonal complex €2, , with rotation constant C; +
Cy — 2qg — Rp. We alrcady know that we can apply dclooping and gaussian climination in
(2 involving only elements of ), , and obtain a homotopy equivalent complex that has no
changes in another vertical chain complex of {). In consequence, €2 is homotopy equivalent to
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a perturbed complex €' in which each , , has been replaced by its correspondent reduced
complex (2 .. Thus, for each obtained €, , and each of its homological degree p, we have
2p—R(Qy ) = C1+C2—29—Rp. Therefore Y is a diagonal complex with rotation constant
01 + CQ — RD- UJ

Proof. (Of Theorem 2) By proposition 3.2, we only need to prove that D is closed under
composition of basic operators. Let (£21,d;) € D and let U be a basic unary operator. Since
U(£y) is a partial closure of (Qy,d;), U(£y) is diagonal. Furthermore any partial closure of
U(£1) is also a partial closure of (Qq,d;), so U(Q4) € D.

s adl >Let (Q4,d1) and (€,ds) be elements of D, and let D be a basic binary operator. By

proposition 4.8, D(21,,) is a diagonal complex. Let C(D(Q4,€2)) be a partial closure of
D(Q4,9;). The fact that C(D) is only a partial closure implies that there is at least one
boundary arc in C'(D). Without loss of generality, we can assume that there is one boundary
arc ending in the first input disc of C'(D). By proposition 4.9 there exist ©f,€; € D and
a binary operator D’ defined from a no-curl planar diagram such that C(D(4,$s)) =
D'(9, Q). By using Lemma 6.2, we obtain that D'(€}, Q) is a diagonal complex. O

7. NON-SPLIT ALTERNATING TANGLES AND LEE’S THEOREM

7.1. Gravity information. Given a diagram of an alternating tangle, we add to it some
special information which will help us to compose the Khovanov invariant of an alternating
tangle in an alternating planar diagram. This is illustrated by drawing, in every strand of the
diagram, an arrow pointing in to the undercrossing, or equivalently (if we have alternation),
pointing out from the overcrossing. In a neighbourhood of a crossing, the diagram looks like
the one in Figure 4(a). Figure 4(b) shows a diagram of a tangle in which we have added the

\ (a) / \

Figure 4. (a) Gravity information in a neighbourhood of a crossing. (b) Gravity information
in the tangle. We use: o for out-boundary points and i for in-boundary points.

gravity information to the whole tangle. We observe, (see Figure 4(a)) that if we make a
smoothing in the crossing, the orientation provided by the gravity information is preserved,
and that a O-smoothing is clockwise and 1-smoothing is counterclockwise, see figure 5. It is
easily observed as well that if we go into a non-split alternating tangle for an in-boundary
point and turn to the right (a O-smoothing) every time that we meet a crossing, we are going
to get out of the tangle along the boundary point immediately to the right. Hence, the in-
and out-boundary points of the diagram of the tangle are arranged alternatingly. These two
observations are stated in the following two propositions:

Proposition 7.1. The 0-smoothings and 1-smoothings preserve the gravity information. The
first ones provides a clockwise orientation of the pair of strands in the smoothing, and the
last provides a counterclockwise orientation.
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&mclockwise

clockwise

Figure 5. The smoothings in the diagrams preserve the gravity information

Proposition 7.2. In any non-split alternating tangle, if the k-th boundary point is an in-
boundary point, then the (k + 1)-th boundary point is an out-boundary point.

Propositions 7.1 and 7.2 indicate that the smoothings of a tangle could be drawn as trivial
tangles in which arcs are oriented alternatingly. Therefore, the Khovanov homology produces
an alternating planar algebra morphism in the sense of [BN2].

7.2. Proof of Theorem 1. This proof is a direct application of Theorem 2, the fact that the

Khovanov homology is an altcrnating planar algcbras morphism, and -}}10 following proposi-
tion W@ " vraty, 1t %

Proposition 7.3. The Khovanov complex of a 1-crossing tangle is“an element of D(2).

Proof. We just need to check each of the possible partial closures of the two 1-crossing
tangles to observe that all of them have a reduced diagonal form. One of this can be seen in
cxamplc 4.6. O
Proof. (Of Theorem 1) Any non-split alternating k-strand tangle with n crossing T,
is obtained by a composition of n l-crossing tangles, T1,...,T,, in a n-input type-A planar
diagram. Since the Khovanov homology is a planar algebra morphism, by using the same
n-input planar diagram for composing Kh(T}),...,Kh(T,) we obtain the Khovanov homology
of the original tangle. According to Theorem 2, this is a complex in D. O

Corollary 7.4. The Khovanov complex [T] of a a non-split alternating 1-tangle T is homo-
topy equivalent to a complex

s U 2r K} — T2+ D)+ K -
where every 2" is a vector of single lines, and K is a constant.

Proof. We only have to apply theorem 1 and see that the rotation number of a 1 open
arc, which is the only simple possible smoothing resulting from a 1-tangle, is one. ]

Figure 6 shows a diagonal complex whose smoothings have only one strand. Since the
rotation number of a smoothing with a unique strand is always 1, we have that the degree
shift and the homological degree multiplied by two are in a single diagonal, i.e., 2r — ¢, is a
constant.

Corollary 7.5. (Lee’s theorem)The Khovanov complex Kh(L) of a non-split alternating
Link L is homotopy equivalent to a complex:

(B ) L (Enlea )

where every ® is a matriz of empty I-manifolds, ¢ = 2r + K, K a constant, and every
differential is a matrix in the ground ring.



18 DROR BAR-NATAN & HERNANDO BURGOS-SOTO

0 2.4 ] 0]

r
-0 1 2 3 4 —
R
— 2 0 2 4 6—

Figure 6. A diagonal complex with only one strand in each of its smoothings.

Proof. Every non-split alternating link 7, is obtained by putting a 1-strand tangle 7" in
a l-input planar diagram with no boundary. Hence, by applying the operator defined from
this 1-input planar diagrams to the Khovanov complex of this 1-strand tangle, we obtain
the IKhovanov complex of a link L. By doing that, the vectors of open arcs that we have in
corollary 7.4 become vectors of circles. Moreover, every cobordism of the complex transforms
in a multiple of a dotted cylinder. Thus, using Lemma 2.1 converts cvery single loop in a
pair of empty sets 0{2r + K + 1}, §{2r + K — 1} and every dotted cylinder in an element of
the ground ring. O

Figure 7 displays the closure of the complex in Figure 6. After applying lemmas 2.1 and
2.2 we obtain the complex supported in two lines displayed on Figure 7, as stated in Lee’s

o o o

[l i
1 1
1 i
1 i
1 1
1 t
i '
1 t

(b {-2} . -2} . {2} o 0 . (D {6}
o {-4} M } { ’ J [ } ¢ {4}
r— 0 1 2 3 4 —

Figure 7. A closure of a coherently diagonal complex is a width-two complex.

Remark 7.6. It is clear that if our ground ring is Q, as in the case of [Leel], we can use
repeatedly lemma 2.2 in the complex in corollary 7.5 and obtain from this complex, onc
whose differentials are zero. i.e, the Khovanov homology of the link.
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