# L11n365

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11n365 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{(u-1) (w-1) \left(-v^2 w+v w^3-v w^2+v w-v+w^2\right)}{\sqrt{u} v w^2}$ (db) Jones polynomial $-1+4 q^{-1} -5 q^{-2} +8 q^{-3} -8 q^{-4} +8 q^{-5} -6 q^{-6} +5 q^{-7} -2 q^{-8} + q^{-9}$ (db) Signature -2 (db) HOMFLY-PT polynomial $a^8 z^2+a^8 z^{-2} +2 a^8-2 a^6 z^4-6 a^6 z^2-2 a^6 z^{-2} -6 a^6+a^4 z^6+4 a^4 z^4+6 a^4 z^2+a^4 z^{-2} +3 a^4-a^2 z^4-a^2 z^2+a^2$ (db) Kauffman polynomial $z^6 a^{10}-4 z^4 a^{10}+5 z^2 a^{10}-2 a^{10}+2 z^7 a^9-6 z^5 a^9+3 z^3 a^9+z a^9+2 z^8 a^8-4 z^6 a^8-z^4 a^8-z^2 a^8-a^8 z^{-2} +3 a^8+z^9 a^7+z^7 a^7-9 z^5 a^7+9 z^3 a^7-7 z a^7+2 a^7 z^{-1} +5 z^8 a^6-17 z^6 a^6+25 z^4 a^6-23 z^2 a^6-2 a^6 z^{-2} +11 a^6+z^9 a^5+z^7 a^5-8 z^5 a^5+14 z^3 a^5-9 z a^5+2 a^5 z^{-1} +3 z^8 a^4-12 z^6 a^4+26 z^4 a^4-21 z^2 a^4-a^4 z^{-2} +7 a^4+2 z^7 a^3-5 z^5 a^3+9 z^3 a^3-2 z a^3+4 z^4 a^2-4 z^2 a^2+z^3 a-z a$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-8-7-6-5-4-3-2-101χ
1         1-1
-1        3 3
-3       43 -1
-5      41  3
-7     44   0
-9    44    0
-11   24     2
-13  34      -1
-15 14       3
-17 1        -1
-191         1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-3$ $i=-1$ $r=-8$ ${\mathbb Z}$ $r=-7$ ${\mathbb Z}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-6$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2$ ${\mathbb Z}^{3}$ $r=-5$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=-4$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-3$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-2$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-1$ ${\mathbb Z}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=0$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2$ ${\mathbb Z}^{3}$ $r=1$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.