# L11n238

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11n238 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{u^3 v^3-2 u^3 v^2-2 u^2 v^3+6 u^2 v^2-6 u^2 v+2 u^2+2 u v^3-6 u v^2+6 u v-2 u-2 v+1}{u^{3/2} v^{3/2}}$ (db) Jones polynomial $q^{9/2}-3 q^{7/2}+6 q^{5/2}-10 q^{3/2}+12 \sqrt{q}-\frac{13}{\sqrt{q}}+\frac{12}{q^{3/2}}-\frac{10}{q^{5/2}}+\frac{6}{q^{7/2}}-\frac{3}{q^{9/2}}$ (db) Signature -1 (db) HOMFLY-PT polynomial $a z^7-a^3 z^5+5 a z^5-2 z^5 a^{-1} -4 a^3 z^3+11 a z^3-7 z^3 a^{-1} +z^3 a^{-3} +a^5 z-8 a^3 z+12 a z-9 z a^{-1} +2 z a^{-3} +2 a^5 z^{-1} -5 a^3 z^{-1} +6 a z^{-1} -4 a^{-1} z^{-1} + a^{-3} z^{-1}$ (db) Kauffman polynomial $-a z^9-z^9 a^{-1} -5 a^2 z^8-3 z^8 a^{-2} -8 z^8-7 a^3 z^7-14 a z^7-10 z^7 a^{-1} -3 z^7 a^{-3} -3 a^4 z^6+5 a^2 z^6+3 z^6 a^{-2} -z^6 a^{-4} +12 z^6+17 a^3 z^5+44 a z^5+36 z^5 a^{-1} +9 z^5 a^{-3} +9 z^4 a^{-2} +3 z^4 a^{-4} +6 z^4-6 a^5 z^3-29 a^3 z^3-51 a z^3-37 z^3 a^{-1} -9 z^3 a^{-3} -a^4 z^2-3 a^2 z^2-11 z^2 a^{-2} -3 z^2 a^{-4} -10 z^2+7 a^5 z+21 a^3 z+29 a z+19 z a^{-1} +4 z a^{-3} +a^4+a^2+3 a^{-2} + a^{-4} +3-2 a^5 z^{-1} -5 a^3 z^{-1} -6 a z^{-1} -4 a^{-1} z^{-1} - a^{-3} z^{-1}$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-4-3-2-1012345χ
10         1-1
8        2 2
6       41 -3
4      62  4
2     64   -2
0    76    1
-2   67     1
-4  46      -2
-6 26       4
-814        -3
-103         3
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-2$ $i=0$ $r=-4$ ${\mathbb Z}^{3}$ ${\mathbb Z}$ $r=-3$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=-2$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-1$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=0$ ${\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{7}$ $r=1$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=2$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=3$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=4$ ${\mathbb Z}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=5$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.