# L11n217

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11n217 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $-\frac{(t(1)-1) (t(2)-1) \left(t(2) t(1)^2+2 t(2)^2 t(1)-3 t(2) t(1)+2 t(1)+t(2)\right)}{t(1)^{3/2} t(2)^{3/2}}$ (db) Jones polynomial $2 q^{5/2}-6 q^{3/2}+8 \sqrt{q}-\frac{12}{\sqrt{q}}+\frac{12}{q^{3/2}}-\frac{12}{q^{5/2}}+\frac{10}{q^{7/2}}-\frac{6}{q^{9/2}}+\frac{3}{q^{11/2}}-\frac{1}{q^{13/2}}$ (db) Signature -1 (db) HOMFLY-PT polynomial $z^3 a^5+z a^5-z^5 a^3-z^3 a^3-2 z^5 a-5 z^3 a-3 z a+a z^{-1} +2 z^3 a^{-1} +2 z a^{-1} - a^{-1} z^{-1}$ (db) Kauffman polynomial $a^7 z^5-2 a^7 z^3+3 a^6 z^6-6 a^6 z^4+2 a^6 z^2+5 a^5 z^7-11 a^5 z^5+8 a^5 z^3-2 a^5 z+5 a^4 z^8-11 a^4 z^6+11 a^4 z^4-4 a^4 z^2+2 a^3 z^9+2 a^3 z^7-8 a^3 z^5+6 a^3 z^3+8 a^2 z^8-19 a^2 z^6+23 a^2 z^4+3 z^4 a^{-2} -11 a^2 z^2-3 z^2 a^{-2} +2 a z^9-2 a z^7+z^7 a^{-1} +9 a z^5+5 z^5 a^{-1} -15 a z^3-11 z^3 a^{-1} +6 a z+4 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +3 z^8-5 z^6+9 z^4-8 z^2-1$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-6-5-4-3-2-10123χ
6         2-2
4        4 4
2       42 -2
0      84  4
-2     66   0
-4    66    0
-6   46     2
-8  26      -4
-10 14       3
-12 2        -2
-141         1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-2$ $i=0$ $r=-6$ ${\mathbb Z}$ $r=-5$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2$ ${\mathbb Z}$ $r=-4$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=-3$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=-2$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=-1$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{6}$ $r=0$ ${\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6}$ ${\mathbb Z}^{8}$ $r=1$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=2$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=3$ ${\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.