Notice. The Knot Atlas is now recovering from a major crash. Hopefully all functionality will return slowly over the next few days. --Drorbn (talk) 21:23, 4 July 2013 (EDT)

# L5a1

Jump to: navigation, search

## Contents

 (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L5a1's page at Knotilus. Visit L5a1's page at the original Knot Atlas. L5a1 is $5^2_1$ in Rolfsen's Table of Links. It is also known as the "Whitehead Link".
 Basic depiction Drawing of "Thor's hammer" or Mjölnir found in Sweden Wolfgang Staubach's medallion based on this [1] A kolam with two cycles, one of which is twisted[2] A simplest closed-loop version of heraldic "fret" / "fretty" ornamentation. Bisexuality symbol.

### Link Presentations

 Planar diagram presentation X6172 X10,7,5,8 X4516 X2,10,3,9 X8493 Gauss code {1, -4, 5, -3}, {3, -1, 2, -5, 4, -2}

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{(u-1) (v-1)}{\sqrt{u} \sqrt{v}}$ (db) Jones polynomial $\frac{1}{q^{7/2}}-\frac{2}{q^{5/2}}-q^{3/2}+\frac{1}{q^{3/2}}+\sqrt{q}-\frac{2}{\sqrt{q}}$ (db) Signature -1 (db) HOMFLY-PT polynomial $-z a^3+z^3 a+2 z a+a z^{-1} -z a^{-1} - a^{-1} z^{-1}$ (db) Kauffman polynomial $-z^2 a^4-2 z^3 a^3+2 z a^3-z^4 a^2-3 z^3 a+4 z a-a z^{-1} -z^4+z^2+1-z^3 a^{-1} +2 z a^{-1} - a^{-1} z^{-1}$ (db)

### Khovanov Homology

 The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$). The squares with yellow highlighting are those on the "critical diagonals", where $j-2r=s+1$ or $j-2r=s-1$, where $s=$-1 is the signature of L5a1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. Data:L5a1/KhovanovTable
Integral Khovanov Homology
 $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-2$ $i=0$ $r=-3$ ${\mathbb Z}$ $r=-2$ ${\mathbb Z}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-1$ ${\mathbb Z}_2$ ${\mathbb Z}$ $r=0$ ${\mathbb Z}^{2}$ ${\mathbb Z}^{2}$ $r=1$ ${\mathbb Z}$ $r=2$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.

### Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.