L11n407

From Knot Atlas
Jump to: navigation, search

L11n406.gif

L11n406

L11n408.gif

L11n408

Contents

L11n407.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n407 at Knotilus!


Link Presentations

[edit Notes on L11n407's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X22,12,19,11 X10,4,11,3 X5,21,6,20 X21,5,22,18 X12,20,13,19 X14,9,15,10 X2,14,3,13 X8,15,9,16
Gauss code {1, -10, 5, -3}, {8, 6, -7, -4}, {-6, -1, 2, -11, 9, -5, 4, -8, 10, -9, 11, -2, 3, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n407 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{2 (t(1)-1) (t(3)-1)^2 (t(2) t(3)+1)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial 3 q^5-5 q^4+9 q^3-9 q^2+11 q-10+8 q^{-1} -5 q^{-2} +3 q^{-3} - q^{-4} (db)
Signature 2 (db)
HOMFLY-PT polynomial  a^{-6} z^{-2} + a^{-6} -z^4 a^{-4} -3 z^2 a^{-4} -2 a^{-4} z^{-2} -4 a^{-4} +z^6 a^{-2} -a^2 z^4+3 z^4 a^{-2} -2 a^2 z^2+3 z^2 a^{-2} + a^{-2} z^{-2} +3 a^{-2} +z^6+3 z^4+2 z^2 (db)
Kauffman polynomial 2 a z^9+2 z^9 a^{-1} +3 a^2 z^8+6 z^8 a^{-2} +9 z^8+a^3 z^7-3 a z^7+4 z^7 a^{-1} +8 z^7 a^{-3} -13 a^2 z^6-12 z^6 a^{-2} +7 z^6 a^{-4} -32 z^6-4 a^3 z^5-10 a z^5-25 z^5 a^{-1} -16 z^5 a^{-3} +3 z^5 a^{-5} +17 a^2 z^4+4 z^4 a^{-2} -12 z^4 a^{-4} +33 z^4+5 a^3 z^3+18 a z^3+20 z^3 a^{-1} +7 z^3 a^{-3} -6 a^2 z^2-3 z^2 a^{-2} +11 z^2 a^{-4} +6 z^2 a^{-6} -14 z^2-2 a^3 z-6 a z-6 z a^{-1} +2 z a^{-3} +4 z a^{-5} +a^2- a^{-2} -6 a^{-4} -4 a^{-6} +3-2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-2} z^{-2} +2 a^{-4} z^{-2} + a^{-6} z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
11         33
9        42-2
7       51 4
5      44  0
3     75   2
1    56    1
-1   35     -2
-3  25      3
-5 13       -2
-7 2        2
-91         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n406.gif

L11n406

L11n408.gif

L11n408