L11n193

From Knot Atlas
Jump to: navigation, search

L11n192.gif

L11n192

L11n194.gif

L11n194

Contents

L11n193.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n193 at Knotilus!


Link Presentations

[edit Notes on L11n193's Link Presentations]

Planar diagram presentation X8192 X9,21,10,20 X4758 X16,5,17,6 X6,15,1,16 X22,17,7,18 X18,13,19,14 X14,21,15,22 X2,11,3,12 X12,3,13,4 X19,11,20,10
Gauss code {1, -9, 10, -3, 4, -5}, {3, -1, -2, 11, 9, -10, 7, -8, 5, -4, 6, -7, -11, 2, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n193 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{t(1) t(2)^4-t(2)^4+t(1)^2 t(2)^3-5 t(1) t(2)^3+3 t(2)^3-4 t(1)^2 t(2)^2+7 t(1) t(2)^2-4 t(2)^2+3 t(1)^2 t(2)-5 t(1) t(2)+t(2)-t(1)^2+t(1)}{t(1) t(2)^2} (db)
Jones polynomial -\frac{2}{q^{3/2}}+\frac{5}{q^{5/2}}-\frac{9}{q^{7/2}}+\frac{11}{q^{9/2}}-\frac{13}{q^{11/2}}+\frac{12}{q^{13/2}}-\frac{10}{q^{15/2}}+\frac{7}{q^{17/2}}-\frac{4}{q^{19/2}}+\frac{1}{q^{21/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial -z^3 a^9+z^5 a^7+z^3 a^7+z a^7+a^7 z^{-1} +z^5 a^5-2 z a^5-a^5 z^{-1} -2 z^3 a^3-2 z a^3 (db)
Kauffman polynomial a^{12} z^6-2 a^{12} z^4+a^{12} z^2+4 a^{11} z^7-11 a^{11} z^5+7 a^{11} z^3+5 a^{10} z^8-12 a^{10} z^6+4 a^{10} z^4+2 a^{10} z^2+2 a^9 z^9+4 a^9 z^7-20 a^9 z^5+12 a^9 z^3-2 a^9 z+9 a^8 z^8-19 a^8 z^6+8 a^8 z^4-a^8 z^2+2 a^7 z^9+3 a^7 z^7-9 a^7 z^5+a^7 z^3+3 a^7 z-a^7 z^{-1} +4 a^6 z^8-5 a^6 z^6+6 a^6 z^4-4 a^6 z^2+a^6+3 a^5 z^7-a^5 z^3+3 a^5 z-a^5 z^{-1} +a^4 z^6+4 a^4 z^4-2 a^4 z^2+3 a^3 z^3-2 a^3 z (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-2         22
-4        41-3
-6       51 4
-8      64  -2
-10     75   2
-12    56    1
-14   57     -2
-16  36      3
-18 14       -3
-20 3        3
-221         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-6 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n192.gif

L11n192

L11n194.gif

L11n194