L11n311

From Knot Atlas
Jump to: navigation, search

L11n310.gif

L11n310

L11n312.gif

L11n312

Contents

L11n311.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n311 at Knotilus!


Link Presentations

[edit Notes on L11n311's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X13,19,14,18 X17,11,18,22 X7,17,8,16 X21,8,22,9 X9,20,10,21 X15,5,16,10 X19,15,20,14 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, -5, 6, -7, 8}, {11, -2, -3, 9, -8, 5, -4, 3, -9, 7, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n311 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{u v^2 w^2-u v^2 w+u v w^3-2 u v w^2+u v w+u v+u w-u+v^2 w^4-v^2 w^3-v w^4-v w^3+2 v w^2-v w+w^3-w^2}{\sqrt{u} v w^2} (db)
Jones polynomial -q^5+ q^{-5} +2 q^4- q^{-4} -3 q^3+2 q^{-3} +3 q^2+ q^{-2} -3 q+3 (db)
Signature 0 (db)
HOMFLY-PT polynomial z^6-2 a^2 z^4+7 z^4+a^4 z^2-10 a^2 z^2-3 z^2 a^{-2} -z^2 a^{-4} +14 z^2+3 a^4-12 a^2-4 a^{-2} +13+2 a^4 z^{-2} -5 a^2 z^{-2} - a^{-2} z^{-2} +4 z^{-2} (db)
Kauffman polynomial z^5 a^{-5} -3 z^3 a^{-5} +z a^{-5} +a^4 z^8-7 a^4 z^6+2 z^6 a^{-4} +16 a^4 z^4-6 z^4 a^{-4} -17 a^4 z^2+2 z^2 a^{-4} -2 a^4 z^{-2} +9 a^4+a^3 z^9-6 a^3 z^7+2 z^7 a^{-3} +7 a^3 z^5-7 z^5 a^{-3} +6 a^3 z^3+6 z^3 a^{-3} -13 a^3 z-4 z a^{-3} +5 a^3 z^{-1} + a^{-3} z^{-1} +3 a^2 z^8+z^8 a^{-2} -23 a^2 z^6-4 z^6 a^{-2} +53 a^2 z^4+6 z^4 a^{-2} -49 a^2 z^2-8 z^2 a^{-2} -5 a^2 z^{-2} - a^{-2} z^{-2} +21 a^2+5 a^{-2} +a z^9-5 a z^7+3 z^7 a^{-1} -3 a z^5-18 z^5 a^{-1} +30 a z^3+33 z^3 a^{-1} -29 a z-21 z a^{-1} +9 a z^{-1} +5 a^{-1} z^{-1} +3 z^8-22 z^6+49 z^4-42 z^2-4 z^{-2} +18 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9          1 1
7         21 -1
5       121  0
3      132   0
1     132    0
-1    124     3
-3   131      1
-5  113       3
-7 12         1
-9            0
-111           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1 i=3
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3} {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3} {\mathbb Z}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n310.gif

L11n310

L11n312.gif

L11n312